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Randomness, relativization, and Turing degrees

André Nies, Frank Stephan and Sebastiaan A. Terwijn

Abstract. We compare various notions of algorithmic randomness. First

we consider relativized randomness. A set is n-random if it is Martin-Löf
random relative to ∅(n−1). We show that a set is 2-random if and only if

there is a constant c such that infinitely many initial segments x of the set

are c-incompressible: C(x) ≥ |x| − c. The ‘only if’ direction was obtained
independently by Joseph Miller. This characterization can be extended to the

case of time-bounded C-complexity.

Next we prove some results on lowness. Among other things, we characterize
the 2-random sets as those 1-random sets that are low for Chaitin’s Ω. Also,

2-random sets form minimal pairs with 2-generic sets. The r.e. low for Ω sets
coincide with the r.e. K-trivial ones.

Finally we show that the notions of Martin-Löf randomness, recursive random-

ness, and Schnorr randomness can be separated in every high degree while the
same notions coincide in every non-high degree. We make some remarks about

hyperimmune-free and PA-complete degrees.

Mathematical Subject Classification: 68Q30, 03D15, 03D28, 03D80, 28E15.

1. Introduction

The study of algorithmic randomness received a strong impulse when Martin-Löf
[19] defined his notion of randomness of infinite strings based on constructive mea-
sure theory. Especially the strong connections with the theory of randomness for
finite objects made this notion very popular, see e.g. [17], to name only one of
the many references that the reader can consult for this. Another landmark in
the theory of randomness is Schnorr’s book [26], containing a thorough discussion
(and criticism) of several of the randomness notions used in this paper, in particular
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Martin-Löf randomness, recursive randomness, and what is now called Schnorr ran-
domness. Since all of these notions are defined in terms of basic recursion theory, it
comes as no surprise that they are often best analyzed in the context of that same
theory. In particular, there has been a clear interest in the interplay of the various
randomness notions and relative computability, or Turing reducibility. The reader
can e.g. consult the recent survey paper by Ambos-Spies and Kučera [1]. In the
present paper we prove some new results on randomness relating to both Turing
reducibility and Kolmogorov complexity.

The outline of the paper is as follows. In Section 2 we consider relativized ran-
domness and Kolmogorov complexity. Ding, Downey, and Yu [7] call a set X
Kolmogorov random if

(∃b)(∃∞n)
[
C(X�n) ≥ n− b

]
,

where C is the plain Kolmogorov complexity. This notion was studied earlier in sev-
eral equivalent forms by Loveland, Schnorr, Daley and others, see section 2. Martin-
Löf [20] proved that there are no sets X such that (∃b)(∀n)

[
C(X�n) ≥ n− b

]
and

he also showed that Kolmogorov randomness implies Martin-Löf randomness. We
give a simple proof of this last fact in Proposition 2.4. We then compare Kol-
mogorov randomness with relativized Martin-Löf randomness. A set is n-random
if it is Martin-Löf random relative to ∅(n−1). So it is 1-random if it is Martin-Löf
random, 2-random if it is Martin-Löf random relative to ∅′, etc. Ding, Downey,
and Yu [7] proved that each 3-random set is Kolmogorov random. Indeed we
can push the result by one level and show that Kolmogorov randomness coincides
with 2-randomness (Theorem 2.8). This had been conjectured by C. Calude (per-
sonal communication to André Nies, Auckland, June 2003). That 2-randomness
implies Kolmogorov randomness was proved independently (and earlier) by Miller
[22]. Note that Martin-Löf randomness was characterized by Schnorr in terms
of the prefix-free Kolmogorov complexity K, whereas the above characterization
is in terms of the plain Kolmogorov complexity C. It is remarkable that such a
“high-level” notion of randomness as 2-randomness can be thus characterized by a
“low-level” notion as C-complexity. Like the characterization of Martin-Löf ran-
domness, this is a new connection between the theory of randomness of finite and
that of infinite objects. It also revindicates the notion of C-complexity as more
than a mere “historical accident” (Chaitin [4, p. 87]). We extend the characteriza-
tion by showing that 2-randomness is also equivalent to time-bounded Kolmogorov
randomness. This notion is defined in the same way, using Cg instead of C, where
Cg(x) is the plain Kolmogorov complexity of x with time bound g. The particular
choice of g does not matter for our results. Although in this paper we are mainly
concerned with infinite random sequences, Section 2 also contains some relevant
material about finite random strings.

In Section 3 we discuss lowness for Chaitin’s Ω. Note that we can interpret every
set like Ω also as the real number

∑
n∈Ω 2−n−1. Fixing a universal prefix-free

machine U , Ω is that number which represents the halting probability of U , that is,
the probability that an infinitely chosen sequence of 0s and 1s extends a program
p such that U(p) halts. The main reason for being interested in Ω is that Ω is
a natural example for a left-r.e. random set and in a certain sense the only one:
Kučera and Slaman [14] showed that all random left-r.e. sets are Ω-numbers, that
is, represent the halting probability of some universal prefix-free machine.
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At the beginning of Section 3 we discuss lowness for random sets and we prove a
restriction on the complexity of sets that are low for Ω. We show that on the r.e.
sets “low for Ω” is equivalent to being K-trivial. Since a set is K-trivial precisely
when it is low for the Martin-Löf random sets, this means that, for r.e. A, when Ω
is A-random then all random sets are A-random.

We then characterize the 2-random sets as those 1-random sets that are low for Ω
(Theorem 3.10). This may be counterintuitive at first sight, since 2-random sets
are “more random” than 1-random sets, but “low for Ω” is a restriction rather than
a strengthening. One way of understanding this is that computational power and
randomness are in fact orthogonal to each other. Another example of this is that
2-random sets are GL1, i.e. satisfy A′ ≤T A⊕ ∅′ (Corollary 3.12).

At the end of Section 3 we discuss the relation between 2-generic and 2-random
sets. From an earlier result of Demuth and Kučera it was known that a 2-generic
cannot reduce to a 2-random set. We show that the converse is also true. In fact
every 2-random set forms a minimal pair with every 2-generic set. This even holds
for sets that are low for Ω (Theorem 3.14).

In Section 4 we discuss the separation of the notions of Martin-Löf randomness,
recursive randomness, and Schnorr randomness. It was known that all of these
notions are different (see Schnorr [26] and Wang [34]). Here we indicate precisely
what computational resources are needed to separate them: we show that the three
notions can be separated in every high degree, and conversely that if a set separates
any two of these notions then this set must be high (Theorem 4.2). Moreover, if
the high degree is r.e. then the notions can be separated by a left-r.e. set. Hereby
a set is called left-r.e. if the set of all finite strings at the left of the character-
istic function with respect to length-lexicographic order is recursively enumerable.
Downey and Griffiths [8] independently proved that Schnorr randomness and recur-
sive randomness can be separated by a left-r.e. set. At the end of Section 4 we make
some remarks on Kurtz-randomness, hyperimmune-free degrees, and PA-complete
degrees.

We now list the preliminaries and notation for this paper.

Our notation for Kolmogorov complexity follows Li and Vitányi [17]. Thus C
denotes the plain Kolmogorov complexity function and K the prefix complexity.
Usually, we use V to denote a universal plain machine (for the definition of C)
and U to denote a universal prefix-free machine (for K). Our recursion theoretic
notation is standard and follows [25, 28]. As usual, subsets A ⊆ N can be identified
with infinite binary sequences and sometimes we interpret an A ⊆ N as the real
number

∑
n∈A 2−n−1. A�n is the initial segment of A of length n and σ ≺ A

denotes that σ is a finite initial segment of A. σ · τ denotes string concatenation,
{0, 1}∗ is the set of finite binary strings and λ is the empty string.

As mentioned above, a set A is left-r.e. if the set of finite strings lexicographically
left (= below) of A is an r.e. set. Equivalently one can define that the real number
defined by A is approximable from below by a recursive sequence of rationals.
Another straightforward characterization is that {q ∈ Q : q < A} is an r.e. set.

We will now list very briefly some preliminaries from effective measure theory. More
discussion on these notions can be found e.g. in [1, 32]. We also refer there for
complete references and suppress these in the following. A martingale is a function
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M : {0, 1}∗ → R+ that satisfies for every σ ∈ {0, 1}∗ the averaging condition

2M(σ) = M(σ0) +M(σ1).

A martingale M succeeds on a set A if lim supn→∞M(A�n) = ∞, and M succeeds
on a class A of subsets of N if M succeeds on every A ∈ A. The success class S[M ]
of M is the class of all sets on which M succeeds. The basic theorem of Ville is
that a class has Lebesgue measure zero if and only if it is included in a set of the
form S[M ].

We now use effective martingales to introduce the three basic notions of random-
ness. A martingale M is r.e. if it is recursively approximable from below. An r.e.
martingale is recursive if and only if M(λ) is a recursive real number. In those cases
where recursive martingales are needed, one can without loss of generality assume
that M(λ) = 1 and that M outputs a rational number [26].

Definition 1.1. Let A be any subset of the natural numbers.

• A is Martin-Löf random if there is no r.e. martingale M such that A ∈
S[M ].

• A is recursively random if there is no recursive martingale M such that
A ∈ S[M ].

• A is Schnorr random if there is no recursive martingale M and no recur-
sive non-decreasing and unbounded function r such that M(A � n) > r(n)
for infinitely many n.

In the remainder of this section we discuss a number of equivalent definitions that
will be used throughout the paper.

Discussion 1.2. A test is a sequence of open classes Tn ⊆ {0, 1}∞ such that the
Tn are uniformly Σ1. Here the Tn are uniformly in Σ1 if there is a recursively
enumerable array σn,m of strings with

(∀n)
[
A ∈ Tn ⇔ (∃m) [σn,m � A]

]
.

The following statements are equivalent and characterize Martin-Löf randomness.

• A is not Martin-Löf random.
• There is a Σ1-test T0, T1, . . . such that, for all n, A ∈ Tn and µ(Tn) ≤ 2−n.
• There is a Σ1-test T0, T1, . . . such that (∃∞n) [A ∈ Tn] and (∀n) [µ(Tn) ≤

2−n].
• (∀c)(∃x ≺ A)[K(x) < |x| − c ].

In the case of Schnorr randomness there are besides the test characterization and
the standard martingale characterization some further martingale characterizations.
The following statements are equivalent and characterize Schnorr randomness.

• A is not Schnorr random.
• A is covered by a Schnorr test. That is, there is a test T0, T1, . . . such that

for all n, A ∈ Tn and µ(Tn) = 2−n.
• For every recursive function r, there is a recursive martingale M and a

recursive function h such that (∃∞n) [M(A � h(n)) > r(n)].
• For every recursive function r, there is a recursive martingale M and a

recursive function h such that (∃∞n) [M(A � h(n)) > r(n)] and M(x) ≤
M(xy) + 1 for all x, y ∈ {0, 1}∗.
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The last condition in the last statement says that the martingale never looses more
than the amount 1. That is, if a gambler is betting according to the strategy of this
martingale then he knows that after accumulating sufficient wealth he will never
be poor again. The price the gambler pays for this strategy is that the growth-
rate of the capital may be logarithmic compared to the growth rate of less reliable
martingales. We refer to Schnorr’s book [26] for further information about tests.
Proofs of the various equivalences mentioned here can be found there, as well as in
[32, 34].

2. Relativized randomness and Kolmogorov complexity

In this section we compare sequences that have infinitely often high C-complexity
with relativized Martin-Löf random sequences. We start off with some observations
about the complexity of finite strings. The method used to prove the following
inequality goes back to Solovay’s manuscript [29], and was further used in [7].

Proposition 2.1. For all strings x and y, C(xy) ≤ K(x) + C(y) +O(1).

Proof. Recall that V is the universal machine for C and U is the universal prefix-
free machine for K. Define a plain machine L as follows. On input p, L first
looks for σ � p such that U(σ) ↓= x. Then it tries to compute V (z) = y where
z is the rest of σ, i.e. σz = p. In that case, it outputs xy. Now it is clear that
C(xy) ≤ K(x) + CL(y). �

As a consequence, we show that each substring of a finite C-random string is K-
random. By Proposition 2.1 let c be a constant so that for each x, y, C(xy) ≤
K(x) + |y|+ c.

Proposition 2.2. For each d and each string z, if C(z) ≥ |z|+ c−d, then K(x) ≥
|x| − d for each x � z

Proof. For z � x, if K(x) ≤ |x|−d then C(z) ≤ K(x)+ |z|− |x|+ c ≤ |z|+ c−d. �

Definition 2.3. (Ding, Downey, and Yu [7]) A set X is Kolmogorov random if
(∃b)(∃∞n)

[
C(X�n) ≥ n− b

]
.

This notion was studied earlier in several forms, see Schnorr [27], Loveland [18],
Daley [5]. E.g. Daley [5] proved that a set A is Kolmogorov random if and only if
(∃b)(∃∞n)

[
C(X�n|n) ≥ n− b

]
, where C(σ|n) is the complexity of σ given n.

We now give a simple proof of [17, Theorem 2.14 (I)] that each Kolmogorov random
set is Martin-Löf random. Later we will strengthen this considerably.

Proposition 2.4. (Martin-Löf [20]) Each Kolmogorov random set is Martin-Löf
random.

Proof. We only need the consequence of Proposition 2.1 that C(xy) ≤ K(x)+|y|+c
for an appropriate constant c. If X is not Martin-Löf random, then for each d,
there is an initial segment x of X such that K(x) ≤ |x| − d. So for z � x,
C(z) ≤ K(x) + |z| − |x|+ c ≤ |z|+ c− d. Hence X is not Kolmogorov random. �
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Schnorr [26, 27] proved that the converse direction of Proposition 2.4 does not
hold.

An argument similar to the one in Proposition 2.1 can be used to answer a question
of Calude e.a. [2] for each infinite recursive R, if Z has high prefix complexity on
all initial segments whose length is in R, then Z is Martin-Löf random. This was
independently proved by Lance Fortnow.

Proposition 2.5. Suppose that the recursive set R is infinite. If there is b such
that (∀r ∈ R) [K(Z�r) ≥ r − b], then Z is Martin-Löf random.

Proof. This time L is a prefix machine. As before, on input p L first looks for σ � p
such that U(σ) ↓= x. Next, if σz = p, it sees whether |x|+ |z| is the least number
in R which is ≥ |x|. In this case it outputs xz.

Clearly L is a prefix machine. Moreover, if K(x) ≤ |x| − d, then for each extension
w of x whose length is the least number in R which is ≥ |x|, KL(w) ≤ |w| − d.
Hence if Z is not Martin-Löf random, the hypothesis of the proposition fails. �

Of course, since every infinite r.e. set contains an infinite recursive subset, Propo-
sition 2.5 also holds for infinite r.e. sets R. One can show that the proposition fails
for some infinite Π0

1 set R.

Next we compare Kolmogorov randomness with relativized randomness. We recall
the following definition:

Definition 2.6. A set A is n-random if and only if A is Martin-Löf random for
the notion relativized to the oracle ∅(n−1).

For the comparison of the randomness notions it will be useful to consider time-
bounded C-complexity (see e.g. [17]). For any computable g such that g(n) ≥ n,
let

Cg(x) = min
{
|p| : V (p) = x in g(|x|) steps

}
,

where V is any universal plain machine. We may choose V such that V simulates
all other machines with at most a logarithmic slowdown ([17, page 378], [25, Vol. 2,
page 74]): If M is a machine working in time t then there is a constant c such that
V simulates M in time ct(n) log(t(n)). We will use this in the proof of Theorem 2.8.

Definition 2.7. (Time bounded Kolmogorov randomness) We say that a set Z is
Kolmogorov random with time bound g if (∃b)(∃∞n)

[
Cg(Z�n) ≥ n− b

]
.

Note that every Kolmogorov random set is Kolmogorov random with time bound g,
for every recursive g. As noted above, a set A is Kolmogorov random if and only if
(∃b)(∃∞n)

[
C(X�n|n) ≥ n−b

]
. Terwijn [31, 32] showed that a similar equivalence

holds for time-bounded Kolmogorov complexity.

The next theorem shows that 2-randomness is characterized by Kolmogorov ran-
domness, as well as by its time-bounded version. Miller [22] obtained the implica-
tion from (I) to (II) independently of us. Ding, Downey, and Yu [7] proved that each
3-random set is Kolmogorov random. We modified this proof in Proposition 2.11 in
order to get our proof for the direction from (I) to (II). Furthermore, Ding, Downey,
and Yu [7] observed that no Kolmogorov random set is in ∆0

2. This is also implied
by Theorem 2.8 since 2-random sets cannot be ∆0

2.
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Theorem 2.8. Let g be a computable time bound such that g(n) ≥ n2 +O(1). The
following are equivalent for any set Z:

(I) Z is 2-random
(II) Z is Kolmogorov random

(III) Z is Kolmogorov random with time bound g.

Proof. (I) =⇒ (II) We introduce a concept which is of independent interest.

Definition 2.9. We call a function F : {0, 1}∗ → {0, 1}∗ a compression function
if (∀x)

[
|F (x)| ≤ C(x)

]
and F is one-one. We say that a set Z is Kolmogorov

random with respect to F if there is a constant b such that |F (Z � n)| ≥ n− b for
infinitely many n. Below we write CF (σ) = |F (σ)|.
Lemma 2.10. There is a compression function F such that F ′ ≤T ∅′.

Proof. Consider the Π0
1 class of graphs of partial functions extending the plain

universal machine U . By the low basis theorem (see e.g. [25, Vol. 1, Theorem
V.5.32]) there is a low path A which is the graph of some extension Ũ of U . Now
let F (x) be the first p with respect to length-lexicographic such that 〈p, x〉 ∈ A,
that is, Ũ(p) = x. Since for every x there is a q with U(q) = x, the function F is
total. Furthermore the p found satisfies |p| ≤ |q| by the length-lexicographic search
constraint and |F (x)| ≤ C(x). So F is a compression function. Since x = Ũ(F (x))
for all x, F is one-one. �

Lemma 2.11. Let F be a compression-function. If Z is 2-random relative to the
oracle given by the graph of F , then Z is Kolmogorov random with respect to F .

Proof. Suppose Z is not Kolmogorov random for F . We produce an F ′-recursive
Martin-Löf test {Tb}b∈N that covers Z. Note that Z ∈

⋂
b Vb, where Vb =

⋃
t Pb,t,

and
Pb,t =

{
X : (∀n ≥ t)[CF (X�n) < n− b ]

}
.

Pb,t is a Π0
1-class relative to F and µ(Pb,t) ≤ 2−b because as F is 1-1, for every

n there are less than 2n−b strings σ of length n such that CF (σ) < n − b. As
Pb,t ⊆ Pb,t+1, this implies µ(Vb) ≤ 2−b. Let

Rb,t,k =
{
X : (∀n)[ t ≤ n ≤ k → CF (X�n) < n− b ]

}
.

For each t, F ′ can compute k(t) such that

µ(Rb,t,k(t) − Pb,t) ≤ 2−(b+t+1).

Let Tb =
⋃

tRb,t,k(t). Then the Tb are open sets that are Σ0
2 relative to F , uniformly

in b. Moreover, Vb ⊆ Tb and µ(Tb − Vb) ≤ 2−b, so µ(Tb) ≤ 2 · 2−b. Hence {Tb}b∈N
is indeed an F ′-recursive test that covers Z. �

Choose a low compression function F . If Z is 2-random, then Z is 2-random relative
to F (since F is low). By Proposition 2.11 Z is Kolmogorov random with respect
to F . Since it holds for every x that |F (x)| is shorter than the smallest program
for x it follows that Z is Kolmogorov random.

(II) =⇒ (III): This is immediate from the definitions.

(III) =⇒ (I): We begin with a fact about finite strings.
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Definition 2.12. For b ∈ N we say that x is a b-root if

(∃t0)(∀w � x)
[
|w| ≥ t0 → C(w) ≤ |w| − b

]
.

Similarly, for g as above we say x is a b-root with time bound g if the above holds
even with Cg(w).

K∅′(x) denotes the prefix complexity with oracle ∅′.

Lemma 2.13. For some constant c∗, the following holds. Let g be a time bound with
g(n) ≥ n2 +O(1). If K∅′(x) ≤ |x| − b− c∗, then x is a b-root with time bound g.

Proof. Let U∅′ be the universal prefix machine with oracle ∅′. U∅′(σ)[s] denotes
the approximation of U∅′(σ) at the end of stage s.

We plan to adapt the argument of Proposition 2.1 to U∅′ . Let c∗ be a coding
constant to be determined later. If K∅′(x) ≤ |x|−b−c∗ via a computation U∅′(σ) =
x, |σ| ≤ |x| − b− c∗, then the idea is to compress all extensions w of x for |w| ≥ t0,
where the computation U∅′(σ) is stable from t0 on. Since we do not know t0, we
have to define a machine L which works for each possible t0.

Definition of the plain machine L. Given an input p of length t, carry out cycles s
for s = 0, 1, . . . until t steps have been used.

Cycle s. For each n ≤ s see if U∅′(p�n)[s] gives an output, x say. Choose n where
the use of the computation is smallest. If n exists, let ρ = p�n.

If s is greatest such that cycle s has been completed and values ρ, x have been
obtained, and p = ρz, output the string xz.

Note that L uses no more than 2t+O(1) steps, t for the cycles and t for copying z.

Claim 2.14. Suppose that the computation U∅′(σ)[s] = x is stable from s = s0
onwards. Then there is t0 such that for all p = σz, if t = |p| ≥ t0, then L(p) = xz
in at most 2t+O(1) steps.

Proof. To prove the Claim 2.14, pick t0 so that for each p as above, L on input p
passes cycle s0. Then, for all cycles s ≥ s0, the value ρ obtained equals σ. Namely,
the use of any computation U∅′(p�n)[s], n 6= |σ| must be greater than the use of
U∅′(σ)[s], for if the use would be smaller this computation would be stable as well,
contradicting that U∅′ is a prefix machine. But if the use of the computation for
p�n is greater than that for σ then σ is chosen over p�n in cycle s. This proves
Claim 2.14. �

Let c∗ be the coding constant for L. SupposeK∅′(x) ≤ |x|−b−c∗ via a computation
U∅′(σ) = x, |σ| ≤ |x| − b − c∗. Let s0 be a stage from which on this computation
is stable. Choose t0 as in Claim 2.14. Then for each w = xz of length ≥ t0 + |x|,
L(p) = w in at most 2|w| steps where p = σz. Hence C(w) ≤ CL(w) + c∗ ≤
|x| − b+ |z| = |w| − b and in fact Cg(w) ≤ |w| − b since g(n) ≥ n2 +O(1). �

We note that the existence of b-roots contrasts with the case of prefix complexity,
where each string x has an extension w such that K(w) > |w| − b, for instance
because one can extend x to a Martin-Löf random set X, which always satisfy
limn→∞K(X�n)− n = ∞.
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To complete the proof of (III) =⇒ (I), suppose Z is not 2-random. Given b and
the constant c∗ from Lemma 2.13, choose x ≺ Z such that K∅′(x) ≤ |x| − b − c∗,
so that by Lemma 2.13 x is a b-root with time bound g. Let t0 be a number as in
the definition of b-root. Then for each n ≥ t0, Cg(Z�n) ≤ n − b. Hence Z is not
Kolmogorov random with time bound g. �

In the following we study the frequency of initial segments with high C-complexity
for a 2-random set. Given a time bound g as above and a number b, for each set Z
consider the function

f = fZ
g,b(m) = (µn)(∃p0, . . . , pm ≤ n)(∀i ≤ m)

[
Cg(Z�pi) ≥ pi − b

]
,

where µn denotes the least n satisfying the condition. If Z is 2-random and hence
time-bounded Kolmogorov random with some constant b, then the corresponding
function f is total and f ≤T Z. We show that f infinitely often exceeds each
recursive function.

Proposition 2.15. If Z is Kolmogorov random with time bound g and constant b,
then f = fZ

g,b is not dominated by a recursive function.

Proof. Suppose h dominates f . Consider the recursive tree

T =
{
σ : (∀m)

[
|σ| ≥ h(m) → (∃p0, . . . , pm ≤ |σ|)(∀i ≤ m)[ Cg(σ�pi) ≥ pi − b ]

]}
.

Since h dominates f , Z is a path on T . Moreover, each path is time-bounded
Kolmogorov random and hence 2-random by Theorem 2.8. However, the leftmost
path in T is ∆0

2 and hence not 2-random, a contradiction. �

Corollary 2.16 (Kurtz). Each 2-random set has hyperimmune Turing degree.

Remark 2.17. Let fZ
b (m) = (µn)(∃p0, . . . pm ≤ n)(∀i ≤ m)

[
C(Z�pi) ≥ pi − b

]
.

We have shown that there is a single p ≤T ∅′ such that p dominates fZ
b , for each

2-random Z and b sufficiently large.

3. Low for Ω

Let C be a class that relativizes to CX for an oracle X. A set A is called low for C
if C = CA. Several authors have studied the Turing degrees of sets that are low for
classes of random sets.

• (Kučera and Terwijn [15]) There is a nonrecursive r.e. set that is low for
the Martin-Löf random sets. Every such set must be in ∆0

2 by Nies [24].
• (Nies [24]) A set is low for the recursively random sets if and only if it is

recursive.
• (Terwijn and Zambella [33]) There are uncountably many sets that are

low for the Schnorr random sets. These all have hyperimmune-free degree,
hence cannot be in ∆0

2.

In this section we study lowness for an individual random set, namely Chaitin’s Ω
[3]. Following a tradition of Chaitin, we denote by the symbol Ω not only the set
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but also the real number
∑

n∈Ω 2−n−1 represented by the set. Fixing a universal
prefix-free machine U , Ω is the halting probability of U and satisfies the equation

Ω =
∑

σ∈dom(U)

2−|σ|.

Note that the definition of Ω depends on the choice of U . We can choose U also
such that U = U∅ for the oracle ∅ and UA is a universal prefix-free machine relative
to A. Then ΩA is the set representing the halting-probability of UA. Every set
ΩA is left-r.e. relative to A and Martin-Löf random relativized to A. Note that for
most oracles A, ΩA is not left-r.e. (unrelativized). Furthermore, we might write ΩV

instead of Ω if we use the prefix machine V instead of U .

Definition 3.1. A is low for Ω if Ω is Martin-Löf random relative to A.

Note that this property does not depend on the particular universal machine U : If
V is a further universal prefix machine, then ΩU is equivalent to ΩV under Solovay
reducibility. Relativizing the main result of Kučera and Slaman [14], for sets X
which are left-r.e. relative to A, one has that X is Martin-Löf random relative to
A if and only if X is complete for Solovay reducibility relativized to A. Thus ΩU

is A-random if and only if ΩV is.

We first prove that each low for Ω set is generalized low. Then we see that for r.e.
sets, the restriction to Ω instead of all Martin-Löf-random sets does not matter,
since here low for Ω coincides with K-trivial and hence with low for the Martin-Löf
random sets by [24]. However, this is not true for sets in general, since all 2-random
sets are low for Ω, so this class has in fact measure 1!

The following proof is similar to the one of Kučera [13] that all sets which are low
for Martin-Löf randomness are in the class GL1.

Theorem 3.2. Let A be low for Ω. Then A is generalized low: A′ ≤T A⊕ ∅′.

Proof. Let ψA be an A-recursive function with A′ as domain, and for any x ∈ A
let ΨA(x) be the time it takes for x to be enumerated into A′. Let Ωs be the
approximation to Ω at stage s. Each class

TA
n =

⋃
x∈A′

(ΩΨA(x) � x+ n+ 1) · {0, 1}∞

has at most measure
∑

x 2−x−n−1 = 2−n and hence these classes form a ΣA
1 -test.

Since A is low for Ω, there is an n such that Ω /∈ Tn. Thus, for all x ∈ A′,
cΩ(x + n) > ΨA(x), where cΩ(z) is the least s such that Ωs�z = Ω�z. So we have
that x ∈ A′ if and only if x is enumerated into A′ within cΩ(x + n) many steps,
hence A′ ≤T A⊕ Ω. �

Definition 3.3 ([9]). A is K-trivial if K(X�n) ≤ K(n) +O(1) for every n.

Definition 3.4. An r.e. set W ⊆ N× {0, 1}∗ is a Kraft-Chaitin set (KC set) if∑
〈r,y〉∈W

2−r ≤ 1.

The pairs enumerated into W are called axioms. For any W , the weight of W is
weight(W ) =

∑
{2−r : 〈r, y〉 ∈W}.
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Theorem 3.5. (Chaitin [3, Theorem 3.2]) From a Kraft-Chaitin set W one can
effectively obtain a machine M with prefix-free domain such that

(∀〈r, y〉 ∈W )(∃w)
[
|w| = r ∧ M(w) = y

]
.

We say that M is a prefix machine for W .

Theorem 3.6. An r.e. set is low for Ω if and only if it is K-trivial.

Proof. Each K-trivial set is low for the Martin-Löf random sets by [24, Corollary
5.2], and hence low for Ω. For the converse direction, let A be an r.e. set which is low
for Ω. We enumerate a Martin-Löf test {RA

d }d∈N relative to A. Then there is d such
that Ω 6∈ RA

d . This will be used to define a Kraft-Chaitin set Ld showing that A is
K-trivial: for each n there will be an axiom 〈r,A�n〉 ∈ Ld where r ≤ K(n) + d+ 1.

Ld is a union S ∪ L̃d, where S supplies a new axiom when K(n) decreases, and L̃d

does when A�n changes (after some delay). Let S = {〈Ks(n) + 2, As�n〉 : Ks(n) <
Ks−1(n)}. Then S is a KC set of weight ≤ Ω/2. (Namely, for every n it holds
that

∑{
2−Ks(n) : s ∈ N ∧ Ks(n) < Ks−1(n)

}
≤

∑
r≥K(n) 2−r = 2 · 2−K(n), so

weight(S) ≤ 1
4

∑
n 2 · 2−K(n) = Ω/2.) Next, when k enters A at stage s, we want to

enumerate axioms 〈Ks(n) + d+ 1, As�n〉 into L̃d for each n, k < n ≤ s. We ensure
L̃d is a KC set of weight at most 1/2, so that Ld = L̃d ∪ S is a KC set. To do so,
we “force” Ω to increase by 2−(Ks(n)+d) before we put the axiom into L̃d. Thus,
enumeration into L̃d is charged against increases of Ω. The increase is achieved by
putting at subsequent stages s an interval

[
Ωs,Ωs + 2−Ks(n)−d

]
into RA

d with an
appropriate A-use. Either A changes (and we do not need the new axiom anymore),
or Ω has to move out of the interval. Note that this construction shares elements
with the one in [14] showing that each random left-r.e. set is Solovay complete.

Construction of RA
d and L̃d. For each parameter d simultaneously, perform the

following. At every stage s > 0 a unique procedure Pn, n = ns, is running, which
was started at a stage t ≤ s and has the goal Ω ≥ Ωt + 2−Kt(n)−d. Let n0 = 0.

Stage s > 0.

• If the procedure Pns−1 has ended at stage s− 1 then let k = 1, else k = 0.
Let n = ns = min({ns−1 + k} ∪ (As −As−1)).

• If ns 6= ns−1 we say that Pn is started at s, and we enumerate the interval

In,s =
[
Ωs,Ωs + 2−Ks(n)−d

]
into RAs

d with use n. (We are slightly abusing notation here, by identifying
intervals in the unit interval [0, 1] with intervals of the same measure in
Cantor space {0, 1}∞, using dyadic expansions.)

• If Pn has last been started at stage t and Ωs 6∈ In,t then we say that Pn

ends and we put the axiom 〈Kt(n) + d+ 1, A�n〉 into L̃d.

Claim 3.7. (∀d)[µ(RA
d ) ≤ 2−d ], hence RA

d is a Martin-Löf test relative to A.

Proof. For, if an interval In,s is added to RAs

d at stage s, then since this was done
so with use n this interval is not in RA

d unless also As�n = A�n. Pn is started at
most once after As�n = A�n and hence can contribute at most 2−Ks(n)−d to µ(RA

d ).
Hence µ(RA

d ) ≤ 2−d. �
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Claim 3.8. L̃d is a KC set of weight ≤ 1/2.

Proof. For when Pn ends and contributes an axiom 〈r+1, y〉, then Ω has increased
by 2−r since the stage when this run of Pn was started. As only one procedure runs
at each stage, this implies the claim. �

Claim 3.9. A is K-trivial.

Proof. Let d be such that Ω 6∈ RA
d , which exists since by the first claim RA

d

is an A-test and Ω is A-random. We show that for each n there is an axiom
〈K(n) + c, A�n〉 ∈ Ld where c ≤ d + 1. If A � n = 0n the required axiom is in S.
Else suppose s is greatest such that some u′ < n is in As −As−1. Then some Pu is
running by the end of stage s, u ≤ u′. Say this run was started at t ≤ s. Since Pu

is still running at s, At�u = As�u = A�u, hence Iu,t is in RA
d . As Ω 6∈ RA

d , Pu ends.
Since As�n = A�n, by the same reasoning the subsequently started procedures
Pu+1, . . . , Pn end as well. When Pn ends, we put an axiom 〈Kt(n) + d + 1, A�n〉
into L̃d. This is the required axiom unless K(n) < Kt(n), in which case the axiom
is in S. �

With these claims, also the proof of Theorem 3.6 is completed. �

By [24], a K-trivial set A is in fact low for K, namely K(x) ≤ KA(x) + O(1) for
all x. The proof of Theorem 3.6 could be modified in order to reach this conclusion
directly.

We next give a further characterization of 2-randomness.

Theorem 3.10. A set A is 2-random if and only if A is 1-random and low for Ω.

Proof. M. van Lambalgen [16] showed that for any two sets A and B, A ⊕ B is
Martin-Löf random if and only if B is Martin-Löf random and A is Martin-Löf
random relative to B. Thus, for any 1-random set A it holds that A is 2-random ⇔
A is 1-random relative to Ω ⇔ A⊕Ω is 1-random ⇔ Ω is 1-random relative to A⇔
A is low for Ω. Since any 2-random set A is 1-random the equivalence follows. �

Every PA-complete set A bounds a 1-random set B. If the PA-complete set has
hyperimmune-free or ∆0

2 Turing degree, then B is not 1-random and thus not low
for Ω. It follows that in this cases, A is also not low for Ω. So one has the following
corollary.

Corollary 3.11. No PA-complete set of hyperimmune-free Turing degree and no
PA-complete set below ∅′ is low for Ω.

Theorems 3.2 and 3.10 give the following result immediately, which according to
Kautz [11, Theorem IV.2.4 (III)] is due to Sacks and Stillwell.

Corollary 3.12 (Sacks and Stillwell). Every 2-random set A is GL1, i.e. satisfies
A′ ≤T A⊕ ∅′.
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An interesting example is A = Ω∅′ , which is 2-random and hence GL1, but also
high, as ∅′′ ≡T A⊕ ∅′ ≤T A′.

By Nies [24] every set that is low for the Martin-Löf random sets is in ∆0
2, hence

has hyperimmune degree. The question remains whether Corollary 2.16 can be
strengthened, namely,

Question 3.13. Does every set that is low for Ω have hyperimmune Turing degree?

Demuth and Kučera [6] proved that no 1-random set is below a 1-generic set, which
implies that no 2-random set is below a 2-generic set. The next theorem shows that
the conversely no 2-generic set is below a 2-random set. In fact, every such two sets
build a minimal pair. This even holds when we weaken “2-random” to “low for Ω”.
Since every 2-random set is above a 1-generic set [11, Theorem IV.2.4 (V)], the
result cannot be strengthened to minimal pairs between 2-random and 1-generic
sets. In particular, many 1-generic sets are low for Ω.

Theorem 3.14. Let A be 2-generic and let B be low for Ω. Then A and B form a
minimal pair.

Proof. Suppose that Ψ is a Turing reduction and that D = ΨA is nonrecursive.
We have to prove that D 6≤T B. For this it suffices to show that D is not low
for Ω, which we do by showing that there is a D-computable martingale MD that
succeeds on Ω.

For every σ ∈ {0, 1}∗ we recursively define a function g(σ) =
⋃

s gs(σ) as follows.
At stage 0 we define g0(σ) = σ. Given gs(σ) at stage s, we search for an extension
τ � gs(σ) such that Ψτ is defined on strictly more numbers than Ψgs(σ). If τ is
found, define gs+1(σ) = τ and let gs+1(σ) be undefined otherwise.

Now for every σ there are two possibilities:

(a) g(σ) is total and Ψg(σ) is a recursive set, or
(b) g(σ) is finite and there is no total extension h of g(σ) such that Ψh is total.

We first show that case (b) never obtains. Define the ∅′-recursive function G by

G(σ) =

{
g(σ) if g(σ) is finite,
undefined otherwise.

(G simulates g and uses the oracle ∅′ to see whether the definition of g has ter-
minated or not.) Since ΨA is total, for every σ ≺ A we have that G(σ) is either
undefined or incomparable to A. By 2-genericity there is a τ ≺ A such that G(σ)
is undefined for all σ � τ . For the rest of the proof, there is no loss of generality if
we assume that τ is the empty string. Hence g(σ) is total for all σ ∈ {0, 1}∗ and
case (a) above always obtains.

Now we define a D-recursive function FD by

FD(x) = (µy)(∀σ ∈ {0, 1}x)(∃z < y)
[
Ψg(σ)

y (z)↓6= D(z)
]
.

Since all Ψg(σ) are total and recursive, they all differ from the nonrecursive set D.
Hence FD is total and recursive in D.

Next we show that FD is fast-growing. Recall that cΩ(z) is the least s such that
Ωs�z = Ω�z. Define H(σ) ≺ g(σ) to be so long that ΨH(σ)(z) is defined for all
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z ≤ cΩ(3|σ|). H is ∅′-recursive because cΩ is. By 2-genericity of A there are
infinitely many σ ≺ A such that H(σ) ≺ A. For these σ it holds that

(1) FD(|σ|) > cΩ(3|σ|).

Finally we show how D can use FD to cover Ω. Let MD be the D-recursive
martingale that on input σ of length n bets half its capital that the next bit is
b = ΩF (n)(n): MD(σb) = (3/2)MD(σ) and MD(σ(1 − b)) = (1/2)MD(σ). Now
if σ satisfies (1) then ΩF (n)�3n = Ω�3n, so MD(Ω�3n) ≥ (1/2)n(3/2)2n = (9/8)n.
Since there are infinitely many σ satisfying (1) it follows that MD succeeds on Ω.
(It follows even that Ω is not Schnorr random relative to D.) �

Remark 3.15. We note that neither part of the hypothesis in Theorem 3.14 can
be weakened. Namely:

• There are many 1-generic sets that are low for Ω. Since the sets which
are low for Ω are closed downward under Turing reductions, it is enough
to consider the fact that the following examples of sets which are low for
Ω bound a 1-generic set.

– Every 2-random set: These are low for Ω by Theorem 3.10 and they
bound a 1-generic set by [11, Theorem IV.2.4 (V)].

– Every nonrecursive r.e. K-trivial set: Note that such a set exists
[15, 24]. It is low for Ω by Theorem 3.6. It bounds a 1-generic
set because every nonrecursive r.e. set does [25, Vol. 2, Proposition
XI.2.10].

In particular, our “natural examples” for sets which are low for Ω do not
build a minimal pair with every 1-generic set.

• Above every set there is a 1-random set by Kučera [12]. In particular, no
2-generic set builds a minimal pair with every 1-random set.

4. Separating randomness notions in Turing degrees

In this section we show that the notions of Martin-Löf randomness, recursive ran-
domness, and Schnorr randomness coincide in every non-high Turing degree and can
be separated in every high Turing degree. Furthermore, they can be separated by
left-r.e. sets. if the high degree happens to be an r.e. degree. That Schnorr random-
ness and recursive randomness can be separated by left-r.e. set was independently
proven by Downey and Griffiths [8].

Recall that a set A is high if and only if A′ ≥T ∅′′. Martin [28, Theorem XI.1.3]
showed that a set A is high if and only if there is an A-recursive function which
dominates every recursive function.

Proposition 4.1. If a Schnorr-random set does not have high Turing degree then
it is Martin-Löf random.

Proof. Let A be a set that does not have high Turing degree and that is not Martin-
Löf random, say A is covered by Martin-Löf test T = {Ti}i∈N. We show that A is
not Schnorr random. Let f be an A-recursive function that computes when A is
covered by U . That is, f computes for every n how long we have to enumerate Tn to
include A. Since f is computable relative to a non-high oracle, there is a recursive
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function g such that g(n) > f(n) for infinitely many n. Now consider the Schnorr
test V where Vn contains all sets Z which are enumerated into V within g(n) steps.
Then every Vn is finite. So V is a Schnorr test and A is in Vn for infinitely many
n. As mentioned in Discussion 1.2, this implies that A is not Schnorr random. �

Theorem 4.2. For every set A, the following are equivalent.

(I) A is high.
(II) ∃B ≡T A, B is recursively random but not Martin-Löf random.

(III) ∃C ≡T A, C is Schnorr random but not recursively random.

Furthermore, the same equivalence holds is one considers left-r.e. sets.

Proof. (III) ⇒ (I) and (II) ⇒ (I): These implications follow immediately from
Proposition 4.1.

(I) ⇒ (II): Given A, the set B is constructed in two steps as follows. First a set F
is constructed which contains information about A and partial information about
the behaviour of recursive martingales – this information will then be exploited
to define a partial recursive martingale that witnesses that the finally constructed
recursively random set B is not Martin-Löf random. The sets A and F will be
Turing equivalent and the sets B and F will be wtt-equivalent.

Let 〈· , ·〉 be Cantor’s pairing function 〈x, y〉 = 1
2 ·(x+y)·(x+y+1)+y. Furthermore,

the natural numbers can be split into disjoint and successive intervals of the form
{z0}, I0, {z1}, I1, . . . such that the following holds.

• The intervals {zk} contain the single element zk.
• The intervals Ik are so long that for every σ ∈ {0, 1}zk+1 and every partial

martingale M defined on all extensions τ ∈ σ · {0, 1}∗ with |τ | ≤ |σ|+ |Ik|
there are two extensions τσ,0,M , τσ,1,M of length |σ| + |Ik| such that M
does not grow beyond M(σ) · (1 + 2−k) within Ik. These extensions can
be computed from M . Without loss of generality it holds that τσ,0,M <lex

τσ,1,M .
• The partition of the natural numbers in the intervals {z0}, I0, {z1}, I1, . . .

is computable. This can be done since one can compute from k a length
for which an Ik of this length with the properties in the previous item
exist [21, Remark 9], see also [26, 34].

Let M0,M1, . . . be a recursive list of all partial recursive martingales. That is, the
enumeration satisfies the following conditions:

• The uniform domain {(i, σ) : Mi(σ) is defined} is a recursively enumerable
set.

• If Mi(στ) is defined for some non-empty string τ , then Mi(σ), Mi(σ0),
Mi(σ1) are also defined and their values are positive rational numbers.

• If Mi(σ0),Mi(σ1) are defined, then Mi(σ0) +Mi(σ1) = 2Mi(σ).

Now a partial recursive martingale M is defined inductively as follows. The goal
is to let M multiplicatively dominate all recursive martingales on its domain of
definition (i.e. for every recursive martingale N there is a constant c such that for
all σ, if M(σ) ↓ then N(σ) ≤ c · M(σ)), while M does not succeed on a set B
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constructed below. This then ensures that B is recursively random. Furthermore,
a set F ≡T A is constructed such that

• F (k) is coded into B�zk+1 where “most” of the coding into B is done on
the interval Ik.

• F (〈i, j〉) for i 6= 0 tells whether Mi is defined on all strings up to the
length of z〈i,j+1〉+1. This is necessary to know since on each length M
will be the weighted sum of some Mi’s and only Mi’s which are defined
on all relevant inputs should be considered.

• M can decode F (k′) for all k′ < k from B�zk. This information permits
to compute M on all τ with B�zk � τ and |τ | ≤ zk+1. If a set B̃ 6= B

is considered, it might be impossible to retrieve F and therefore, M(B̃�q)
might be undefined for some q. Thus, M is a partial recursive and not a
total recursive martingale.

Now the details of the constructions just outlined are given. First we give the
definition of M . Although M will only be partial, M(B�x) will be defined for all x.
For each k and η ∈ {0, 1}zk where M(η) is already defined, we will try to define
M(τ) for all τ ∈ η · {0, 1}∗ with |τ | ≤ zk+1.

(1) M(λ) = rλ and rλ = 1.
(2) Assume that |η| = zk, M(η), rη are already defined and for all l < k there

are values al and strings σl = η�zl + 1 such that τσl,al,M are defined and
prefixes of η. Then

(2.1) Compute E =
{
i : 〈i, 0〉 < k ∧ (∀j)[ 〈i, j〉 < k → a〈i,j〉 = 1 ]

}
.

(2.2) Let D = {τ ∈ η · {0, 1}∗ : |η| < |τ | ≤ zk+1}.
(2.3) Compute for all e ∈ E and τ ∈ D the value Me(τ).

(3) If the algorithm has gone through step (2.3) and all the computations
there have terminated then

(∀τ ∈ D)
[
M(τ) = rτ +

∑
e∈E

2−2z〈e,0〉+1−1Me(τ)
]

where the sum is 0 for the case that E = ∅ and rτ is defined inductively
such that the conditions

M(τ ′0) +M(τ ′1) = 2M(τ ′) and rτ ′0 = rτ ′1

are kept for all τ ′ ≺ τ .
If the algorithm did not go through step (2.3), thenM(τ), rτ are undefined
for all proper extensions τ of η.

The rτ are necessary since at every level zk, some Mi might be dropped from the
sum and at most one new Mi is added. This new martingale is added if k = 1+〈i, 0〉
and a〈i,0〉 = 1. Furthermore, it is added with the factor 2−2zk−1 which guarantees
that Me(η) is at most 2−zk−1 for all η ∈ {0, 1}zk . But this increases the sum by at
most 2−zk−1 and therefore can be compensated by rτ : At every level, rτ ≥ 2−|τ | and
at most 2−|τ |−1 of this capital is lost in order to maintain the martingale property
of M .

By highness of A, let fA be an A-recursive function which dominates all recursive
functions. Now define the set F as follows.

• F (〈i, 0〉) = A(i) for all i.
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• F (〈i, j〉) = 1 if F (〈i, j′〉) = 1 for all j′ < j and Mi(τ) is computed within
fA(i+ j) many steps for all τ ∈ {0, 1}∗ with |τ | ≤ z〈i+j+1,i+j+1〉. Other-
wise F (〈i, j〉) = 0.

Clearly F ≡T A. The set B is defined inductively.

(k.0) Assume that exactly B�zk is defined.
Let B(zk) = 0 if M(B�zk · 0) ≤M(B�zk · 1)
and B(zk) = 1 otherwise.

(k.1) Assume that exactly B�zk + 1 is defined.
Let η = B�zk + 1 and B�zk+1 = τη,F (k),M .

We now need to show that the inductive definition of B goes through for all k.
Note that the a〈i,j〉 in the construction of M always exist for η ≺ B and that they
are just the bits F (〈i, j〉). So the decoding at the beginning of step (2) is possible.
Furthermore, for all i ∈ E with i > 0, 〈i, j〉 ∈ F for j = 0, 1, . . . , j′ where j′ is the
maximal j′′ with 〈i, j′′〉 < k. Note that j′ ≥ 0 and thus Mi is defined on all strings
of length up to zk+1. Thus the computations in step (2.3) all terminate. So M is
defined on all extensions of B�zk of length up to zk+1. It follows that B is defined
up to zk+1 and F (k) is coded into B.

Note that coding gives F ≤wtt B. Furthermore, one can compute for each k the
string B�zk using information obtained from F �zk. So B ≤wtt F . Since A and F
are Turing equivalent, one has B ≡T A.

To see that B is not Martin-Löf random, it suffices to observe that B(zk) is com-
puted from B�zk. Thus one can build a partial recursive martingaleN which ignores
the behaviour of B on all intervals Ik but always bets all its capital on B(zk) which
is computed from the previous values. This martingale N clearly succeeds on B.

To see that B is recursively random, note first that M does not go to infinity on
B: On zk, M does not gain any new capital by the choice of B(zk). By choice of
Ik, M can increase its capital on Ik at most by a factor 1 + 2−k. Since the sum
over all 2−k converges, the infinite product

∏
k(1 + 2−k) also converges to some

real number r and M never exceeds r. Now given any recursive martingale M ′

there are infinitely many programs i for M ′ which all compute M ′ with the same
amount of time. Since fA dominates every recursive function, there is a program
i for M ′ such that for all j, fA(i + j) is greater than the number of steps to
compute Mi(τ) for any string τ ∈ {0, 1}∗ with |τ | ≤ z〈i+j+1,i+j+1〉+1. It follows
that Mi(η) ≤ 22z〈i,0〉+1+1 ·M(η) ≤ 22z〈i,0〉+1+1 ·r for all η � B. Thus B is recursively
random.

(I) ⇒ (II), r.e. case: If A is a r.e. as a set then one can choose fA such that fA is
approximable from below. Therefore also F is r.e. and the set B can be approx-
imated lexicographically from the left: In step (k.0) the value B(zk) is computed
from the prefix before it and in step (k.1) one first assumes that B�zk+1 is given
by τB�zk+1,0,M and later changes to τB�zk+1,1,M in the case that k is enumerated
into F .

(I) ⇒ (III): The construction of C is similar to the one of B above, with one
exception: there will be a thin set of k’s such that B(zk) is not chosen according
to the condition (k.0) given above but B(zk) = 0. These guaranteed 0’s will be
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distributed in such a way that on the one hand they appear so rarely that the
Schnorr bound cannot be kept while on the other hand they still permit a recursive
winning strategy for the martingale. Now let

ψ(e, x) = z〈〈e,Φe(x)〉,x〉+1

for the case that ϕe(x) is defined and uses Φe(x) many computation steps to con-
verge, otherwise ψ(e, x) is undefined. Note that ψ is one-one, has a recursive range
and satisfies ψ(e, x) ≥ zx+1 > x for all (e, x) in its domain. Furthermore, let

p(x) =

{
p(y) + 1 if (∃e ≤ log p(y)) [ψ(e, y) = x ] for some y < x,
x+ 4 otherwise.

The function p is computable, unbounded and takes every value only finitely often.
Assume without loss of generality that ϕ0 is total and let

gA(x) = max{ψ(e, x) : ψ(e, x)↓ ≤ fA(x) ∧ e < log(p(x))− 1}.
The set C is defined by the same procedure as B with one exception: namely
C(zk) = 0 if zk = gA(x) for some x < zk. So having F as above, the overall
definition of C is the following:

(k.0) Assume that exactly C�zk is defined.
Let C(zk) = 0 if M(C�zk · 0) ≤M(C�zk · 1) ∨ zk ∈ range(gA)
and C(zk) = 1 otherwise.

(k.1) Assume that exactly C�zk + 1 is defined.
Let η = C�zk + 1 and C�zk+1 = τη,F (k),M .

The proof that C ≡T A is the same as the proof that B ≡T A except that one has
to use the additional fact that gA is recursive relative to A.

To see that C is not recursively random, consider the following betting strategy
for a recursive martingale N . For every x, let Gx = {ψ(e, x) : ψ(e, x) ↓ ∧ e <
log(p(x))− 1}. Since ψ is one-one, these sets are all disjoint and every Gx contains
a number zk such that C(zk) = 0. (Choose some small code e such that ϕe is total.)
Starting with x = z0, the martingale N adopts for every Gx a St. Petersburg - like
strategy to gain the amount 1/p(x) on it, using the knowledge that Gx contains
some zk. For this purpose, N sets aside one dollar of its capital. More precisely:
If the next point y to bet on is not in the current Gx, N does not bet. If y ∈ Gx

and N has lost m times while betting on points in Gx, then N bets 2m/p(x) of
its capital on C(y) = 0. In case of failure, N stays with x and waits for the next
element of Gx without betting intermediately. In case of success, N has gained
on the points of Gx in total the amount 1/p(x) and updates x to the current
value of y and m to 0. Because |Gx| < log(p(x)) − 1 this strategy never goes
broke. Note that p(y) = p(x) + 1 (because N switches from Gx to Gy on some
zk). Thus one can verify inductively that – in the limit – N gains the amount
1/(z0 + 4) + 1/(z0 + 5) + 1/(z0 + 6) + . . ., that is, goes to infinity. Thus N succeeds
on C and C is not recursively random.

To see that C is not Schnorr random, assume by way of contradiction that for
Mi and a recursive bound h we would have that Mi(C�h(m)) > m for infinitely
many m. But for almost all m, gA(log log(m)) > h(m). An upper bound for M
on C is then given by M(C�h(m)) ≤ log(m) · r since M can increase its capital on
any interval Ik only by 1 + 2−k and furthermore only on those zk which are in the
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range of gA. But of the latter there are only log log(m) many below h(m). Since
log(m) · r · 22z〈i,0〉+1+1 < m for almost all m, one has that Mi(C�h(m)) < m for
almost all m. Thus C is not Schnorr random.

(I) ⇒ (III), r.e. case: If A is an r.e. set and fA approximable from below, then gA is
also approximable from below; let gs be this approximation. Now one verifies that
C is left-r.e. due to the following approximation Cs obtained from the definition
of C where the approximation Cs is defined from below by going up the stages
(k.0), (k.1) iteratively until the procedure is explicitly terminated.

(k.0) Assume that exactly Cs�zk is defined.
If Ms(σ) is undefined for some σ ∈ {Cs�zk · 0, Cs�zk · 1} then terminate
the procedure to define Cs by going to (ter).
If M(C�zk · 0) ≤M(C�zk · 1) or there is an x < zk such that zk = ψ(e, x)
for some x < zk and e < log(p(x)− 1) and gs(p(x)) ≤ zk

then Cs(zk) = 0 else Cs(zk) = 1.
(k.1) Assume that exactly Cs�zk + 1 is defined.

Let η = Cs�zk + 1. If Ms(σ) is undefined for some σ ∈ {Cs�zk + 1 · τ :
|τ | ≤ |Ik|} then terminate the procedure to define Cs by going to (ter).
Let η = C�zk + 1 and C�zk+1 = τη,Fs(k),M .

(ter) If the inductive definition above is terminated with Cs = η for some string
η, then one defines that Cs is the set with the characteristic function η0∞.

Now consider different sets Cs and Cs+1. There is a first stage (k.a) in which the
construction behaves differently for Cs and Cs+1. There are three cases:

Case 1. The difference is due to one but not both procedures terminates in stage
(k.a). Since this termination is due to Ms(σ) or Ms+1(σ) being undefined for the
same string σ in both cases, it follows that the procedure for Cs terminates but that
for Cs+1 not. Since Cs is extended by zeroes only, it holds that so Cs ≤lex Cs+1.

Case 2. The procedure does not terminate for Cs, Cs+1 at this stage and the stage
is of the form (k.0). Then the only difference between the construction this stage
for Cs, Cs+1 can come from the case that gs(x) ≤ zk and gs+1(x) > zk. In this case
Cs(zk) = 0 and Cs+1(zk) = 1, so Cs <lex Cs+1.

Case 3. The procedure does not terminate for Cs, Cs+1 at this stage and the stage
is of the form (k.1). Then the only possible reason is that k ∈ Fs+1−Fs. Recall that
η = Cs�zk + 1 = Cs+1�zk + 1. It follows that Cs <lex Cs+1 by τη,0,M <lex τη,1,M .

This case distinction gives C0 ≤lex C1 ≤lex . . . and so the approximation witnesses
that C is a left-r.e. set. �

If A has hyperimmune-free degree, then one can even show that A is Kurtz-random
if and only if A is Schnorr random. The reason is that one can choose g such that
g dominates f .

Theorem 4.3. A degree contains a set which is Kurtz-random but not Schnorr
random if and only if the degree is hyperimmune. On the hyperimmune-free degrees,
all considered notions of randomness coincide.

Stephan [30] investigated the connection between PA-completeness and Martin-Löf
randomness. He showed that no PA-complete set A 6≥T K is in the Turing degree
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of a Martin-Löf random set. This result is somewhat surprising since such sets A
exist and there are always Turing degrees of Martin-Löf random sets below A and
above A.

Theorem 4.4. (Stephan [30]) Every PA-complete Martin-Löf random set is above
the halting problem ∅′.

In Theorem 4.2 the following was shown for every set R which does not have high
Turing degree: R is Schnorr random if and only if R is recursively random if and
only if R is Martin-Löf random. Thus one can obtain the following corollary where
“above K” is replaced by “having high Turing degree”.

Corollary 4.5. Every PA-complete Schnorr random set and every PA-complete
recursively random set has high Turing degree.
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[24] André Nies, Lowness properties and randomness, to appear.
[25] Piergiorgio G. Odifreddi, Classical recursion theory, North-Holland, 1989 (Vol. 1) and Else-

vier, 1999 (Vol. 2).

[26] Claus-Peter Schnorr, Zufälligkeit und Wahrscheinlichkeit, Springer Lecture Notes in Mathe-
matics 218, Springer, 1971.

[27] Claus-Peter Schnorr, A unified approach to the definition of random sequences, Mathematical

Systems Theory 5 (1971) 246–258.
[28] Robert I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, Heidelberg 1987.

[29] Robert M. Solovay, Draft of a paper (or series of papers) on Chaitin’s work. Manuscript,

IBM Thomas J. Watson Research Center, New York, May 1975.
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