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Abstract

In 1927 Heisenberg discovered that the “more precisely the position is deter-
mined, the less precisely the momentum is known in this instant, and vice versa”.
Four years later Gödel showed that a finitely specified, consistent formal system
which is large enough to include arithmetic is incomplete. As both results express
some kind of impossibility it is natural to ask whether there is any relation be-
tween them, and, indeed, this question has been repeatedly asked for a long time.
The main interest seems to have been in possible implications of incompleteness
to physics. In this note we will take interest in the converse implication and will
offer a positive answer to the question: Does uncertainty imply incompleteness?
We will show that algorithmic randomness is equivalent to a “formal uncertainty
principle” which implies Chaitin’s information-theoretic incompleteness. We also
show that the derived uncertainty relation, for many computers, is physical. In
fact, the formal uncertainty principle applies to all systems governed by the wave
equation, not just quantum waves. This fact supports the conjecture that un-
certainty implies algorithmic randomness not only in mathematics, but also in
physics.
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†IJTP published this paper without proofreading, without the permis-

sion of the authors, and erroneously included Karl Svozil as an author
(through no fault of his own) on this and five other articles in that vol-
ume. See International Journal of Theoretical Physics 44, 7 (2005), 1053–1065,
www.cs.auckland.ac.nz/~cristian/HGCunpermitttedpublication.pdf.



1 Introduction

Are there any connections between uncertainty and incompleteness? We don’t know
of any reaction of Heisenberg to this question. However, Gödel’s hostility to any sug-
gestion regarding possible connections between his incompleteness theorem and physics,
particularly, Heisenberg’s uncertainty relation, is well-known.1 One of the obstacles in
establishing such a connection comes from the different nature of these two results: un-
certainty is a quantitative phenomenon while incompleteness is prevalently qualitative.

In recent years there have been a lot of interest in the relations between computability
and incompleteness and physics. Opinions vary considerably, from the conclusion that
the impact on Gödel and Turing incompleteness theorems to physics is a red herring
(see [7, 8]), to Hawking’s view that “a physical theory is self-referencing, like in Gödel’s
theorem. . . . Theories we have so far are both inconsistent and incomplete” (cf. [22]).
A very interesting analysis of the possible impact of Gödel’s incompleteness theorems
in physics was written by Barrow [1, 2]; the prevalence of physics over mathematics is
argued by Deutsch [17]; for Svozil [30, 31], Heisenberg’s incompleteness is pre-Gödelian-
Turing and finite. Other relevant papers are Geroch and Hartle [21], Peres [27], and
Peres and Zurek [28].

In this note we do not ask whether Gödel’s incompleteness has any bearing on Heisen-
berg’s uncertainty, but the converse: Does uncertainty imply incompleteness? We will
show that we can get a positive answer to this question: algorithmic randomness can be
recast as a “formal uncertainty principle” which implies Chaitin’s information-theoretic
version of Gödel’s incompleteness.

2 Outline

We begin with overviews of the relevant ideas first discovered by Heisenberg, Gödel, and
Chaitin.

Next, we show that random reals, of which Chaitin Omega numbers are just an example,
satisfy a “formal uncertainty principle”, namely

∆s ·∆C(ω1 . . . ωs) ≥ ε, (1)

where ε is a fixed positive constant.

1J. Wheeler was thrown out of Gödel’s office for asking the question “Professor Gödel, what con-
nection do you see between your incompleteness theorem and Heisenberg’s uncertainty principle?”, cf.
Chaitin’s account cited in Barrow [1], p. 221.

2



The two conjugate coordinates are the random real and the binary numbers describing
the programs that generate its prefixes. Then, the uncertainty in the random real given
an n-bit prefix is 2−n, and the uncertainty in the size of the shortest program that
generates it is, to within a multiplicative constant, 2n.

The Fourier transform is a lossless transformation, so all the information contained in
the delta function δΩ(x) = 1 if x = Ω, δΩ(x) = 0, otherwise, is preserved in the conjugate.
Therefore, if you need n bits of information to describe a square wave convergent on
the delta function, there must be n bits of information in the Fourier transform of the
square wave. Since both the information in the transformed square wave and the shortest
program describing the square wave increase linearly with n, there is an equivalence
between the two.

We show that the formal uncertainty principle is a true uncertainty principle–that is, the
terms are bounded by the standard deviations of two random variables with particular
probability distributions. We note that for many self-delimiting Turing machines C, the
halting probability ΩC is computable; in these cases, there are quantum systems with
observables described by these probability distributions, and our uncertainty relation is
equivalent to Heisenberg’s.

Finally, (1) implies a strong version of Gödel’s incompleteness, Chaitin’s information-
theoretic version [9, 10] (see also the analysis in [16, 3]). Chaitin’s proof relied on measure
theory; we present here a new proof via a complexity-theoretic argument.

3 Heisenberg

In 1925 Heisenberg developed the theory of matrix mechanics; it was his opinion that
only observable quantities should play any role in a theory. At the time, all observa-
tions came in the form of spectral absorption and emission lines. Heisenberg, therefore,
considered the “transition quantities” governing the jumps between energy states to be
the fundamental concepts of his theory. Together with Born, who realized Heisenberg’s
transition rules obeyed the rules of matrix calculus, he developed his ideas into a theory
that predicted nearly all the experimental evidence available.

The next year, Schrödinger introduced what became known as wave mechanics, together
with a proof that the two theories were equivalent. Schrödinger argued that his version
of quantum mechanics was better in that one could visualize the behavior of the electrons
in the atom. Many other physicists agreed with him.

Schrödinger’s approach disgusted Heisenberg; in a letter to Pauli (see [26]), he called
Schrödinger’s interpretation “crap”. Publicly, however, he was more restrained. In [23]
he argued that while matrix mechanics was hard to visualize, Schrödinger’s interpreta-
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tion of wave mechanics was self-contradictory, and concluded that something was still
missing from the interpretation of quantum theory.

In 1927 Heisenberg published “Über den Anschaulichen Inhalt der Quantentheoretischen
Kinematik und Mechanik” (see [24]) to provide the missing piece. First, he gave his
own definition of visualization: “We believe we have gained intuitive understanding of
a physical theory, if in all simple cases, we can grasp the experimental consequences
qualitatively and see that the theory does not lead to any contradictions.” In this sense,
matrix mechanics was just as intuitive as wave mechanics. Next, he argued that terms
like “the position of a particle” can only make sense in terms of the experiment that
measures them.

To illustrate, he considered the measurement of an electron by a microscope.2 The
accuracy is limited by the wavelength of the light illuminating the electron; one can use
as short a wavelength as one wishes, but for very short wavelengths, the Compton effect
is non-negligible. He wrote, (see [24], p.174–175),

At the instant of time when the position is determined, that is, at the in-
stant when the photon is scattered by the electron, the electron undergoes a
discontinuous change in momentum. This change is the greater the smaller
the wavelength of the light employed, i.e., the more exact the determination
of the position. At the instant at which the position of the electron is known,
its momentum therefore can be known only up to magnitudes which corre-
spond to that discontinuous change; thus, the more precisely the position is
determined, the less precisely the momentum is known, and conversely.

Heisenberg estimated the uncertainty to be on the order

δp · δq ∼ ~,

where ~ is Planck’s constant over 2π.

Kennard (see [25]) was the first to publish the uncertainty relation in its exact form. He
proved in 1927 that for all normalized state vectors |Ψ〉,

∆p ·∆q ≥ ~/2,

where ∆p and ∆q are standard deviations of momentum and position, i.e.

∆2
p = 〈Ψ|p2|Ψ〉 − 〈Ψ|p|Ψ〉2; ∆2

q = 〈Ψ|q2|Ψ〉 − 〈Ψ|q|Ψ〉2.

Thus, assuming quantum mechanics is an accurate description of reality, the formalism
is compatible with Heisenberg’s principle.

2Heisenberg might have been so concerned with uncertainty because in 1923 he almost failed his
Ph.D. exam when Sommerfeld asked about (optical) limitations to the resolution of the microscope.
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4 Gödel

In 1931 Gödel published his (first) incompleteness theorem in [20] (see also [18, 19]).
According to the current terminology, he showed that every formal system which is
(1) finitely specified, (2) rich enough to include the arithmetic, and (3) consistent, is
incomplete. That is, there exists an arithmetical statement which (A) can be expressed
in the formal system, (B) is true, but (C) is unprovable within the formal system.

All conditions are necessary. Condition (1) says that there is an algorithm listing all
axioms and inference rules (which could be infinite). Taking as axioms all true arith-
metical statements will not do, as this set is not finitely listable. A “true arithmetical
statement” is a statement about non-negative integers which cannot be invalidated by
finding any combination of non-negative integers that contradicts it. Condition (2) says
that the formal systems has all the symbols and axioms used in arithmetic, the symbols
for 0 (zero), S (successor), + (plus), × (times), = (equality) and the axioms making
them work (as for example, x + S(y) = S(x + y)). Condition (2) cannot be satisfied if
you do not have individual terms for 0, 1, 2, . . .; for example, Tarski [33] proved that the
plane Euclidean geometry, which refers to points, circles and lines, is complete.3 Finally
(3) means that the formal system is free of contradictions.

Like uncertainty, incompleteness has provoked a lot of interest (and abuse).

5 Chaitin

Chaitin has obtained three types of information-theoretic incompleteness results (scat-
tered through different publications, [9, 10, 11, 13]; see also [14, 15]). The strongest form
concerns the computation of the bits of a Chaitin Omega number ΩU , the halting proba-
bility of a self-delimiting universal Turing machine U (see also the analysis in [16, 3]). A
self-delimiting Turing machine C is a normal Turing machine C which processes binary
strings into binary strings and has a prefix-free domain, that is, if C(x) is defined and y is
either a proper prefix or an extension of x, then C(y) is not defined. The self-delimiting
Turing machine U is universal if for every self-delimiting Turing machine C there exists
a fixed binary string p (the simulator) such that for every input x, U(px) = C(x): either
both computations U(px) and C(x) stop and, in this case they produce the same output
or both computations never stop. The Omega number introduced in [9]

ΩU = 0.ω1ω2 . . . ωn . . . (2)

3This result combined with with Gödel’s completeness theorem implies decidability: there is an
algorithm which accepts as input an arbitrary statement of plane Euclidean geometry, and outputs
“true” if the statement is true, and “false” if it is false. The contrast between the completeness of plane
Euclidean geometry and the incompleteness of arithmetic is striking.
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is the halting probability of U ; it is one of the most important concepts in algorithmic
information theory (see [3]).

In [9] Chaitin proved the following result: Assume that X is a formal system satisfying
conditions (1), (2) and (3) in Gödel’s incompleteness theorem. Then, for every self-
delimiting universal Turing machine U , X can determine the positions and values of
only finitely scattered bits of ΩU , and one can give a bound on the number of bits of ΩU

which X can determine. This is a form of incompleteness because, with the exception of
finitely many n, any true statement of the form “the nth bit of ΩU is ωn” is unprovable
in X.

For example, we can take X to be ZFC4 under the assumption that it is arithmetically
sound, that is, any theorem of arithmetic proved by ZFC is true. Solovay [29] has con-
structed a specific self-delimiting universal Turing machine S (called Solovay machine)
such that ZFC cannot determine any bit of ΩS. In this way one can obtain constructive
versions of Chaitin’s theorem. For example, if ZFC is arithmetically sound and S is
a Solovay machine, then the statement “the 0th bit of the binary expansion of ΩS is 0”
is true but unprovable in ZFC. In fact, one can effectively construct arbitrarily many
examples of true and unprovable statements of the above form, cf. [4].

6 Rudiments of Algorithmic Information Theory

In this section we will present some basic facts of algorithmic information theory in a
slightly different form which is suitable for the results appearing in the following section.

We will work with binary strings; the length of the string x is denoted by |x|. For every
n ≥ 0 we denote by B(n) the binary representation of the number n + 1 without the
leading 1. For example, 0 7→ λ (the empty string), 1 7→ 0, 2 7→ 1, 3 7→ 00, . . . The
length of B(n) is almost equal to log2(n); more precisely, it is blog2(n+1)c. The function
B is bijective and we denote by N its inverse. The string x is length-lexicographically
less than the string y if and only if N(x) < N(y).

We need first the Kraft-Chaitin theorem: Let n1, n2, . . . be a computable sequence of
non-negative integers such that

∞∑
i=1

2−ni ≤ 1. (3)

Then, we can effectively construct a prefix-free sequence of strings (that is, no wi is a
proper prefix of any wj with i 6= j) w1, w2, . . . such that for each i ≥ 1, |wi| = ni.

Let C be a self-delimiting Turing machine. The program-size complexity induced by

4Zermelo-Fraenkel set theory with choice.
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C is defined by HC(x) = min{|w| | C(w) = x} (with the convention that strings not
produced by C have infinite complexity). One might suppose that the complexity of a
string would vary greatly between choices of self-delimiting Turing machine. However,
because of the universality requirement, the complexity difference between C and C ′

is at most the length of the shortest program for C ′ that simulates C. Therefore, the
complexity of a string is fixed to within an additive constant. This is known as the
“invariance theorem” (see [3]), and is usually stated: For every self-delimiting universal
Turing machine U and self-delimiting Turing machine C there exists a constant ε > 0
(which depends upon U and C) such that for every string x,

HU(x) ≤ ε + HC(x).

For our aim it is more convenient to define the complexity measure ∇C(x) = min{N(w) |
C(w) = x}, the smallest integer whose binary representation produces x via C. Clearly,
for every string x,

2HC(x) − 1 ≤ ∇C(x) < 2HC(x)+1 − 1.

Therefore we can say that ∆C(x), our uncertainty in the value ∇C(x), is the difference
between the upper and lower bounds given, namely ∆C(x) = 2HC(x).

The invariance theorem can now be stated as follows: for every self-delimiting universal
Turing machine U and self-delimiting Turing machine C there exists a constant ε > 0
(which depends upon U and C) such that for every string x,

∆U(x) ≤ ε ·∆C(x).

Let ∆s = 2−s. Chaitin’s theorem (see [9]) stating that the bits of ΩU in (2) form a
random sequence can now be presented as a “formal uncertainty principle”: for every
self-delimiting Turing machine C there is a constant ε > 0 (which depends upon U and
C) such that

∆s ·∆C(ω1 . . . ωs) ≥ ε. (4)

The inequality (4) is an uncertainty relation as it reflects a limit to which we can si-
multaneously increase both the accuracy with which we can approximate ΩU and the
complexity of the initial sequence of bits we compute; it relates the uncertainty of the
output to the size of the input. When s grows indefinitely, ∆s tends to zero, in contrast
with ∆C(ω1 . . . ωs) which tends to infinity; their product is not only bounded from be-
low, but increases indefinitely (see also (6)). From a complexity viewpoint (4) tells us
that there is a limit ε up to which we can uniformly compress the initial prefixes of the
binary expansion of ΩU .

How large can be ε in (4)? For example, ε = 1 when C = U0 is a special universal
self-delimiting Turing machine:

∆s ·∆U0(ω1 . . . ωs) ≥ 1. (5)
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If U is universal and satisfies (4), then a universal machine U0 satisfying (5) can be
defined by U0(0

εx) = U(x) (so requiring that any input to U0 not starting with ε zeros
causes the machine to go into an infinite loop).

In fact, in view of the strong complexity-theoretic characterization of random sequences
(see [9, 3]) a stronger form of (4) is true: for every positive integer N there is a bound
M (which depends upon U , C and N) such that for all s ≥ M we have:

∆s ·∆C(ω1 . . . ωs) ≥ N. (6)

The constant N appearing in (4) can be made arbitrarily large in case s is large enough;
the price paid appears in the possible violation of the inequality for the first s < M bits.

Is (4) a ‘true’ uncertainty relation? We prove that the variables ∆s and ∆C in (4) are
standard deviations of two measurable observables in suitable probability spaces.

For ∆s we consider the space of all real numbers in the unit interval which are approx-
imated to exactly s digits. Consider the probability distribution Prob(v) = PC(v)/Ωs

C ,
where PC(x) =

∑
C(y)=x 2−|y| and Ωs

C =
∑

|x|=s PC(x).

Now fix the first s digits of ΩU , ω1ω2 . . . ωs and define

α = 2−s/2 · (Prob(ω1ω2 . . . ωs))
−1/2 · (1− Prob(ω1ω2 . . . ωs))

−1/2.

The random variable X on a real approximated by the first s digits v = v1v2 . . . vs is
defined by the delta function X(v) = α if v = ω1ω2 . . . ωs and X(v) = 0 otherwise.
Then the expectation values of X and X2 are 〈X〉 = α · Prob(ω1ω2 . . . ωs) and 〈X2〉 =
α2 · Prob(ω1ω2 . . . ωs), so the standard deviation is σX = ∆s.

For ∆C we consider

β = (∆C(ω1ω2 . . . ωs))
1/2 · (Prob(ω1ω2 . . . ωs))

−1/2 · (1− Prob(ω1ω2 . . . ωs))
−1/2,

and the same space but the random variable Y (ω1ω2 . . . ωs) = β and Y (v) = 0 if v 6=
ω1ω2 . . . ωs. Then, the expectation values of Y and Y 2 are 〈Y 〉 = β · Prob(ω1ω2 . . . ωs)
and 〈Y 2〉 = β2 · Prob(ω1ω2 . . . ωs), so the standard deviation is σY = ∆C(ω1ω2 . . . ωs).

Hence the relation (4) becomes:

σX · σY = ∆s ·∆C(ω1ω2 . . . ωs) ≥ ε,

so for U0 satisfying (5) we have:
σX · σY ≥ 1.
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7 From Heisenberg to Chaitin

Since self-delimiting universal Turing machines are strictly more powerful than non-
universal ones, the inequality holds for the weaker computers as well. In many of these
cases, the halting probability of the machine is computable, and we can construct a
quantum algorithm to produce a set of qubits whose state is described by the distribu-
tion.

To illustrate, we consider a quantum algorithm with two parameters, C and s, where C is
a Turing machine for which the probability of producing each s-bit string is computable.
We run the algorithm to compute that distribution on a quantum computer with s
ouput qubits; it puts the output register into a superposition of spin states, where the
probability of each state |v〉 is PC(v)/Ωs

C . Next, we apply the Hamiltonian operator
H = β|ω1 . . . ωs〉〈ω1 . . . ωs| to the prepared state. A measurement of energy will give β
with probability P = Prob(ω1ω2 . . . ωs) and zero with probability 1−P . The expectation
value for energy, therefore, is exactly the same as that of Y , but with units of energy,
i.e.

∆C(ω1ω2 . . . ωs)[J ] ·∆s ≥ ε[J ],

where [J ] indicates Joules of energy.

Now define
∆t ≡

σQ

|d〈Q〉/dt|
,

where Q is any observable that does not commute with the Hamiltonian; that is, ∆t is
the time it takes for the expectation value of Q to change by one standard deviation.
With this definition, the following is a form of Heisenberg’s uncertainty principle:

∆E ·∆t ≥ ~/2.

We can replace ∆E by ∆C(ω1ω2 . . . ωs) by the analysis above; but what about ∆t? If we
choose a time scale such that our two uncertainty relations are equivalent for a single
quantum system corresponding to a computer C and one value of s, then the relation
holds for C and any value of s:

∆C(ω1ω2 . . . ωs)[J ] ·∆s
~
2ε

[J−1 · Js] ≥ ~
2
[Js].

In this sense, we claim that Heisenberg’s uncertainty relation is equivalent to (4). We
cannot say whether (4) is physical for universal self-delimiting Turing machines; to do
so requires deciding the Church-Turing thesis for quantum systems.

The uncertainty principle now says that getting one more bit of ΩU requires (asymptot-
ically) twice as much energy. Note, however, that we have made an arbitrary choice to
identify energy with complexity. We could have chosen to create a system in which the
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position of a particle corresponded to the complexity, while momentum corresponded to
the accuracy of C’s estimate of ΩU . In that case, the uncertainty in the position would
double for each extra bit. Any observable can play either role, with a suitable choice of
units.

If this were the only physical connection, one could argue that the result is merely an
analogy and nothing more. However, consider the following: let ρ be the density matrix
of a quantum state. Let R be a computable positive operator-valued measure, defined on
a finite dimensional quantum system, whose elements are each labeled by a finite binary
string. Then the statistics of outcomes in the quantum measurement is described by
R: R(ω1 . . . ωs) is the measurement outcome and tr(ρR(ω1 . . . ωs)) is the probability of
getting that outcome when we measure ρ. Under these hypotheses, Tadaki’s inequality
(1) (see [32], p. 2), and our inequality (4) imply the existence of a constant τ (depending
upon R) such that for all ρ and s we have:

∆s
. 1

tr(ρR(ω1 . . . ωs))
≥ τ.

In other words, there is no algorithm that, for all s, can produce

1. an experimental setup to produce a quantum state and

2. a POVM with which to measure the state such that

3. the probability of getting the result ω1ω2 . . . ωs is greater than 1/(τ2s).

Finally, it is interesting to note that a Fourier transform of the wave function switches
between an “Omega space” and a “complexity space”. We plan on examining this
relationship further in a future paper.

8 From Chaitin to Gödel

In this section we prove that the uncertainty relation (4) implies incompleteness.

We start with the following theorem: Fix a universal self-delimiting Turing machine
U . Let x1x2 . . . be a binary infinite sequence and let F be a strictly increasing function
mapping positive integers into positive integers. If the set {(F (i), xF (i)) | i ≥ 1} is com-
putable, then there exists a constant ε > 0 (which depends upon U and the characteristic
function of the above set) such that for all k ≥ 1 we have:

∆U(x1x2 . . . xF (k)) ≤ ε · 2F (k)−k. (7)
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To prove (7) we consider for every k ≥ 1 the strings

w1xF (1)w2xF (2) . . . wkxF (k), (8)

where each wj is a string of length F (j) − F (j − 1) − 1, F (0) = 0, that is, all binary
strings of length F (k) where we have fixed bits at the positions F (1), . . . , F (k).

It is clear that
∑k

i=1 |wi| = F (k) − k and the mapping (w1, w2, . . . , wk) 7→ w1w2 . . . wk

is bijective, hence to generate all strings of the form (8) we only need to generate all
strings of length F (k)− k.

Next we consider the enumeration of all strings of the form (8) for k = 1, 2, . . .. The
lengths of these strings will form the sequence

F (1), F (1), . . . , F (1)︸ ︷︷ ︸
2F (1)−1 times

, . . . , F (k), F (k), . . . , F (k)︸ ︷︷ ︸
2F (k)−k times

, . . .

which is computable and satisfies the inequality (3) as
∞∑

k=1

2F (k)−k · 2−F (k) = 1.

Hence, by Kraft-Chaitin theorem, for every string w of length F (k)− k there effectively
exists a string zw having the same length as w such that the set {zw | |w| = F (k)−k, k ≥
1} is prefix-free. Indeed, from a string w of length F (k)−k we get a unique decomposition
w = w1 . . . wk, and zw as above, so we can define C(zw) = w1xF (1)w2xF (2) . . . wkxF (k); C
is a self-delimiting Turing machine. Clearly,

∆C(w1xF (1)w2xF (2) . . . wkxF (k)) ≤ ∇C(w1xF (1)w2xF (2) . . . wkxF (k)) ≤ N(zw) ≤ 2F (k)−k+1−1,

for all k ≥ 1. In particular, ∆C(x1 . . . xF (k)) ≤ 2F (k)−k+1−1, so by the invariance theorem
we get the inequality (7).

It is easy to see that under the hypothesis of the above theorem the uncertainty relation
(4) is violated, so the sequence x1x2 . . . xn . . . is not random. Indeed, if the sequence
were random, then the formal uncertainty principle (4) will hold true, hence for each
k ≥ 1, we would have the following contradictory pair of inequalities:

ε1 ·
1

∆F (k)

≤ ∆U(x1 . . . xF (k)) ≤ ε · 2F (k)−k.

We are now able to deduce Chaitin’s information-theoretic incompleteness theorem from
the uncertainty relation (4). Assume by absurdity that ZFC can determine infinitely
many digits of ΩU = 0.ω1ω2 . . .. Then, we could enumerate an infinite sequence of digits
of ΩU , thus contradicting the above theorem.

In particular, there exists a bound N such that ZFC cannot determine more than N
scattered digits of ΩU = 0.ω1ω2 . . ..
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9 Conclusion

We have shown that uncertainty implies algorithmic randomness which, in turn, implies
incompleteness. Specifically, the complexity-theoretic characterization of the random-
ness of the halting probability of a universal self-delimiting Turing machine U , Chaitin
Omega number ΩU , can be recast as a “formal uncertainty principle”: an uncertainty
relation between the accuracy of one’s estimate of ΩU and the complexity of the ini-
tial bit string. This relation implies Chaitin’s information-theoretic version of Gödel’s
incompleteness.

The uncertainty relation applies to all self-delimiting Turing machines C. For the class
of machines whose halting probabilities ΩC are computable, we have shown that one
can construct a quantum computer for which the uncertainty relation describes conju-
gate observables. Therefore, in these particular instances, the uncertainty relation is
equivalent to Heisenberg’s.

There is an important distinction between “quantum randomness” and our formal un-
certainty principle. They are separate concepts. In the Copenhagen interpretation, the
random collapse of the wave-function is a postulate. In the Bohmian interpretation,
where there are real particles with real (though non-Newtonian) trajectories, random-
ness comes from our ignorance about the system; the velocity of any particle depends
instantaneously on every other particle. In one case the interpretation is probabilistic,
while in the other, it is completely deterministic. We cannot distinguish between these.
Our result concerns a different source of randomness.

Like Heisenberg’s uncertainty principle, our formal uncertainty principle is a general
one; they both apply to all systems governed by the wave equation, not just quantum
waves. We could, for example, use sound waves instead of a quantum system by playing
two pure tones with frequencies f and f + ∆C(ω1 . . . ωs). Then ∆s corresponds to the
complementary observable, the length of time needed to perceive a beat. The (algo-
rithmic) randomness we are concerned with seems to be pervasive in physics, even at
the classical level. We may speculate that uncertainty implies randomness not only in
mathematics, but also in physics.
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[24] W. Heisenberg. Über den Anschaulichen Inhalt der Quantentheoretischen Kine-
matik und Mechanik, Zeitschrift für Physik 43 (1927), 172–198. (Received 23 March
1927) English translation in J.A. Wheeler, H. Zurek (eds.). Quantum Theory and
Measurement, Princeton Univ. Press, Princeton, 1983, 62–84.

[25] E.H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen, Zeitschrift für
Physik 44 (1927), 326–352.

[26] W. Pauli. In A. Hermann, K. von Meyenn and V.F. Weiskopf (eds.). Wis-
sentschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Volume 1 (1919–
1929), Springer-Verlag, Berlin, 1979.
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