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Abstract

Finite automata are used for the encoding and compression of images. For
black-and-white images, for instance, using the quad-tree representation, the
black points correspond to ω-words defining the corresponding paths in the
tree that lead to them. If the ω-language consisting of the set of all these
words is accepted by a deterministic finite automaton then the image is said
to be encodable as a finite automaton. For grey-level images and colour images
similar representations by automata are in use.

In this paper we address the question of which images can be encoded as
finite automata with full infinite precision. In applications, of course, the im-
age would be given and rendered at some finite resolution – this amounts to
considering a set of finite prefixes of the ω-language – and the features in the
image would be approximations of the features in the infinite precision ren-
dering.

We focus on the case of black-and-white images – geometrical figures, to
be precise – but treat this case in a d-dimensional setting, where d is any
positive integer. We show that among all polygons and convex polyhedra in
d-dimensional space exactly those with rational corner points are encodable
as finite automata.

In the course of proving this we show that the set of images encodable as
finite automata is closed under rational affine transformations.

Several properties of images encodable as finite automata are consequences
of this result. Finally we show that many simple geometric figures such as
circles and parabolas are not encodable as finite automata.
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1 Introduction
Finite automata are widely used as a means for describing certain fractals (see [1,
3, 9]). Usually, the investigation of automaton-generated fractals starts from the
underlying automaton and aims at a description of the image or the calculation of
some of its parameters like density, dimension or measure (see [6]). Less is known
about the converse direction, that is, starting from a class of images to ask whether
they are generated by automata or, if so, to describe these automata. Some struc-
tural properties of images generated by finite automata can be derived from the
structure of the ω-languages accepted by the automata. Finite-automaton gener-
ated images turn out to have specific shapes (see e. g. [1, 9]).

In this paper we focus on d-dimensional black-and-white images. Using their
representation as infinite trees with a branching of up to 2d – in the case of d = 2

these are quad-trees – the black points correspond to the infinite branches in these
trees. Hence an image would be represented by the ω-language describing these
branches. An image is encodable as (or definable by) a finite automaton if its ω-
language is accepted by such an automaton, that is, if that ω-language is regular
(see [11]). The cases of grey-level or colour images require additional parameters.

The encoding of an image as an automaton represents the image at infinite res-
olution. Sampling or rendering the image at a bounded resolution corresponds to
running the automaton for a bounded time only. These connections are exploited,
for example, in an automaton-based image compression procedure (see [4] or [5]).

In this paper we address the question of which images are encodable as fi-
nite automata. In particular, we consider polygons and convex polyhedra in d-
dimensional Euclidean space, that is, convex hulls of finite sets of points.

Our main results are that a d-dimensional convex polyhedron is definable by
a finite automaton if and only if it is the convex hull of a finite set of points with
rational coordinates, and that a polygon is definable by a finite automaton if and
only if its corner points are rational. This result is independent of the base cho-
sen for the number representation. The set of images definable by finite automata
being closed under union, projection, inverse projection and, essentially, also dif-
ference1, the class of geometrical figures definable by finite automata turns out to
be quite rich.

One of the main tools for proving these results is the following property of im-
ages encodable as finite automata: The set of these images is closed under rational
affine transformations, that is, transformations of the form y = Ax + b with only
rational numbers as entries of the transformation matrix A and the translation
vector b.

From closure properties of the set of regular ω-languages and these results, one
can determine further interesting classes of simple geometrical figures encodable
as finite automata. On the other hand, some very simple geometrical figures like
circles or parabolas cannot be encoded as finite automata. For image compression

1We consider figures that are bounded and closed in Euclidean space. Therefore, difference here
means the closure of the set theoretical difference.
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by automata this implies that such figures will, of necessity, be approximated by
convex polyhedra sampled at some bounded resolution.

2 Notation
The symbols N, Z, Q and R denote the sets of non-negative integers, integers,
rational and real numbers, respectively. An alphabet is a finite and non-empty
set. For an alphabet X, X∗ and Xω denote the sets of finite and right-infinite words
over X, respectively. For a word w ∈ X∗, |w| is its length. Right-infinite words are
referred to as ω-words in the sequel. An ω-language is a set of ω-words. The fact
that w ∈ X∗ is a prefix of η ∈ X∗ ∪ Xω is denoted by w v η.

For any alphabet Y and any positive integer d, let [Y, d ] denote the d-fold Carte-
sian product

[Y, d ] = Y × · · · × Y︸ ︷︷ ︸
d times

.

For y = (y1, . . . , yd) ∈ [Y, d ] and an integer i with 1 ≤ i ≤ d, the i-th projection of y

is proji y = yi.
For the representation of real numbers, we fix a base r ∈ N with r ≥ 2. Then the

set Y = {0, 1, . . . , r− 1} is considered as the set of r-ary number symbols. Every real
number in the closed interval [0, 1] = {p | 0 ≤ p ≤ 1} has a base-r representation
of the form 0.η where η ∈ Yω. In particular, a finite representation of a rational
number can be padded by an infinite sequence of the symbol 0. Conversely, every
ω-word η over Y denotes a unique real number νr(η) in the interval [0, 1], repre-
sented by 0.η. It is well-known that the mapping from representations of numbers
to their values is not injective.

Let d be a positive integer. To specify points in the closed d-dimensional unit
cube [0, 1]d we use ω-words over the alphabet X = [Y, d ]. For ξ = x1x2 · · · ∈ Xω and
an integer i with 1 ≤ i ≤ d, the i-th projection of ξ is the ω-word

proji ξ := proji x1 proji x2 · · ·

obtained from the i-th projections of the symbols of x. The point νr(ξ) in [0, 1]d

defined by ξ has, as coordinates, the values the numbers represented by the pro-
jections of ξ, 0. proji ξ.

We generalise this concept of projection to multiple co-ordinates by letting
proji(y1, . . . , yd) := (yi1 , . . . , yik) for i = (i1, . . . , ik) and i` ∈ {1, . . . , d}. Then proji ξ ∈
[Y, k ]ω and its value νr(proji ξ) is a point in the cube [0, 1]k. Observe that i =

(i1, . . . , ik) may contain the same co-ordinate several times, that is, il = im for some
l, m ∈ {1, . . . , d}; in particular, it may happen that (i1, . . . , id) is a permutation of
(1, . . . , d), or k > d.
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The following diagram is commutative.

[Y, d ]ω [Y, k ]ω...................................................................................................................................... ................
proji

[0, 1]d [0, 1]k...................................................................................................................................... ................
proji

...................................................................................................................
........
........
........

...................................................................................................................
........
........
........

νr νr

By slight abuse of notation we write (ξ1, . . . , ξd) to denote the element ξ ∈
[Y, d ]ω which has projections proji ξ = ξi, i = 1, . . . , d.

On Xω one defines an ultra-metric ρ by

ρ(ζ, ξ) = inf{r−|w| | w is a common prefix of ζ and ξ}.

Since X is finite, the space (Xω, ρ) is a compact metric space. Moreover, the map-
ping νr of Xω onto [0, 1]d is continuous.

If we denote by C(F) the smallest closed subset of [Y, d ]ω containing F ⊆ [Y, d ]ω,
and likewise by cl(M) the smallest closed subset of [0, 1]d containing M ⊆ [0, 1]d

then we have the identity
νr(C(F)) = cl(νr(F)) . (1)

For more detailed properties of νr see [12].

3 Regular ω-languages
In this section we consider the sets of infinite words defined by finite automata,
the so-called regular ω-languages. As a general reference regarding ω-languages
we use [11, 13, 14]. For the purpose of our paper, it is convenient to introduce
regular ω-languages in the following way.

First we introduce ω-languages definable in a simple way by finite automata:
Let A = (X, S, s0, δ) be a finite automaton with input alphabet X, set of states S,
initial state s0 and transition function δ : S× X → S ∪ {⊥} where δ(s, x) = ⊥ means
that δ(x, s) is undefined. We extend δ in the usual way to a function mapping S×X∗

to S ∪ {⊥} with δ(s,w) = ⊥ if δ(s,w ′) = ⊥ for some prefix w ′ v w.
We say that ξ ∈ Tω(A) provided δ(s0, w) 6= ⊥ for all w @ ξ, and we call Tω(A)

the ω-language defined by the finite automaton A. In other words, Tω(A) is the set
of all infinite words on which the automaton A does not get stuck.

The subsequent definition of regular ω-languages follows the line of [14, Chap-
ter III, §6]. This definition resembles the characterisation of regular ω-languages
as ω-languages definable in restricted monadic second-order arithmetic (see e.g.
[13]). Our approach is more suitable for the proofs of Proposition 10 and Theo-
rems 11 and 12.
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An ω-language F ⊆ [Y, d ]ω is referred to as regular provided it can be ob-
tained from ω-languages Tω(Ai) contained in possibly different spaces [Y, di]

ω,
i = 1, . . . ,m, by applications of union2, intersection, set-theoretical difference and
projections proji and their inverse mappings proj−1

i .
Then the following holds (see [14]).

Lemma 1 The family of all regular ω-languages F ⊆ [Y, d ]ω is closed under Boolean
operations.

The next lemma is an easy consequence of the definition.

Lemma 2 For F ⊆ [Y, d ]ω and E ⊆ [Y, k ]ω and i = (i1, . . . , ik), i1, . . . , ik ∈ {1, . . . , d}

the ω-languages proji F and proj−1
i E are regular ω-languages provided F and E are

regular.

For ω-languages being closed in the topology defined by ρ we have the following
(see [11, 14]).

Proposition 3 Let F ⊆ [Y, d ]ω be regular. Then the closure of F, C(F), is also regu-
lar.

Theorem 4 An ω-language F ⊆ [Y, d ]ω is closed and regular if and only if there is
a finite automaton A such that F = Tω(A).

We mention still the following property of regular ω-languages.

Lemma 5 Every nonempty regular ω-language F ⊆ Xω contains an ultimately
periodic ω-word, that is, an ω-word of the form v ·uω where v, u ∈ X∗, and every at
most countable regular ω-language F ⊆ Xω consists entirely of ultimately periodic
ω-words.

4 Rational Affine Transformations
Simple geometric figures are (convex) polyhedra. In this section we derive basic
tools for the investigation of polyhedra encodable as finite automata.

Recall that an affine transformation of Rd into Rk is given by an equation of
the form y = Ax + b where y and b are k × 1-vectors, x is a d × 1-vector and A is
a k × d-matrix. An affine transformation is said to be rational if the entries of
A and b are rational. Likewise, a system of linear inequalities b1 ≤ Ax ≤ b2 is
called rational, if the entries of A, b1 and b2 are rational. Here for column vectors
b1 and b2 we say that b1 ≤ b2 if each component of b1 is less than or equal to the
corresponding component of b2.

The following theorem plays a fundamental rôle:
2Here we need to consider only unions of subsets of the same space [Y, k ]ω.
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Theorem 6 Let A be a rational k × d-matrix, and let b1 and b2 be rational k × 1-
vectors. Then

F := {(ξ1, . . . , ξd) | b1 ≤ A · (νr(ξ1), . . . , νr(ξd))> ≤ b2}

is a regular and closed ω-language.

Here x> denotes the transpose of the row vector x.
Lemmata 1 and 2 show that it suffices to prove the theorem for the case of

a single inequality. In the following lemma, we split, for technical reasons, the
coefficients into positive and negative ones, arranging them in a convenient order.

Lemma 7 Let d, d ′ ∈ N, ci, c
′
i ′, c ∈ Q, ci, c

′
i ′ ≥ 0 for i = 1, . . . , d and i ′ = 1, . . . , d ′

and let
F := {(ξ1, . . . , ξd, ξ ′

1, . . . , ξ
′
d ′) |

∑d
i=1 ci · νr(ξi) −

∑d ′

i ′=1 c ′i ′ · νr(ξ
′
i ′) ≤ c} .

Then F is a regular and closed ω-language.

While the addition of real numbers cannot be carried out by a finite automaton
as the carries can travel unbounded distances, the proof of Lemma 7 exploits the
fact that the correctness of an addition of real numbers can be checked by a finite
automaton. For the purpose of the lemma this is sufficient as the elements of F are
to be recognised rather than computed.

In the proof we give a construction of a finite automaton accepting F. Here
we make explicit the somewhat sketchy proofs of related facts as given in [2, Sec-
tion 4.3] and our preceding paper [7, Section 3]. Before proceeding with the con-
struction we need some preparatory considerations on truncations of expansions
of real numbers.

First, observe that νr(ξ) =
∑∞

l=1 xl · r−l for ξ = x1x2 · · · xj · · · ∈ Yω. From this and
the properties of the floor-function we obtain the following easily verified facts.
Here p = νr(ξ).

0 ≤ p · rj − bp · rjc =
∑∞

l=j+1
xl · r−l+j < 1 (2)

limj→∞ r−j · bp · rjc = p (3)

0 ≤ bp · rj+1c− r · bp · rjc ≤ r − 1 (4)

Next, for the linear inequality
∑d

i=1 ci · pi −
∑d ′

i=1 c ′i ′ · p ′
i ′ ≤ c where ci, c

′
i ′, c ∈ R,

ci, c
′
i ′ ≥ 0 and pi, p

′
i ′ ∈ [0, 1] for 1 ≤ i ≤ d and 1 ≤ i ′ ≤ d ′ we consider j-approxi-

mations

∆j :=

{
0, if j = 0, and∑d

i=1 ci · bpi · rjc−
∑d ′

i ′=1 c ′i ′ · bp ′
i ′ · rjc, for j ≥ 1 .

(5)

These j-approximations yield integers if the coefficients ci, c
′
i ′ have integer values.

Thus they appear to be convenient for the construction of finite automata. We
have the following connection between j-approximations and linear combinations∑d

i=1 ci · pi −
∑d ′

i ′=1 c ′i ′ · p ′
i.
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Lemma 8 Let ci, c
′
i ′, c ∈ R, ci, c

′
i ′ ≥ 0 and pi, p

′
i ′ ∈ [0, 1] for 1 ≤ i ≤ d and 1 ≤ i ′ ≤

d ′. Then
d∑

i=1

ci · pi −

d ′∑
i ′=1

c ′i ′ · p ′
i ′ ≤ c if and only if c · rj +

d ′∑
i ′=1

c ′i ′ ≥ ∆j for all j ∈ N .

Proof. Eq. (3) shows the implication from right to left.
To prove the converse, we observe that in view of bp ′

i ′ · rjc ≥ p ′
i ′ · rj − 1 we have

r−j · ∆j ≤
∑d

i=1 ci · pi −
∑d ′

i ′=1 c ′i ′ · (p ′
i ′ − r−j), whence the assertion follows for j ≥ 1.

In view of 0 ≤ pi, p
′
i ≤ 1 the case of j = 0 is obvious. ❏

The next lemma deals with the case, when the linear combination
∑d

i=1 ci · pi −∑d ′

i ′=1 c ′i ′ · p ′
i ′ is much smaller than the bound c.

Lemma 9 If j ≥ 1 and ∆j ≤ c · rj −
∑d

i=1 ci then ∆l ≤ c · rl −
∑d

i=1 ci for all l ≥ j.

Proof. Using Eq. (4) we obtain ∆j+1 ≤ r · ∆j + (r − 1) ·
∑d

i=1 ci for j ≥ 1. The proof
proceeds by induction on l:
If ∆l ≤ c · rl −

∑d
i=1 ci then ∆l+1 ≤ r ·∆l + (r − 1) ·

∑d
i=1 ci ≤ c · rl+1 − r ·

∑d
i=1 ci + (r −

1)
∑d

i=1 ci = c · rl+1 −
∑d

i=1 ci. ❏

Now we give the construction as announced.
PROOF of Lemma 7. It suffices to prove the lemma for integers ci, c

′
i ′ ∈ N and

c ∈ Z. Consider an input (ξ1, . . . , ξd, ξ ′
1, . . . , ξ

′
d ′) and define ∆j :=

∑d
i=1 ci · bνr(ξi) ·

rjc−
∑d ′

i ′=1 c ′i ′ · bνr(ξ
′
i ′) · rjc.

Our automaton A successively checks whether

−
∑d

i=1 ci < ∆j − c · rj ≤
∑d ′

i ′=1 c ′i ′ for all j ≥ 1 .

As soon as the left hand side inequality is violated, according to Lemmata 8 and
9, the automaton accepts the input without considering further input letters.

If the right hand side inequality is violated, according to Lemma 8 the input is
rejected at once.

In the remaining case, the inequality to be checked is satisfied for all j ≥ 1,
hence the input is accepted.

The states of our automaton A = (X, S, s0, δ) are the initial state s0 and integers
{−

∑d
i=1 ci, . . . ,

∑d ′

i ′=1 c ′i ′}.
As explained above, an input ω-word ξ = (ξ1, . . . , ξd, ξ ′

1, . . . , ξ
′
d ′) is accepted if

and only if the automaton does not get stuck.
The transition function is defined according to the equation

∆j+1 − c · rj+1 = r(∆j − c · rj) +
∑d

i=1 ci · xi,j+1 −
∑d ′

i ′=1 c ′i ′ · x ′i ′,j+1 (6)

where ξi = xi,1 · · · xi,j · · · and ξ ′
i ′ = x ′i ′,1 · · · x ′i ′,j · · ·.

Define f(m,~y) :=


∑d

i=1 ciyi −
∑d ′

i ′=1 c ′i ′y
′
i ′ − c · r, if m = s0

and
r(m − crj) +

∑d
i=1 ciyi −

∑d ′

i ′=1 c ′i ′yi ′, if m ∈ Z
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for m ∈ Z ∪ {s0} and ~y := (y1, . . . , yd, y ′
1, . . . , y

′
d ′) ∈ X.

Consequently, ~y = (x1,j, . . . , xd,j, x
′
1,j, . . . , x

′
d ′,j) and m = ∆j−1 − c · rj−1 imply

f(m,~y) = ∆j − c · rj in case j > 1 and f(m,~y) = ∆1 − c · r when m = s0 and j = 1.
Thus the following definition of the transition function satisfies the behaviour

announced above.

δ(m,~y) :=


f(m,~y), if m ∈ S \ {−

∑d
i=1 ci} ∧

−
∑d

i=1 ci < f(m,~y) ≤
∑d ′

i ′=1 c ′i ′, and

−
∑d

i=1 ci, if m = −
∑d

i=1 ci ∨ f(m,~y) ≤ −
∑d

i=1 ci .

Observe that A gets stuck if and only if f(m,~y) >
∑d ′

i=1 c ′i.

We list a few immediate consequences. As is well-known, every rational num-
ber of the form k/rl has two base-r representations. Thus a point in d-dimensional
space Rd may have up to 2d representations. A typical complication arises from the
fact that, due to those multiple representations, for F, F ′ ⊆ Xω, the sets νr(F)∩νr(F

′)

and νr(F∩ F ′) might not be equal. For example, with d = 1, r = 2, F = {1000 · · ·} and
F ′ = {01111 · · ·} one has νr(F) = νr(F

′) = {1
2
} whereas νr(F ∩ F ′) = ∅. However, for

any F, F ′ ⊆ Xω, one has

νr(F) ∩ νr(F
′) = νr

(
ν−1

r (νr(F)) ∩ F ′
)

. (7)

One is, therefore, led to work with full representations, that is, with ω-languages
F satisfying F = ν−1

r (νr(F)). Fortunately, the ω-languages F defined in Theorem 6
have already, by definition, full representation.

As a consequence, moving from a regular representation to the corresponding
full representation preserves regularity.

Proposition 10 Let F be an ω-language over X = [Y, d ]. If F is regular then also
ν−1

r (νr(F)) is regular.

Proof. Using Theorem 6 it is easy to see that the set

E(2d)
= := {(ξ1, . . . , ξd, ξ ′

1, . . . , ξ
′
d) | νr(ξi) = νr(ξ

′
i) for i = 1, . . . , d}

is regular and closed. Then the assertion follows from

ν−1
r (νr(F)) = proj(d+1,...,2d)(proj−1

(1,...,d) F ∩ E(2d)
= ). ❏

In connection with Proposition 10 it should be mentioned that the result of the
general base transformation, ν−1

r (νb(F)), when r 6= b, need not be regular if F is
regular. For more detailed information see [12, Section 5.2].

Similarly to Proposition 10 one derives the following.

Theorem 11 Let Ψ : Rd → Rk be a rational affine transformation and let Γ(Ψ) ⊆
Rd+k be its graph. Then the ω-language FΨ := ν−1

r (Γ(Ψ) ∩ [0, 1]d+k) is regular.
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Proof. One easily verifies that for Ψ(x) = A · x + b we have
FΨ = {(ξ1, . . . , ξd, ξ ′

1, . . . , ξ
′
k) | A · (νr(ξ1), . . . , νr(ξd))> + b = (νr(ξ

′
1), . . . , νr(ξ

′
k))

>}

which is definable by a finite automaton by virtue of Theorem 6. ❏

From Theorem 11 one can conclude that affine transformations and their inverses
preserve regularity.

Theorem 12 Let Ψ : Rd → Rk and Φ : Rk → Rd be rational affine transformations
and let F ⊆ [Y, d ]ω be regular.

Then both ν−1
r (Ψ(νr(F))) and ν−1

r

(
Φ−1(νr(F))

)
are regular ω-languages.

Proof. We consider the space [Y, d + k ]ω, the projections proj(1,...,d),
proj(d+1,...,d+k), proj(1,...,k) and proj(k+1,...,k+d) and the regular ω-languages FΨ, FΦ re-
lated to the graphs of Ψ and Φ, respectively, via Theorem 11.

Then ν−1
r (Ψ(νr(F))) = proj(d+1,...,d+k)(FΨ ∩ proj−1

(1,...,d) F), and
ν−1

r

(
Φ−1(νr(F))

)
= proj(1,...,k)(FΦ ∩ proj−1

(k+1,...,k+d) F) . ❏

5 Simple Geometric Figures
In this section we investigate subsets of the d-dimensional unit cube which can
be represented by a finite automaton. We say that M ⊆ [0, 1]d is r-encodable as
a finite automaton provided there is a regular ω-language F ⊆ [{0, . . . , r − 1}, d ]ω

such that M = νr(F).
In view of Proposition 10 this is equivalent to the condition that ν−1

r (M) is a
regular ω-language. As mentioned above whether ν−1

r (M) is regular or not may
depend on the choice of the base r. Therefore, we say that M is encodable as a
finite automaton provided there is an r ∈ N such that M is r-encodable as a finite
automaton.

5.1 Closure Properties
Next we investigate operations under which the class of sets r-encodable as finite
automata is closed. The results obtained are closely related to the closure prop-
erties of the set of regular ω-languages as presented in Section 3. A first closure
property concerns arbitrary rational affine mappings and was presented in Theo-
rem 12. Next we deal with Boolean operations.

Lemma 13 The set of all images M ⊆ [0, 1]d r-encodable as finite automata is
closed under Boolean operations.

Proof. Closure under union is obvious. Let M = νr(F) where F is a regular ω-
language. Then, using Proposition 10 and Lemma 1, the complement [0, 1]d \ M =

νr(X
ω \ ν−1

r (νr(F))) is also encodable as a finite automaton. ❏

Since the closure and the boundary of regular ω-languages are again regular, we
obtain the following closure property of the family of images definable by finite
automata.
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Proposition 14 Let M ⊆ [0, 1]d r-encodable as a finite automaton. Then both the
closure of M, cl(M), and the boundary of M, ∂M, are encodable as finite automata.

Proof. Assume M = νr(F) for some regular F ⊆ Xω. Then in view of the identity
cl(νr(F)) = νr(C(F)) (cf. [12, Section 4]), we have cl(M) = νr(C(F)) which is, in view
of Proposition 3, encodable as a finite automaton.

The boundary of M, ∂M, is defined as cl(M)∩ cl([0, 1]d \ M). Thus the assertion
follows from the first part and Lemma 13. ❏

5.2 Convex Polyhedra
A point in [0, 1]d is said to be rational if all its coordinates are rational. As we
shall see in the subsequent section rational points play a crucial rôle for images
encodable by finite automata. A convex polyhedron in [0, 1]d is the convex hull of a
finite set of points in [0, 1]d. A convex polyhedron in [0, 1]d is said to be rational if
it is the convex hull of finitely many rational points.

Using Theorem 12, we show that rational convex polyhedra are encodable as
finite automata. To this end observe that a convex polyhedron having d corner
points p0, . . . , pd−1 is the image of the (d − 1)-dimensional simplex spanned by the
all zero vector o and the d − 1 unit vectors ei, i = 1, . . . , d − 1 under the affine
mapping Ψ(x) = Ax + p0 where A is the matrix whose columns are the vectors
pi −p0, i = 1, . . . , d− 1. Having all vectors pi as rational points, the affine transfor-
mation Ψ is rational, too. Thus Theorem 12 yields the following.

Lemma 15 Every rational convex polyhedron M ⊆ [0, 1]k is r-encodable as a finite
automaton, for arbitrary r ∈ N, r ≥ 2.

From rational convex polyhedra we obtain, via Boolean and topological opera-
tions, new simple geometric figures which are encodable as finite automata.

6 Images that Are not Encodable as Finite Auto-
mata

There are many images that are not encodable as finite automata. Proposition 16
states a necessary condition for an image to be encodable as a finite automaton.
Here we state and apply other necessary conditions.

6.1 Rational Points
We derive some criteria for the automaton encodability of sets based on the corre-
spondence between rational numbers and ultimately periodic ω-words. To this end
we translate the fact about nonempty regular ω-languages stated in Lemma 5.
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Proposition 16 Let M ⊆ [0, 1]d be encodable as a finite automaton. If M is non-
empty then it contains a rational point. If M is at most countable, then all points
in M are rational.

As an immediate consequence we obtain a proposition about the rationality of
isolated points.

Corollary 17 If M ⊆ [0, 1]d is encodable as a finite automaton then every isolated
point of M is rational.

We get a result on the endpoints of intervals in the line.

Lemma 18 Let M =
⋃

i∈I(ai, bi) ⊆ [0, 1] be an at most countable union of pairwise
disjoint open intervals and let M be encodable as a finite automaton. Then ai, bi ∈
Q for all i ∈ I.

Proof. According to Proposition 14 the boundary of M, ∂M, is also encodable
as a finite automaton. Since the intervals are mutually disjoint, we have that
∂M = {ai, bi | i ∈ I} is an at most countable set of points, and the assertion follows
from Proposition 16. ❏

A remark is in order here. Although we formulated Lemma 18 only for open in-
tervals (ai, bi) the proof remains valid also in case of closed mutually disjoint in-
tervals [ai, bi] and, if ai 6= bj holds for all distinct i, j ∈ I, then also in case of
semi-closed mutually disjoint intervals [ai, bi) or (ai, bi].

Lemma 19 Let M ⊆ [0, 1] be encodable as a finite automaton. Then inf M and
sup M are rational numbers.

Proof. As inf M = min cl(M) and sup M = max cl(M), in view of Proposition 14
it suffices to prove the assertion for closed subsets of M ⊆ [0, 1].

The case inf M = 0 is trivial. Let 0 < inf M. Since M is closed, the difference
(0, 1)\M is an at most countable union of pairwise disjoint open intervals, and one
of these intervals is (0, inf M). The assertion follows from Lemma 18.

The proof for sup M is similar. ❏

Next we deal with smooth non-constant curves. These are particularly interest-
ing examples of the application of the intersection-and-isolated-points method de-
scribed below.

Example 20 The graph of the parabola f(a) = a2 with 0 ≤ a ≤ 1 is not encodable
as a finite automaton.

Assume Γ(f) to be r-encodable as a finite automaton. Since the line `[y = 1
2
] :={

(x, 1
2
) | 0 ≤ x ≤ 1

}
is r-encodable as a finite automaton, the intersection Γ(f)∩ `[y =

1
2
] =

{
(1/

√
2, 1/2)

}
is also r-encodable as a finite automaton.

This contradicts Proposition 16.

The next example uses also Theorem 12 in order to prove the nonencodability.3

3We are grateful to one of the referees of [7] for providing us with this simple instructive exam-
ple.
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Example 21 Consider the hyperbola g(x) = 1
1+x

. Here every point on Γ(g) with one
rational coordinate is rational. So the simple intersection with a line `[y = α], α ∈
Q yields only rational points.

Now transform Γ(g) via the rational affine mapping defined by A =
(

1 0
1 1

)
and b =(

0
−1

)
. The image is Γ(g ′) where g ′(x) = x2

1+x
for which the intersection Γ(g ′)∩ `[y = 1

3
]

contains the single point (1+
√

13
6

, 1
3
) with exactly one rational coordinate.

Alternatively, one could intersect Γ(g) with the line `[y = 4
3

− x] and obtain
Γ(g) ∩ `[y = 4

3
− x] =

{
(1+

√
13

6
, 7−

√
13

36
)
}

.

6.2 The Zoom-in-Theorem
In this section we use a further property of regular ω-languages to establish neces-
sary conditions for the encodability of images. To this end we introduce the notion
of a state (or left derivative) of an ω-language F ⊆ Xω derived by a word w ∈ X∗.

F/w := {ξ | w · ξ ∈ F} (8)

Then we have the following property.

Property 22 If F ⊆ Xω is regular then the set of all states {F/w : w ∈ X∗} is finite.

For a more detailed investigation of ω-languages having a finite set of states see
[10]. From Property 22 we immediately obtain the translation to the unit cube.

Lemma 23 Let M ⊆ [0, 1]d be r-encodable as a finite automaton then the set
{νr(ν

−1
r (M)/w) | w ∈ [{0, . . . , r − 1}, d ]∗} is finite.

We call the set νr(ν
−1
r (M)/w) the zoom-in of M defined by the word w. This is

justified by the following observation.
Let tw := (νr(proj1 w), . . . , νr(projd w)) ∈ [0, 1]d the transition vector whose coor-

dinates are defined by the coordinate words of w. Then tw + [0, r−|w|]d ⊆ [0, 1]d is a
sub-cube of edge length r−|w| translated by the vector tw.

Now the set νr(ν
−1
r (M)/w) is nothing else but the image of the intersection

M ∩ (tw + [0, r−|w|]d) under the rational affine mapping Ψw defined by the iden-
tity Ψw(x) = r|w| · x − tw. It is obvious that Ψw(tw + [0, r−|w|]d) = [0, 1]d, thus
νr(ν

−1
r (M)/w) = Ψw(M ∩ (tw + [0, r−|w|]d)) is the r|w|-fold magnification of the part

of M contained in the sub-cube tw + [0, r−|w|]d (see Fig. 1).
Hence the number of different images obtainable as zoom-ins depicted above is

finite if only the image itself is encoded as a finite automaton. With every function
h : 2[0,1]d → P, where P is a suitably chosen set, we associate a family of h-zoom-ins
(hw)w∈X∗ in the following way.

hw(M) := h
(
νr(ν

−1
r (M)/w)

)
for M ⊆ [0, 1]d

Theorem 24 If M ⊆ [0, 1]d is encodable as a finite automaton, P is a set and h :

2[0,1]d → P then the family {hw(M) | w ∈ X∗} is finite.
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Figure 1: Zoom-in of the set M consisting of five circles

Proof. If M is r-encodable as a finite automaton then ν−1
r (M) is a regular ω-lan-

guage, whence {ν−1
r (M)/w | w ∈ X∗} and also {hw(M) | w ∈ X∗} are finite. ❏

As in the previous part of this section with rational points and intersections, we
use the zoom-in theorem to show that certain natural images are not encodable as
finite automata by suitably choosing the set P and the function h. Observe that,
unlike the intersection case, here one need not prove that h(M) is encodable as a
finite automaton. We apply our theorem to polyhedra in [0, 1]d and smooth curves
in [0, 1]2.

First we obtain a proposition converse, in some sense, to Lemma 15.

Lemma 25 Let r ∈ N, r ≥ 2. A finite union of polyhedra M0 ⊆ [0, 1]d is r-encodable
as a finite automaton only if all its corner points are rational.

Proof. Assume M0 to be r-encodable as a finite automaton and to have a corner
point (p1, . . . , pd) with an irrational coordinate pi. Define

h(M) :=


{pj | 1 ≤ j ≤ d ∧ (p1, . . . , pd) is a corner point of M} ,

if M is a finite union of polyhedra
∅ , otherwise.

If M is a finite union of polyhedra and w ∈ X∗ then M ∩ (tw + [0, r−|w|]d) and hence
also every zoom-in νr(ν

−1
r (M)/w) = Ψw(M ∩ (tw + [0, r−|w|]d)) is a finite union of

polyhedra. Since M0 is r-encodable as a finite automaton, {hw(M0) | w ∈ X∗} is a
finite family of finite sets, and, consequently,

⋃
w∈X∗ hw(M0) is a finite set.

As (p1, . . . , pd) has the irrational coordinate pi, (p1, . . . , pd) = νr(ξ) where ξ ∈
Xω is not ultimately periodic.

Consider the sets hw(M0) for w @ ξ. Among the corner points of hw(M0) we
have the points νr(ξ/w) with the coordinates νr(projj ξ/w) , 1 ≤ j ≤ d.

As pi is irrational, proji ξ/w is not ultimately periodic, and, consequently, the
numbers νr(proji ξ/w), w @ ξ are pairwise different. Thus the union

⋃
w@ξ hw(M0) ⊇

{νr(proji ξ/w) | w @ ξ} is an infinite set, contradicting the fact that
⋃

w∈X∗ hw(M0)

is finite. ❏
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Combining Lemmata 15 and 25, the following characterisation is obtained.

Theorem 26 A convex polyhedron M0 ⊆ [0, 1]d is r-encodable as a finite automaton
if and only if all its corner points are rational.

The next lemma deals with graphs of differentiable functions.

Lemma 27 Let f : [0, 1] → [0, 1] be a continuous function differentiable at a point
a0 ∈ [0, 1] for which f ′(a0) is irrational. Then the graph Γ(f) is not encodable as a
finite automaton.

Proof. Assume the graph of f, Γ(f), be encodable as a finite automaton over the
alphabet X = [Y, 2] where Y = {0, 1, . . . , r − 1}.

Without loss of generality we may assume that f(a0) is not of the form m · r−k.
Otherwise consider the function f̄(a) := 1

2
· f(a) + 1

r+1
whose graph is the image of

Γ(f) under a suitable rational affine transformation ( a vertical shrinking and a
subsequent vertical shift ) to Γ(f). The value of f̄ ′(a0) = 1

2
· f ′(a0) is also irrational.

In the sequel, let f ′(a0) < 0. In the case of f ′(a0) > 0 the proof is similar.
We choose our function h : 2[0,1]2 → 2R∪{−∞,∞} as follows: For M ⊆ [0, 1]2 define

the following values (provided they exist):

x0 := inf M ∩ `[y = 1] , y0 := sup M ∩ `[x = 0]

x1 := sup M ∩ `[y = 0] , y1 := inf M ∩ `[x = 1] , and

h(M) :=

{
y1 − y0,

−y0

x1

,
y1

−x0

,
1

x1 − x0

}
The four possible values in h(M) are the slopes of the lines connecting the points
(0, y0) and (x0, 1) with (1, y1) and (x1, 0). Thus h(M) has, depending on M, at most
four elements.

If M is encodable as a finite automaton then according to Proposition 16 and
Lemma 19 all four points (x0, 1), (0, y0), (1, y1) and (x1, 0), provided they exist, are
rational, whence h(M) ⊆ Q ∪ {−∞,∞}.

Since f is continuous and f ′(a0) < 0, for sufficiently small ε > 0 we have f(a) >

f(a0) for a0 −ε < a < a0 and f(a) < f(a0) for a0 < a < a0 +ε. Consider a sufficiently
small cube νr(w · Xω) containing the point (a0, f(a0)). Let (aw, aw) be its lower left
corner. Then aw ≤ a0 ≤ aw + r−|w| and aw < f(a0) < aw + r−|w|. The behaviour of
f in this small cube shows that for M = Ψw(Γ(f) ∩ νr(w · Xω)) at least one of the
points (0, y0) or (x0, 1) and at least one of the points (1, y1) or (x1, 0) exist. These
points correspond to points (aw, f(aw)), (bw, f(bw)) ∈ Γ(f) ∩ νr(w · Xω) such that
aw ≤ aw ≤ a0 ≤ bw ≤ aw + r−|w| and aw ≤ f(aw) ≤ f(a0) ≤ f(bw) ≤ aw + r−|w|.

As in the proof of Lemma 25 we conclude that, if Γ(f) is encodable as a finite
automaton,

⋃
v∈X∗ hv(Γ(f)) is a finite subset of Q ∪ {−∞,∞}.

On the other hand, there is a sequence of words (wi)i∈N such that |wi| ≥ i,
(a0, f(a0)) ∈ νr(wi·Xω) and f ′(a0) = lim

i→∞ f(bwi
)−f(awi

)

bwi
−awi

. Since f(bwi
)−f(awi

)

bwi
−awi

∈ hwi
(Γ(f)) ⊆

Q ∪ {−∞,∞}, the irrationality of f ′(a0) requires
⋃
i∈N

hwi
(Γ(f)) to be infinite, contra-

dicting the finiteness of
⋃

v∈X∗

hv(Γ(f)). ❏
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As an immediate consequence we obtain.

Corollary 28 Let f : [0, 1] → [0, 1] be a continuously differentiable function with
non-constant derivative. Then the graph Γ(f) is not encodable as a finite automaton.

This corollary explains Examples 20 and 21 and also the following one.

Example 29 No circle is encodable as a finite automaton.
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