
CDMTCS
Research
Report
Series

Single particle interferometric
analogues of multipartite
entanglement

Karl Svozil
University of Technology, Vienna

CDMTCS-232
January 2004

Centre for Discrete Mathematics and
Theoretical Computer Science



Single particle interferometric analogues of multipartite entanglement

Karl Svozil∗

Institut für Theoretische Physik, University of Technology Vienna,
Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria

Based on research by Recket al. [1] and Zukowskiet al. [2], preparation and measurement configura-
tions for the singlet states of two and three two- and three-state particles are enumerated in terms of multiport
interferometers.

PACS numbers: 03.67.Mn,42.50.St
Keywords: Entanglement production, characterization, and manipulation;nonclassical interferometry

I. UNIVERSAL QUANTUM NETWORKS

Any unitary operator in finite dimensional Hilbert space can be composed from a succession of two-parameter unitary trans-
formations in two-dimensional subspaces and a multiplication of a single diagonal matrix with elements of modulus 1 in an
algorithmic, constructive and tractable manner; this method is similar to Gaussian elimination and facilitates the parameteri-
zation of elements of the unitary group in arbitrary dimensions (e.g., [3, Chapter 2]). Reck, Zeilinger, Bernstein and Bertani
have suggested to implement these group theoretic results by realizing interferometric analogues of any discrete unitary and
hermitean operators in a unified and experimentally feasible way [1, 4]. Early on, one of the goals was to achieve experimentally
realizable multiport analogues of multipartite correlation experiments; in particular for particle states in dimensions higher than
two. The multiport analogues of many such experiments with higher than two-dimensional two-particle entangled states have
been extensively discussed by Zukowski, Zeilinger and Horne [2]. This article contains also an extensive discussion of the novel
features of multiport analogues of multipartite entangled systems; thus we shall just recall issues relevant for the considerations
below.

Multiport analogues of multipartite configurations operate withsingleparticles only. The output ports represent analogues of
joint particle properties. Thus it makes not much sense to discussnonlocalityin this framework. The emphasis is on the issue of
value definiteness of conceivable physical properties, such as on contextuality.

The observables of multiport interferometers are physical properties related to single particles passing the output ports. Particle
detectors behind such output ports, one detector per output port, register the event of a particle passing through the detector. The
observations indicating that the particle has passed through a particular output port are clicks in the detector associated with that
port.

In what follows, lossless devices will be considered. There are many forms of suitable two-parameter unitary transformations
corresponding to generalized two-dimensional “beam splitters” capable of being the factors of higher than two-dimensional
unitary transformations (operating in the respective two-dimensional subspaces). Consider the matrix

T(ω,φ) =
(

sinω cosω
e−iφ cosω −e−iφ sinω

)
. (1)

T(ω,φ) has physical realizations in terms of beam splitters and Mach-Zehnder interferometers equipped with an appropriate
number of phase shifters. Two such realizations are depicted in Fig. 1. The elementary quantum interference deviceTbs in
Fig. 1a) is a unit consisting of two phase shiftersP1 andP2 in the input ports, followed by a beam splitterS, which is followed
by a phase shifterP3 in one of the output ports. The device can be quantum mechanically described by [5]

P1 : |0〉 → |0〉eiα+β,

P2 : |1〉 → |1〉eiβ,

S: |0〉 →
√

T |1′〉+ i
√

R|0′〉,
S: |1〉 →

√
T |0′〉+ i

√
R|1′〉,

P3 : |0′〉 → |0′〉eiϕ.

(2)

With
√

T(ω) = cosω and
√

R(ω) = sinω, the corresponding unitary evolution matrix is given by

Tbs(ω,α,β,ϕ) =
(

iei (α+β+ϕ) sinω ei (β+ϕ) cosω
ei (α+β) cosω iei β sinω

)
. (3)
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FIG. 1: A universal quantum interference device operating on a qubit can be realized by a 4-port interferometer with two input ports0,1
and two output ports0′,1′; a) realization by a single beam splitterS(T) with variable transmissionT and three phase shiftersP1,P2,P3; b)
realization by two 50:50 beam splittersS1 andS2 and four phase shiftersP1,P2,P3,P4.

Alternatively, the action of a lossless beam splitter may be described by the matrix [? ](
i
√

R(ω)
√

T(ω)√
T(ω) i

√
R(ω)

)
=

(
i sinω cosω
cosω i sinω

)
.

A phase shifter in two-dimensional Hilbert space is represented by either diag
(
eiϕ,1

)
or diag

(
1,eiϕ)

. The action of the entire
device consisting of such elements is calculated by multiplying the matrices in reverse order in which the quanta pass these
elements [6, 7]; i.e.,

Tbs(ω,α,β,ϕ) =
(

eiϕ 0
0 1

)(
i sinω cosω
cosω i sinω

)(
ei(α+β) 0

0 1

)(
1 0
0 eiβ

)
. (4)

The elementary quantum interference deviceTMZ depicted in Fig. 1b) is a Mach-Zehnder interferometer withtwo input and
output ports and three phase shifters. The process can be quantum mechanically described by

P1 : |0〉 → |0〉ei(α+β),

P2 : |1〉 → |1〉eiβ,

S1 : |1〉 → (|b〉+ i |c〉)/
√

2,

S1 : |0〉 → (|c〉+ i |b〉)/
√

2,
P3 : |b〉 → |b〉eiω,

S2 : |b〉 → (|1′〉+ i |0′〉)/
√

2,

S2 : |c〉 → (|0′〉+ i |1′〉)/
√

2,
P4 : |0′〉 → |0′〉eiϕ.

(5)

The corresponding unitary evolution matrix is given by

TMZ(α,β,ω,ϕ) = iei(β+ ω
2 )

(
−ei(α+ϕ) sin ω

2 eiϕ cosω
2

eiα cosω
2 sin ω

2

)
. (6)
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Alternatively,TMZ can be computed by matrix multiplication; i.e.,

TMZ(α,β,ω,ϕ) = iei(β+ ω
2 )

(
eiϕ 0
0 1

)
1√
2

(
i 1
1 i

)(
eiω 0
0 1

)
1√
2

(
i 1
1 i

)(
ei(α+β) 0

0 1

)(
1 0
0 eiβ

)
. (7)

Both elementary quantum interference devicesTbs andTMZ are universal in the sense that every unitary quantum evolution
operator in two-dimensional Hilbert space can be brought into a one-to-one correspondence withTbs andTMZ. As the emphasis
is on the realization of the elementary beam splitterT in Eq. (1), which spans a subset of the set of all two-dimensional unitary
transformations, the comparison of the parameters inT(ω,φ) = Tbs(ω′,β′,α′,ϕ′) = TMZ(ω′′,β′′,α′′,ϕ′′) yieldsω = ω′ = ω′′/2,
β′ = π/2−φ, ϕ′ = φ−π/2, α′ =−π/2, β′′ = π/2−ω−φ, ϕ′′ = φ−π, α′′ = π, and thus

T(ω,φ) = Tbs(ω,−π
2
,

π
2
−φ,φ− π

2
) = TMZ(2ω,π,

π
2
−ω−φ,φ−π). (8)

Let us examine the realization of a few primitive logical “gates” corresponding to (unitary) unary operations on qbits. The
“identity” elementI2 is defined by|0〉 → |0〉, |1〉 → |1〉 and can be realized by

I2 = T(
π
2
,π) = Tbs(

π
2
,−π

2
,−π

2
,

π
2
) = TMZ(π,π,−π,0) = diag(1,1) . (9)

The “not” gate is defined by|0〉 → |1〉, |1〉 → |0〉 and can be realized by

not = T(0,0) = Tbs(0,−π
2
,

π
2
,−π

2
) = TMZ(0,π,

π
2
,π) =

(
0 1
1 0

)
. (10)

The next gate, a modified “
√

I2,” is a truly quantum mechanical, since it converts a classical bit into a coherent superposition;
i.e., |0〉 and|1〉.

√
I2 is defined by|0〉 → (1/

√
2)(|0〉+ |1〉), |1〉 → (1/

√
2)(|0〉− |1〉) and can be realized by√

I2 = T(
π
4
,0) = Tbs(

π
4
,−π

2
,

π
2
,−π

2
) = TMZ(

π
2
,π,

π
4
,−π) =

1√
2

(
1 1
1 −1

)
. (11)

Note that
√

I2 ·
√

I2 = I2. However, the reduced parametrization ofT(ω,φ) is insufficient to represent
√
not, such as

√
not = Tbs(

π
4
,−π,

3π
4

,−π) =
1
2

(
1+ i 1− i
1− i 1+ i

)
, (12)

with
√
not

√
not = not.

In n > 2 dimensions, the transformationT in Eq. (1) can be expanded to operate in two-dimensional subspaces. It is possible
to recursively diagonalize anyn-dimensional unitary transformationu(n) by a successive applications of such matricesT′. The
remaining diagonal entries of modulus 1 can be compensated by an inverse diagonal matrixD; such thatu(n)T′T′′ · · ·D = In.
Thus, the inverse of all these single partial transformations is equivalent to the original transformation; i.e.,u(n) = (T′T′′ · · ·D)−1.
This technique is extensively reviewed in [3, Chapter 2] and in [1, 4]. Every single constituent and thus the whole transformation
has a interferometric realization. We now turn to a discussion of multiport interferometric analogues of entangled multipartite
states and their measurement.

II. TWO TWO-STATE PARTICLES ANALOGUE

A. States

Let us explicitly enumerate the case of two entangled two-state particles in one of the Bell basis states (e.g., [8]; the superscript
T indicates transposition)

|Ψ1〉 =
1√
2
(e1⊗e1 +e2⊗e2)≡

1√
2
(1,0,0,1)T , (13)

|Ψ2〉 =
1√
2
(e1⊗e1−e2⊗e2)≡

1√
2
(1,0,0,−1)T , (14)

|Ψ3〉 =
1√
2
(e1⊗e2 +e1⊗e2)≡

1√
2
(0,1,1,0)T , (15)

|Ψ4〉 =
1√
2
(e1⊗e2−e2⊗e1)≡

1√
2
(0,1,−1,0)T , (16)
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wheree1 = (1,0) ande2 = (0,1) form the standard basis of the Hilbert spaceC2 of the individual particles. The state operators
corresponding to (13)–(15) are the dyadic products of the normalized vectors with themselves; i.e.,

|Ψ1〉 ≡ 1
2

 1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , (17)

|Ψ2〉 ≡ 1
2

 1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 , (18)

|Ψ3〉 ≡ 1
2

 0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , (19)

|Ψ4〉 ≡ 1
2

 0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 . (20)

B. Observables

With the rotation matrix

R(θ) =
(

cosθ sinθ
−sinθ cosθ

)
(21)

two one-particle observablesE,F can be defined by

E = diag(e11,e22), (22)

F = R(−π
4
) E R(

π
4
) =

1
2

(
e11+e22 e11−e22
e11−e22 e11+e22

)
. (23)

Often,e11 ande22 are labelled by 0,1 or+,−, respectively.
The corresponding single-sided observables for the two-particle case are

O1 ≡ E⊗ I2 ≡ diag(e11,e11,e22,e22), (24)

O2 ≡ I2⊗F ≡ 1
2

diag(F,F) =
1
2

 e11+e22 e11−e22 0 0
e11−e22 e11+e22 0 0

0 0 e11+e22 e11−e22
0 0 e11−e22 e11+e22

 . (25)

Here, diag(A,B) stands for the matrix with diagonal blocksA,B; all other components are zero.I2 stands for the unit matrix in
two dimensions.

As the commutator[A⊗ I,I⊗B] = (A⊗ I) · (I⊗B)− (I⊗B) · (A⊗ I) ≡ Ai j δlmδ jkBms− δi j BlmA jkδms = AikBls−BlsAik = 0
vanishes for arbitrary matricesA,B, also [O1,O2] = 0 vanishes, and the two corresponding observables are commeasurable.
Hence the two measurements ofO1 andO2 can be performed successively without disturbing each other.

In order to representO1 andO2 by beam splitters, we note that their eigenvectors form the bases

{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}, and
{(1/

√
2)(0,0,−1,1),(1/

√
2)(0,0,1,1),(1/

√
2)(−1,1,0,0),(1/

√
2)(1,1,0,0)} (26)

with eigenvalues{e11,e11,e22,e22} and {e22,e11,e22,e11}, respectively. By identifying those eigenvectors as rows of a
unitary matrix and stacking them in numerical order, one obtains the unitary operators “sorting” the incoming amplitudes into
four output ports, corresponding to the eigenvalues ofO1 andO2, respectively. (Any other arrangement would also do, but would
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change the port identifications.) That is,

U1 =

 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , (27)

U2 =
1√
2

 0 0 −1 1
0 0 1 1
−1 1 0 0
1 1 0 0

 . (28)

The operator

O12 = (E⊗ I2) · (I2⊗F) = E⊗F

= 1
2diag(e11F,e22F) = 1

2

 e11(e11+e22) e11(e11−e22) 0 0
e11(e11−e22) e11(e11+e22) 0 0

0 0 e22(e11+e22) e22(e11−e22)
0 0 e22(e11−e22) e22(e11+e22)

 (29)

combines bothO1 andO2. The interferometric realization ofO12 in terms of a unitary transformation is the same as forO2,
since they share a common set of eigenstates with different eigenvalues{e2

22,e11e22,e11e22,e2
11}. Thus,U12 = U2.

C. Preparation

The interferometric setup can be decomposed into two phases. In the first phase, the state is prepared. In the second phase,
the state is analyzed by successive applications ofU1 andU2, or justU12 = U2, and by observing the output ports.

Suppose the interferometric input and output ports are labelled by 1, · · · ,4; and let the corresponding states be represented
by |1〉 ≡ (1,0,0,0)T , |2〉 ≡ (0,1,0,0)T , |3〉 ≡ (0,0,1,0)T and |4〉 ≡ (0,0,0,1)T . The initial state can be prepared by unitary
transformations. For instance, the unitary transformationUp transforming the state of a particle entering the first port|1〉 into
the singlet state (16) is

Up =
1√
2

 0 −1 1 0
1 0 0 1
−1 0 0 1
0 1 1 0

 . (30)

D. Predictions

To check the validity of the calculations, consider a measurement of the singlet state|Ψ4〉 in (16) with parallel directions.
Thus, instead ofF in (23), the second operator is the same asE in (22). As a result,O′

12≡E⊗E≡ diag(e2
1,e1e2,e1e2,e2

2). Since
the eigenvectors ofO′

12 are just the elements of the standard basis of the Hilbert spaceC4, U ′
12 = U1 has only unit entries in its

counterdiagonal. Hence,U ′
12|Ψ4〉 ≡ (1/

√
2)(0,−1,1,0)T , and since|〈n|U ′

12|Ψ4〉|2 = 0 for n = 1,4 and|〈n|U ′
12|Ψ4〉|2 = 1/2 for

n= 2,3, there is a 50:50 chance to find the particle in port 2 and 3, respectively. The particle will never be measured in detectors
behind the output ports 1 or 4.

These events could be interpreted in the following way: The first and the forth detectors stand for the property that both
“single-particle” observables are the same; the second and the third detectors stand for the property that both “single-particle”
observables are different. Since the input state was chosen to be a singlet state (16), only the latter case can occur. Similar
considerations hold for the other states of the bell basis defined in (13)–(15). In particular, forΨ1 andΨ2, the detectors behind
output ports 1 or 4 will record events, and the detectors behind ports 2 and 3 will not.

The singlet state (16), when processed throughU12 in Eq. (29), yields equal chances of output through any one of the four
output ports of the interferometer; i.e.,U12|Ψ4〉 ≡ (1/2)(1,−1,1,1)T , and thus|〈n|U12|Ψ4〉|2 = 1/4, n = 1, . . . ,4. This result
could be expected, as in (22) and (23) the relative distance betweenE andF has been chosen to beπ/4.

A more general computation for arbitrary 0≤ θ ≤ π yields the set

{(cosθ,sinθ,0,0),(−sinθ,cosθ,0,0)(0,0,cosθ,sinθ),(0,0,−sinθ,cosθ)}
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FIG. 2: Preparation and measurement setup of an interferometric analogue of a two two-state particles setup in the singlet state. A single
particle enters the upper port number 1 and leaves one of the lower ports 2 or 3.

of normalized eigenvectors forO12(θ). As a result, the corresponding unitary operator is given by

U12(θ) = diag(R(θ),R(θ)) =

 cosθ sinθ 0 0
−sinθ cosθ 0 0

0 0 cosθ sinθ
0 0 −sinθ cosθ

 . (31)

Thus, U12(θ)|Ψ4〉 ≡ (1/
√

2)(sinθ,cosθ,−cosθ,sinθ)T , and |〈1|U12(θ)|Ψ4〉|2 = |〈4|U12(θ)|Ψ4〉|2 = 1
2 sin2 θ,

|〈2|U12(θ)|Ψ4〉|2 = |〈3|U12(θ)|Ψ4〉|2 = 1
2 cos2 θ.

E. Interferometric setup

Based on the decomposition of an arbitrary unitary transformation in four dimensions into unitary transformations of two-
dimensional subspaces [3], Recket al. [1] have developed an algorithm [9] for the experimental realization of any discrete
unitary operator. When applied to the preparation and analyzing stages corresponding to (30) and (27)–(28) respectively, the
arrangement is depicted in Fig. 2.
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III. TWO THREE-STATE PARTICLES ANALOGUE

A. Singlet state preparation

A group theoretic argument shows that in the case of two three-state particles, there is just one singlet state [10–12]

|Φ〉=
1√
3
(e1⊗e3−e2⊗e2 +e3⊗e1)≡

1√
3
(0,0,1,0,−1,0,1,0,0)T , (32)

where againe1 = (1,0,0), e2 = (0,1,0) ande3 = (0,0,1) refer to elements of the standard basis of Hilbert spaceC3 of the
individual particles.

A unitary transformation rendering the singlet state (32) from a particle in the first port|1〉 is

Up =



0 0 − 1√
3

0 1√
3

0 − 1√
3

0 0
0 1 0 0 0 0 0 0 0
1√
3

0 0 0 − 1√
3

0 − 1√
3

0 0
0 0 0 1 0 0 0 0 0

− 1√
3

0 − 1√
3

0 − 1√
3

0 0 0 0
0 0 0 0 0 1 0 0 0
1√
3

0 − 1√
3

0 0 0 1√
3

0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


. (33)

B. Observables

For the sake of the argument toward a limited quantum noncontextuality [13], rotations in thee1− e2 plane alonge3 are
considered; the corresponding matrix being

R12(θ) = diag(R(θ),e33) =

 cosθ sinθ
−sinθ cosθ

0 0 1

 (34)

Two one-particle observablesE,F can be defined by

E = diag(e11,e22,e33), (35)

F = R12(−
π
4
) E R12(

π
4
) =

1
2

 e11+e22 e11−e22
e11−e22 e11+e22

0 0 2e33

 . (36)

Often,e11 ande22 are labelled by−1,0,1 or−,0,+, respectively.
The corresponding single-sided observables for the two-particle case are

O1 ≡ E⊗ I3 ≡ diag(e11,e11,e11,e22,e22,e22,e33,e33,e33), (37)

O2 ≡ I3⊗F ≡ 1
2

diag(F,F,F) =
1
2

 F 0 0

0 F 0

0 0 F

 . (38)

I3 stands for the unit matrix in three dimensions.
Let the matrix[vi

Tvi ] stand for the the dyadic product of the vectorvi with itself, and letP1 = [eT
1 e1] = diag(1,0,0), P2 =

[eT
2 e2] = diag(0,1,0), P3 = [eT

3 e3] = diag(0,0,1) be the projections onto the axes of the standard basis. Then, the following
observables can be defined:x1 = P1F = diag(e11,0,0), x2 = P2F = diag(0,e22,0), x3 = P3F = diag(0,0,e33). Likewise,x′1,
x′2 andx′3 can be defined by rotated projections. The configuration of the observables is depicted in Fig. 3a), together with its
representation in a Greechie (orthogonality) diagram [14] in Fig. 3b), which represents orthogonal tripods by points symbolizing
individual legs that are connected by smooth curves. In the dual Tkadlec diagram depicted in Fig. 3c), the role of points and
smooth curves are interchanged: points represent complete tripods and maximal smooth curves represent single legs.
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diagram: points stand for individual basis vectors, and orthogonal tripods are drawn as smooth curves; c) Tkadlec diagram: points represent
complete tripods and smooth curves represent single legs interconnecting them.
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FIG. 4: Preparation stage of a two three-state particles singlet state setup derived from the unitary operatorUp in Eq. (33). Only the bottom
part of the element pyramid is drawn.

C. Interferometric implementation

A multiport implementation ofUp in Eq. (33) is depicted in Fig. 4. The entire matrix corresponds to a pyramid of beam
splitters and phase shifters, but only the bottom row contributes toward the transformation|1〉 → |Φ〉.

The unitary matrices needed for the interferometric implementation ofO1 andO2 are again just the ordered eigenvectors of
O1 andO2; i.e.,U1 is a matrix with unit entries in the counterdiagonal and zeroes otherwise, and

U2 =



0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 − 1√
2

1√
2

0

0 0 0 0 0 0 1√
2

1√
2

0

0 0 0 0 0 1 0 0 0

0 0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 1√
2

1√
2

0 0 0 0

0 0 1 0 0 0 0 0 0

− 1√
2

1√
2

0 0 0 0 0 0 0
1√
2

1√
2

0 0 0 0 0 0 0



. (39)

The interferometric implementation ofU2 is drawn in Fig. 5.

D. Predictions

The probabilities to find the particle in the input ports can be computed byU2|Φ〉= (0,− 1√
6
, 1√

6
,0,− 1√

6
,− 1√

6
, 1√

3
,0,0), and

finally 〈n|U2|Φ〉, n = 1, . . . ,9. It is 1/3 for port number 7, 1/6 for ports number 2, 3, 5, 6 and 0 for ports number 1, 4, 8, 9,
respectively. This result can interpreted as follows. Port number 7 corresponds to the occurrence of observable corresponding to
x3∧x′3, where∧ stands for the logical“or.” By convention, the single particle state vectorse1,e2,e3 and their rotated counterparts
e′1,e

′
2,e

′
3 = e3 can be referred to by the labels “+,” “−,” “0,” respectively; thus port number 7 can be referred to as the “00 case.”

The ports number 2, 3, 5, 6 correspond to the four equal-weighted possibilitiesx1∧ x′1, x2∧ x′2, x1∧ x′2, x2∧ x′1, which are also
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FIG. 5: Measurement setup of an interferometric analogue of a measurement ofO2 in Eq. (39).

known as++, −−, +−, −+ cases. The ports number 1, 4, 8, 9 correspond to the fourx1∧ x′3, x2∧ x′3, x3∧ x′1, x3∧ x′2, which
are also known as+0,−0, 0+, 0− cases, which cannot occur, since the particle enters the analysing part of the interferometer
in the singlet state in which it was prepared for.

IV. THREE THREE-STATE PARTICLES ANALOGUE

We shall briefly sketch the considerations yielding to an interferometric realization which is analogous to a configuration
of three three-state particles in a singlet state, measured along three particular directions, such that the context structure is
x′′3−x′′2−x′′1 = x1−x2−x3 = x′3−x′1−x′2.

Group theoretic considerations [12, 15] show that the only singlet state for three three-state particles is

|∆〉=
1√
6
(|−+0〉− |−0+〉+ |+0−〉−|+−0〉+ |0−+〉− |0+−〉). (40)

If the labels “+,” “−,” “0” are again identified with the single particle state vectorse1,e2,e3 forming a standard basis ofC2, Eq.
(40) can be represented by

|∆〉 ≡ 1√
6
(e2⊗e1⊗e3−e2⊗e3⊗e1 +e1⊗e3⊗e2−e1⊗e2⊗e3 +e3⊗e2⊗e1−e3⊗e1⊗e2)

≡ 1√
6
(0,0,0,0,0,−1,0,1,0,0,0,1,0,0,0,−1,0,0,0,−1,0,1,0,0,0,0,0).

(41)
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We shall study rotations in thee1−e2 plane arounde3, as well as in the in thee2−e3 plane arounde1; the corresponding
matrix beingR23(θ) = diag(e11,R(θ)). With the rotation anglesπ/4, three one-particle observablesE,F,G can be defined by

E = diag(e11,e22,e33), (42)

F = R12(−
π
4
) E R12(

π
4
), (43)

G = R23(−
π
4
) E R23(

π
4
). (44)

The corresponding single-sided observables for the two-particle case are

O1 ≡ E⊗ I3⊗ I3, (45)

O2 ≡ I3⊗F ⊗ I3, (46)

O2 ≡ I3⊗ I3⊗G. (47)

O1,O2,O3 are commeasurable, as they represent analogues of the observables which are measured at the separate particles of
the singlet triple. The joint observable

O123≡ E⊗F ⊗G (48)

has normalized eigenvectors which form a unitary basis, whose elements are the rows of the unitary equivalentU123 of O123. An
interferometric implementation of this operator is depicted in Fig. 7.

V. DISCUSSION

With the apparent lack of entanglement resources for higher than two-dimensional subsystems, multiport analogues of multi-
partite entanglement have been developed with limited quantum noncontextuality in mind [13]. Although there is no principal
limit to the number of entangled particles involved, certain tasks, such as the encoding of “explosion views” of Kochen-Specker
configurations appear as insurmountable challenge. Such “explosion views” of Kochen-Specker type configurations of observ-
ables can be imagined in the following way. LetN be the number of contexts, or “blocks,” or inter-rotated triples of observables
occurring in the Kochen-Specker proof. First, a singlet state of a “large” numberN of three-state particles has to be realized.
N = 118 in the original Kochen-Specker argument [16], andN = 40 in Peres’ [17, 18] proof. Any such state should be invariant
with respect to unitary transformationsu(nN) =

⊗N
i=1ui(n) composed of identical unitary transformationsui(n) in n dimensions.

Then, every one of theN particle would be measured along theN contexts or blocks, one particle per context, respectively. All
steps, in particular the construction and formation ofn-partite singlet states by group theoretic methods, as well as the interfer-
ometric implementation of these states and of all observables in the many different contexts required by the Kochen-Specker
proof, are constructive and computationally tractable. Yet, the configurations would require an astronomical number (of the
order of 380in the Peres’ case of the proof) of beam splitters. Thus, a physical realization of the full context structure of proper-
ties appearing in an “explosion view” of a Kochen-Specker type proof is remains aGedankenexperimentat the moment. Even
weaker forms of nonclassicality such as structures with a nonseparating set of states—theΓ3 in Kochen and Specker’s original
work [16] would requireN = 16 (corresponding to sixteen particles) and would still be too complex to realize.
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FIG. 7: Measurement setup of an interferometric analogue of a measurement of the three-particle operatorO123 in Eq. (48).

However, interferometric analogues of two- and three-particle configurations are realizable with today’s techniques. Such
configurations have been explicitly enumerated in this article.

It may also be worthwhile to search not only for purely optical implementations of the necessary elementary interferometric
cells realizing two-dimensional unitary transformations. Solid state elements and purely electronic devices may be efficient
models of multiport interferometric analogues of multipartite entangled states.
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