CDMTCS
Research
Report
Series

Single particle interferometric
analogues of multipartite
entanglement

Karl Svozil
University of Technology, Vienna

CDMTCS-232
January 2004

Centre for Discrete Mathematics and
Theoretical Computer Science



Single particle interferometric analogues of multipartite entanglement

Karl Svozil
Institut fur Theoretische Physik, University of Technology Vienna,
Wiedner Hauptstral3e 8-10/136, A-1040 Vienna, Austria

Based on research by Reek al. [1] and Zukowskiet al. [2], preparation and measurement configura-
tions for the singlet states of two and three two- and three-state particles are enumerated in terms of multiport
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I. UNIVERSAL QUANTUM NETWORKS

Any unitary operator in finite dimensional Hilbert space can be composed from a succession of two-parameter unitary trar
formations in two-dimensional subspaces and a multiplication of a single diagonal matrix with elements of modulus 1 in &
algorithmic, constructive and tractable manner; this method is similar to Gaussian elimination and facilitates the paramete
zation of elements of the unitary group in arbitrary dimensions (e.g., [3, Chapter 2]). Reck, Zeilinger, Bernstein and Berta
have suggested to implement these group theoretic results by realizing interferometric analogues of any discrete unitary
hermitean operators in a unified and experimentally feasible way [1, 4]. Early on, one of the goals was to achieve experimentz
realizable multiport analogues of multipartite correlation experiments; in particular for particle states in dimensions higher thz
two. The multiport analogues of many such experiments with higher than two-dimensional two-particle entangled states he
been extensively discussed by Zukowski, Zeilinger and Horne [2]. This article contains also an extensive discussion of the no
features of multiport analogues of multipartite entangled systems; thus we shall just recall issues relevant for the considerati
below.

Multiport analogues of multipartite configurations operate witigleparticles only. The output ports represent analogues of
joint particle properties. Thus it makes not much sense to dismugscalityin this framework. The emphasis is on the issue of
value definiteness of conceivable physical properties, such as on contextuality.

The observables of multiport interferometers are physical properties related to single particles passing the output ports. Part
detectors behind such output ports, one detector per output port, register the event of a particle passing through the detector.
observations indicating that the particle has passed through a particular output port are clicks in the detector associated with
port.

In what follows, lossless devices will be considered. There are many forms of suitable two-parameter unitary transformatio
corresponding to generalized two-dimensional “beam splitters” capable of being the factors of higher than two-dimension
unitary transformations (operating in the respective two-dimensional subspaces). Consider the matrix

sinw COoSw
T(w.9) = ( e ®cosw —e‘“"sinw) : @

T(w, @) has physical realizations in terms of beam splitters and Mach-Zehnder interferometers equipped with an appropric
number of phase shifters. Two such realizations are depicted in Fig. 1. The elementary quantum interferend@device
Fig. 1a) is a unit consisting of two phase shiftBfsandP; in the input ports, followed by a beam splittrwhich is followed
by a phase shiftdp; in one of the output ports. The device can be quantum mechanically described by [5]

Pi:[0) — [0)€*F
P |1> — |1>eiB,
S: |0y — ﬁ|1’>—|—i\/ﬁ\0’>, 2)

S 1) — VT[0)+ivRIY),
Py: [0) — |0)e?.

With /T (w) = cosw and+/R(w) = sinw, the corresponding unitary evolution matrix is given by

igl(@+B+e) gingy ¢ (B+9) cosoo)

bs, _
T (w,a,B,di)—( & (@+B) cosw ie'P sinw ©
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FIG. 1: A universal quantum interference device operating on a qubit can be realized by a 4-port interferometer with two inpLt ports
and two output port®’,1’; a) realization by a single beam splitt8(T) with variable transmissioif and three phase shiftePs, P,, P3; b)
realization by two 50:50 beam splitte®s andS, and four phase shifte, Py, P3, Py.

Alternatively, the action of a lossless beam splitter may be described by the nPdltrix [

(i R(w) T(m))_(isinu) cosm)l

T(w) iy/Rw) /) \ cosw isinw

A phase shifter in two-dimensional Hilbert space is represented by eithe(dﬂag) or diag(l,ei¢). The action of the entire
device consisting of such elements is calculated by multiplying the matrices in reverse order in which the quanta pass the

elements [6, 7]; i.e.,
b (€% 0 [isinw cosw gath) o\ /1 0
T S(w,cx,B,q))—( 0 1) ( Cosw isinoo> ( 0o 1 0¢ék ) @

The elementary quantum interference devi¢® depicted in Fig. 1b) is a Mach-Zehnder interferometer with input and
output ports and three phase shifters. The process can be quantum mechanically described by

P: [0) — |0)g@th),

P |1) — [1)€P,

S 1) — (b)+ile)/v2,

S 0) — (o) +ilb))/v2, )
P3: |b) — [b)e?,

S: [b) — (|1)+i]0)/V2,

S: o) — (|0)+il1))/V2,

Py: |0) — |0)€?.

The corresponding unitary evolution matrix is given by

(6)

T™Z(a,B, 0, ¢) = i€ ®+3) (—e(a+¢) sing & cosy )

io w AW
€%cos? sing



Alternatively, TMZ can be computed by matrix multiplication; i.e.,

Moo=t (T9) F(11)(5 )BT Dee) 0

Both elementary quantum interference devit8sand TMZ are universal in the sense that every unitary quantum evolution
operator in two-dimensional Hilbert space can be brought into a one-to-one correspondeic® withiTMZ. As the emphasis
is on the realization of the elementary beam splittén Eq. (1), which spans a subset of the set of all two-dimensional unitary
transformations, the comparison of the parametefin @) = TPS(«¥, B, a’,¢") = TM?(w’, ", 0", ") yieldsw = ' = /' /2,
B=m/2—¢ ¢ =0-1/2,0 =-1/2,f" =1/2—w—0¢, ¢" = ¢— 1, a” =11, and thus

T(wv(p) = Tbs(ﬂ)7—g,g—(p,(p— g) = TMZ(ZQ)7T[72—Q)—(p,(p—T[), (8)

Let us examine the realization of a few primitive logical “gates” corresponding to (unitary) unary operations on gbits. The
“identity” elementl; is defined by0) — |0), |1) — |1) and can be realized by

(T =es T TN tMZ 10 0) = di
L=T(5M =T"G.~5.~5.5) = T"(n-10) =diag(L.1) . ©)
The “not” gate is defined by0) — |1), |1) — |0) and can be realized by
_ _ Tbs LRI LNV nm . (01
nOt_T(O70)_T (Oa_zaza 2)_T (OvT[v 2vT[)_<l 0) . (10)

The next gate, a modified/T,,” is a truly quantum mechanical, since it converts a classical bit into a coherent superposition;
i.e.,|0) and|1). \/T; is defined by0) — (1/v/2)(|0) + 1)), |1) — (1/+v/2)(]0) —|1)) and can be realized by

T T T T m T 1 /1 1
\/TT(4aO)Tbs(4727272)TMZ(27T[74’T[)\/§<1 1> ’ (11)

Note thaty/T - /T = I,. However, the reduced parametrizationTdty, @) is insufficient to represenynot, such as

T 3n 1 i 1—i
M_Tb3(4,_n,4,_n)_2<if: L:) (12)
with v/notv/not = not.

In n> 2 dimensions, the transformatidnin Eq. (1) can be expanded to operate in two-dimensional subspaces. It is possible
to recursively diagonalize anydimensional unitary transformatiarin) by a successive applications of such matritesThe
remaining diagonal entries of modulus 1 can be compensated by an inverse diagonaDmsirck thatu(n)T'T” ---D = T,.

Thus, the inverse of all these single partial transformations is equivalent to the original transformatia(m)i-e (T'T” --- D) 2.

This technique is extensively reviewed in [3, Chapter 2] and in [1, 4]. Every single constituent and thus the whole transformatic
has a interferometric realization. We now turn to a discussion of multiport interferometric analogues of entangled multiparti
states and their measurement.

Il. TWO TWO-STATE PARTICLES ANALOGUE
A. States

Let us explicitly enumerate the case of two entangled two-state particles in one of the Bell basis states (e.g., [8]; the supersc
T indicates transposition)

W) = %(el®e1+ez®ez)z%(1»0a0alfa (13)
o) = %(a@el—ez@aez)z%(l,oaoa—l)T» (14)
W) = %(el®ez+e1®ez)z%(0,1,1,0)Ta (19)
W) = %(e@ez—ez@el)z%(O,la—l»o)T» (16)
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wheree; = (1,0) ande, = (0,1) form the standard basis of the Hilbert spdtieof the individual particles. The state operators
corresponding to (13)—(15) are the dyadic products of the normalized vectors with themselves; i.e.,

1001
_~1/0000
|L|Jl>:§ 0000/ (17)
1001
1 00-1
1/ o000 O
|l'P2> = é 0 00 O ’ (18)
-100 1
00O00O
10110
|L|J3>:§ 01101 (19)
00O00O
00 0O
101 -10
|LP4> = E 0-1 1 0 (20)
00 0O
B. Observables
With the rotation matrix
cosB sind
R(6) = < —sin® cose> (1)
two one-particle observabl& F can be defined by
E = diages, ), (22)
n m 1l/len+en enn—ex
F = R—-—-)ER-)=2 . 23
( 4) R(4) 2(911922 €11+ 622 (23)
Often,e 1 andey; are labelled by (L or +, —, respectively.
The corresponding single-sided observables for the two-particle case are
O = E®I, = diag(eis,e11,€2,€22), (24)
. . e11+€2 €11— €2 0 0
_ 1. €11— €2 €11+ € 0 0
0, = IbeF==diagF,F)== . 25
2 2® lag(F,F) 2 0 0 €11 +6e2 €1—€» (25)
0 0 €11— €2 €11+6x2

Here, diagA, B) stands for the matrix with diagonal blocRsB; all other components are zer. stands for the unit matrix in
two dimensions.

As the commutatofA® I,LI® B] = (A®I) - (I®B) — (I®B) - (A® ) = Aij8imdjkBms— 8ij BimAjkOms = AikBis — BisAik = 0
vanishes for arbitrary matrice B, also[O1,0;] = 0 vanishes, and the two corresponding observables are commeasurable.
Hence the two measurements@f andO, can be performed successively without disturbing each other.

In order to represer®; andO, by beam splitters, we note that their eigenvectors form the bases

{(17 07 0’ 0)7 (07 1? O? 0)7 (07 07 17 0)7 (07 07 07 1)}7 and (26)
{(1/\/2)(()’ Oa _1a 1)v (1/\@)(()’ 07 17 1)7 (1/\/5)(_]” 17 07 0)7 (1/\@)(17 17 07 0)}
with eigenvaluesell ell e22 e22} and {e22,ell e22 ell}, respectively. By identifying those eigenvectors as rows of a
unitary matrix and stacking them in numerical order, one obtains the unitary operators “sorting” the incoming amplitudes int
four output ports, corresponding to the eigenvalue®0dndO;, respectively. (Any other arrangement would also do, but would



change the port identifications.) That is,

0001
0010
1000
0 0-11
1 0 0 1 1
Up = 2(11 0 0 (28)
1 1 00
The operator
O = (E®IL) (beF)=E®F
err(er1+e») er(ern—en) 0 0
14 1| ew(err—ex) en(enn+ex) 0 0 (29)
sdia F.enF) =5
pdiagenF, exF) =3 0 0 exn(eln+en) exn(enn—en)
0 0 €22(€11—€22) €x2(e11+€22)

combines bottD; andO,. The interferometric realization @, in terms of a unitary transformation is the same asQOgr
since they share a common set of eigenstates with different eigen\{eﬁéesuezz, 1162, eﬁl}. Thus,U12 = Us.

C. Preparation

The interferometric setup can be decomposed into two phases. In the first phase, the state is prepared. In the second pl
the state is analyzed by successive applicatiots @ndU,, or justU;» = Uy, and by observing the output ports.

Suppose the interferometric input and output ports are labelled by, 4; and let the corresponding states be represented
by |1) = (1,0,0,0)7, |2) = (0,1,0,0)", |3) = (0,0,1,0)T and|4) = (0,0,0,1)T. The initial state can be prepared by unitary
transformations. For instance, the unitary transformétlgriransforming the state of a particle entering the first pbrtinto
the singlet state (16) is

0 -110

1 1 001
U= — 30
p\@—1001 (30)

0O 1 10

D. Predictions

To check the validity of the calculations, consider a measurement of the singlef4atim (16) with parallel directions.
Thus, instead of in (23), the second operator is the sam&as (22). As aresultD;, =E®QE = diag(ef,elez, €16, 912). Since
the eigenvectors db), are just the elements of the standard basis of the Hilbert sphda;, = U; has only unit entries in its
counterdiagonal. Hencl, ,|W,) = (1/1/2)(0,-1,1,0)T, and since(n|U;,|W4)|2 = 0 for n = 1,4 and|(n|U],|W4)|?> = 1/2 for
n= 2,3, there is a 50:50 chance to find the particle in port 2 and 3, respectively. The particle will never be measured in detectt
behind the output ports 1 or 4.

These events could be interpreted in the following way: The first and the forth detectors stand for the property that bo
“single-particle” observables are the same; the second and the third detectors stand for the property that both “single-partic
observables are different. Since the input state was chosen to be a singlet state (16), only the latter case can occur. Sir
considerations hold for the other states of the bell basis defined in (13)—(15). In particuty,dodW¥,, the detectors behind
output ports 1 or 4 will record events, and the detectors behind ports 2 and 3 will not.

The singlet state (16), when processed throughin Eq. (29), yields equal chances of output through any one of the four
output ports of the interferometer; i.&l;2|Ws) = (1/2)(1,—-1,1,1)7, and thug/(n|U12|W4)|? = 1/4,n=1,...,4. This result
could be expected, as in (22) and (23) the relative distance bet#&vaadF has been chosen to Iog4.

A more general computation for arbitrary<08 < mtyields the set

{(cos8,sinB,0,0), (—sinB,cosh, 0,0)(0, 0, cosh, sinB), (0,0, — sinB, cosh) }
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FIG. 2: Preparation and measurement setup of an interferometric analogue of a two two-state particles setup in the singlet state. A sir
particle enters the upper port number 1 and leaves one of the lower ports 2 or 3.

of normalized eigenvectors f@12(0). As a result, the corresponding unitary operator is given by

cosB sind 0 0
. —sin@ cosd 0 0
U12(0) = diag(R(0),R(6)) = 0 0  cod sing |- (31)

0 0 —sinB cosd

Thus, U(0)|Ws) = (1/v2)(sind,cosd,—cosd,sin®)T, and [(1|U12(6)|Wa)|? = [(4U12(8)|Wa)|? = 3sir?6,
|(21U12(8)|Wa)[? = |(3|U12(6)|Wa) |2 = 5 cos6.

E. Interferometric setup

Based on the decomposition of an arbitrary unitary transformation in four dimensions into unitary transformations of two
dimensional subspaces [3], Reekal. [1] have developed an algorithm [9] for the experimental realization of any discrete
unitary operator. When applied to the preparation and analyzing stages corresponding to (30) and (27)—(28) respectively,
arrangement is depicted in Fig. 2.



Ill. TWO THREE-STATE PARTICLES ANALOGUE
A. Singlet state preparation

A group theoretic argument shows that in the case of two three-state particles, there is just one singlet state [10-12]

1 1
®) =~ (a®es—eee+e®e)=—-(0,0,1,0,-1,0,1,0,0)7, (32)

V3 V3

where agaire; = (1,0,0), e, = (0,1,0) andes = (0,0,1) refer to elements of the standard basis of Hilbert sgatef the
individual particles.
A unitary transformation rendering the singlet state (32) from a particle in the firstipast

1 1 1

0o 0o-%L o X o-%L oo

o 1 0 0 0 0 0 00

1 1 1

L 0 0o 0o-%Lo-%Xoo

o 0 0 1 0 0 0 00
[ _ 1 _1
U=|-% 0 -5 0-%L 0 0 0o (33)

000 0 0 0 1 0 00

L 0-%0 0 0 % oo

o 0 0 0 O 0 0 10

ooooooool/

B. Observables

For the sake of the argument toward a limited quantum noncontextuality [13], rotations &) the plane alonges are
considered; the corresponding matrix being

cos® sind
Ri2(8) = diag(R(8),e33) = | —sinB cosb (34)
0 0 1

Two one-particle observabl&s F can be defined by

E = diaglei1, e, €33), (35)
T T 1 €11+€x2 el1—€x
F = Rlz(—z) E RlZ(z) =5 | en—€2 euten - (36)
0 0 2633

Often,e;1 andey; are labelled by-1,0,1 or —, 0, +, respectively.
The corresponding single-sided observables for the two-patrticle case are

01 = E®I3=diag(e1,€11,€11, €22, €22, €22, €33, €33, €33), (37)
F 0 0

0, = Hg@FE%diag(F,F,F):% o | F | o |. (38)
0 0 F

I3 stands for the unit matrix in three dimensions.

Let the matrix[v; " vj] stand for the the dyadic product of the vectpmith itself, and letP; = [eIel} = diag(1,0,0), P, =
[e] &] = diag(0,1,0), P; = [e]e3] = diag(0,0,1) be the projections onto the axes of the standard basis. Then, the following
observables can be definexi: = P;F = diag(e11,0,0), xo = P.F = diag(0,e22,0), x3 = PsF = diag(0,0,e33). Likewise, ],
X, andx; can be defined by rotated projections. The configuration of the observables is depicted in Fig. 3a), together with i
representation in a Greechie (orthogonality) diagram [14] in Fig. 3b), which represents orthogonal tripods by points symbolizir
individual legs that are connected by smooth curves. In the dual Tkadlec diagram depicted in Fig. 3c), the role of points a
smooth curves are interchanged: points represent complete tripods and maximal smooth curves represent single legs.



X3 = X3
g _®
X Tel w=x3 e X X3 = Xj
X2 T X% oO—0
N - _—v
N YT {x1,%2,%3} {X, %5, X5}
{X]_,X27X3} {X/17Xl27xé}
b) c)

FIG. 3: Three equivalent representation of the same geometric configuration: a) Two tripods with a common leg; b) Greechie (orthogonali
diagram: points stand for individual basis vectors, and orthogonal tripods are drawn as smooth curves; ¢) Tkadlec diagram: points repres
complete tripods and smooth curves represent single legs interconnecting them.

T 213 T 1/2

BN A AR

FIG. 4: Preparation stage of a two three-state particles singlet state setup derived from the unitary dpénaay. (33). Only the bottom
part of the element pyramid is drawn.

C. Interferometric implementation

A multiport implementation otJ, in Eq. (33) is depicted in Fig. 4. The entire matrix corresponds to a pyramid of beam
splitters and phase shifters, but only the bottom row contributes toward the transforfhationd).

The unitary matrices needed for the interferometric implementatidy gfnd O, are again just the ordered eigenvectors of
0O; andOy; i.e.,U; is a matrix with unit entries in the counterdiagonal and zeroes otherwise, and

0O 00 O OO O 01
1 1
0O 00 O O O_W 7 0
1 1
0O 00 O OO 5
0O 00 O 01 0 00O
Up=| O 00—%%0 0 00O (39)
1 1
0 0O 5 7 0 0 0O
0O 01 0 OO0 O OO
1 1
-5 7 0O 0 00 O 00O
1 1
5 0O 0 00 O 00O
The interferometric implementation b, is drawn in Fig. 5.
D. Predictions
The probabilities to find the particle in the input ports can be computédblsl) = (0, — L0,— 1 0,0), and

f V6 f ’ \f V3’
finally (n|Uz|®), n=1,...,9. Itis 1/3 for port number 7, 16 for ports number 2, 3, 5, 6 and 0 for ports number 1, 4, 8, 9,
respectively. This result can interpreted as follows. Port number 7 corresponds to the occurrence of observable correspondin
X3\ X3, whereA stands for the logicdbr” By convention, the single particle state vecterse,, es and their rotated counterparts
€], €, €5 = e3 can be referred to by the labels” “ —," “0,” respectively; thus port number 7 can be referred to as the “00 case.”
The ports number 2, 3, 5, 6 correspond to the four equal-weighted possibditieg, X2 A X5, X1 A X5, X2 A X;, which are also
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FIG. 5: Measurement setup of an interferometric analogue of a measuren@ninoEq. (39).
known as++, ——, +—, —+ cases. The ports number 1, 4, 8, 9 correspond to thexionxs, X A X5, X3 A Xj, X3 A X5, which

are also known as-0, —0, 04, 0— cases, which cannot occur, since the particle enters the analysing part of the interferomete
in the singlet state in which it was prepared for.

IV. THREE THREE-STATE PARTICLES ANALOGUE

We shall briefly sketch the considerations yielding to an interferometric realization which is analogous to a configuratio
of three three-state particles in a singlet state, measured along three particular directions, such that the context structur
X5 — Xy —X| = X1 —Xo— X3 = Xg — X| — X,.

Group theoretic considerations [12, 15] show that the only singlet state for three three-state particles is

1
|A) = %(\ —+0) —|—0+)+|+0-)— |+ —0)+|0—+) — |0+ —)). (40)
If the labels “+,” “ —,” “0” are again identified with the single particle state vecterse, es forming a standard basis 6%, Eq.

(40) can be represented by

D) = E(@0e s -e0a0e+e0ae -0 +BRe e — e 0e)

16(0,0,0., 0,0,-1,0,1,0,0,0,1,0,0,0,-1,0,0,0,—1,0,1,0,0,0,0,0).

S

(41)

|
S
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{Xa./vxlévxg} {X/17Xl27xé}

N X1 =X] X3 =X5 <
3 x 1
X X
5 % 5
“ AL A _
4.5, %5)  {x1, %2, %3} {Xq, X5, %5} {x1,%2, %3}
b) c)

FIG. 6: Three equivalent representation of the same geometric configuration: a) Three tripods interconnected at two common legs; b) Gree
diagram of a); ¢) Tkadlec diagram of a).

We shall study rotations in they — e; plane arounds, as well as in the in they, — e3 plane around; the corresponding
matrix beingRz3(8) = diag(e11, R(0)). With the rotation angler/4, three one-particle observabEg-, G can be defined by

E = diagleis, e, €33), (42)
F = RlZ(*g) E RlZ(;), (43)
G = Res(—7) E Ra(y) (“44)

The corresponding single-sided observables for the two-patrticle case are

0, = Exlz®I;, (45)
0, = LQF®Is, (46)
0 = elkeG. (47)

01,0,,03 are commeasurable, as they represent analogues of the observables which are measured at the separate partic
the singlet triple. The joint observable

O123=E®F®G (48)

has normalized eigenvectors which form a unitary basis, whose elements are the rows of the unitary elgyp¢aleo); o3. An
interferometric implementation of this operator is depicted in Fig. 7.

V. DISCUSSION

With the apparent lack of entanglement resources for higher than two-dimensional subsystems, multiport analogues of mu
partite entanglement have been developed with limited quantum noncontextuality in mind [13]. Although there is no princips
limit to the number of entangled particles involved, certain tasks, such as the encoding of “explosion views” of Kochen-Speck
configurations appear as insurmountable challenge. Such “explosion views” of Kochen-Specker type configurations of obse
ables can be imagined in the following way. IMbe the number of contexts, or “blocks,” or inter-rotated triples of observables
occurring in the Kochen-Specker proof. First, a singlet state of a “large” nuMlpdrthree-state particles has to be realized.

N = 118 in the original Kochen-Specker argument [16], &hd 40 in Peres’ [17, 18] proof. Any such state should be invariant
with respect to unitary transformationgN) = @ , u;(n) composed of identical unitary transformatiang) in n dimensions.

Then, every one of thH particle would be measured along tNecontexts or blocks, one particle per context, respectively. All
steps, in particular the construction and formatiom-@fartite singlet states by group theoretic methods, as well as the interfer-
ometric implementation of these states and of all observables in the many different contexts required by the Kochen-Spec
proof, are constructive and computationally tractable. Yet, the configurations would require an astronomical number (of tl
order of 3%n the Peres’ case of the proof) of beam splitters. Thus, a physical realization of the full context structure of prope:
ties appearing in an “explosion view” of a Kochen-Specker type proof is remabedankenexperimeat the moment. Even
weaker forms of nonclassicality such as structures with a nonseparating set of stat€g-#thKechen and Specker’s original
work [16] would requireN = 16 (corresponding to sixteen particles) and would still be too complex to realize.
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T=0

T=0 =

T=0 T=0

— T=1/2
T=(
0 ul

T=0 T=0

T=0 T=1R |1=0 T=0 T=0\_| T=0

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

FIG. 7: Measurement setup of an interferometric analogue of a measurement of the three-particle Opgyatdtq. (48).

However, interferometric analogues of two- and three-particle configurations are realizable with today’s techniques. Su
configurations have been explicitly enumerated in this article.

It may also be worthwhile to search not only for purely optical implementations of the necessary elementary interferometr
cells realizing two-dimensional unitary transformations. Solid state elements and purely electronic devices may be efficie
models of multiport interferometric analogues of multipartite entangled states.
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