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.  INTRODUCTION

Suppose someone claims that the chances of rain in Vienna and Budapest are 0.1 in each one of the cities alone, and the
probability of rainfall in both cities is 0.99. Would such a proposition appear reasonable? Certainly not, for even intuitively
it does not make much sense to claim that it rains almost never in one of the cities, yet almost always in both of them. T
worrying question remains: which numbers could be considered reasonable and consistent? Surely, the joint probability sho
not exceed any single probability. This certainly appears to be a necessary condition, but is it a sufficient one? In the middle
the 19th century George Boole, in response to such queries, formulated a theory of “conditions of possible experience” [1,
which dealt with this problem. Boole’s requirements on the (joint) probabilities of logically connected events are expressed |
certain equations or inequalities relating those (joint) probabilities.

Since Bell’s investigations [3-5] into bounds on classical probabilities, similar inequalities for a particular physical setup hav
been discussed in great number and detail. In what follows, the classical bounds are referred to as “Bell-type inequalitie
Whereas these bounds are interesting if one wants to inspect the violations of classical probabilities by quantum probabiliti
the validity of quantum probabilities and their experimental verification is a completely different issue. Here we shall presel
detailed numerical studies on the bounds of quantum probabilities which, in analogy to the classical bounds, are experiment:
testable.

A. Correlation Polytopes

In order to establish bounds on quantum probabilities, let us recall that Pitowsky has given a geometrical interpretation
the bounds of classical probabilities in terms of correlation polytopes [6—10] [see also Froissart [11] and Tsirelson (also spell
Cirel'son) [12, 13]].

Consider an arbitrary number of classical eventsy, . .., a,. Take some (or all of) their probabilities and some (or all of) the
joint probabilitiesps, pz, . . ., Pn, P12, . . - and identify them with the components of a vego (p1, P2, - .-, Pn, P12, ..) formed
in Euclidean space. Since the probabilitigsi = 1,...,n are assumed to be independent, every single one of their extreme
cases (1 is feasible. The combined valuesmf, py, ..., pn Of the extreme casgs = 0,1, together with the joined probabilities
pi.j = PiPj can also be interpreted as rows of a truth table; wjthérresponding tofals€’ and “true,” respectively. Moreover,
any such entry corresponds tdveo-valued measur@lso calledvaluation, 0-1-measurer dispersionless measyre

In geometrical terms, any classical probability distribution is representable by some convex sum over all two-valued measu
characterized by the row entries of the truth tables. That is, it corresponds to some point on the face of the classical correlat
polytopeC = conv(K) which is defined by the set of all points whose convex sum extends over all vectors associated with rov

entries in the truth table. More precisely, consider the convex hull(¢ons {zizil)\ixi ‘ A >0, Zizil)\i = 1} of the set

K={x1,Xo,...,.Xon} = {(t1,t2,...,tn,buty,...) | i € {0,1}, i=1,...,n}.
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Here, the termsty, ... stand for arbitrary products associated with the joint propositions which are considered. Exactly wha
terms are considered here depends on the particular physical configuration.

By the Minkoswki-Weyl representation theorem [14, p.29], every convex polytope has a dual (equivalent) description: (i
either as the convex hull of its extreme points; i.e., vertices; (ii) or as the intersection of a finite number of half-spaces, each c
given by a linear inequality. The linear inequalities, which are obtained from th€ s&vertices by solving the so calldull
problemcoincide with Boole’s “conditions of possible experience.”

For particular physical setups, the inequalities can be identified with Bell-type inequalities which have to be satisfied by &
classical probability distributions. These conditions are demarcation criteria; i.e., they are complete and maximal in the ser
that no other system of inequality exist which characterizes the correlation polytopes completely and exhaustively (That is, t
bounds on probabilities cannot be enlarged and improved). Generalizations to the joint distributions of more than two particl
are straightforward. Correlation polytopes have provided a systematic, constructive way of finding the entire set of Bell-tyy
inequalities associated with any particular physical configuration [15, 16], although from a computational complexity point @
view [17], the problem remains intractable [9].

B. Quantum Probabilities

Just as the Bell-type inequalities represent bounds on the classical probabilities or expectation values, there exist bound:
guantum probabilities. In what follows we shall concentrate on these quantum plausibility criteria, in particular on the bounc
characterizing the demarcation line for quantum probabilities.

Although being less restrictive than the classical probabilities, quantum probabilities do not violate the Bell-type inequalitie
maximally [18-20]. Tsirelson [12, 13, 21] as well as Pitowsky [22] have investigated the analytic aspect of bounds on quantu
correlations. Analytic bounds can also be obtaimedthe minmax principle[23, §90], stating that the the bound (or norm)
of a self-adjoint operator is equal to the maximum of the absolute values of its eigenvalues. The eigenvectors corresponc
pure states associated with these eigenvalues. Thus, the minmax principle is for the quantum correlation functions what
Minkoswki-Weyl representation theorem is for the classical correlations. Werner and Wolf [24], as well as Cabello [25], hav
considered maximal violations of correlation inequalities, and have also enumerated quantum states associated with extre
points of the convex set of quantum correlation functions.

The maximal violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality involving expectation values of binary ob-
servables is related to Grothendieck’s constant [26]. But the demarcation criteria for quantum probabilities are still far le:
understood than their classical counterparts. In a broader context, Cabello has described a violation of the CHSH inequa
beyond the quantum mechanical (Tsirelson’s) bound by applying selection schemes to particles in a GHZ-state [27, 28], yet h
we only deal with the usual quantum probabilities of events which are not subject to selection procedures.

To be more precise, consider the set of all single particle probabijtiesr[W(E @ T)] and tfW(I® F)], as well as the two
particle joint probabilities)j = trW(E; @ Fj)], where somé;, F; are projection operators on a Hilbert sp&teandW is some
state orH ® H. Again, generalizations to the joint distributions of more than two particles are straightforward. An analogue tc
the classical correlation polytofizis the set of all quantum probabilities

Q={(a1,G2;---, 0, Oxy:---) | G =trW(E @] or rW(I®F)], gij = tr(W(Ei @ Fj)], 0
EE =E, FiFj=F, W1L=W7 tr(W) =1, (uW|u) >0, i, ]j :1,...7n}.

The vertices of classical correlation polytogi2soincide with points o, if Ej,Fj € {diag(0,...,0),I =diag(1,...,1)}, where
diag(a,b,...) stands for the diagonal matrix with diagonal entréeb, ...; in these case®V may be arbitrary. A proof of the
convexity ofQ can be found in [22]. Notice, however, that geometrical objects derived from expectation values need not be, ar
in fact are not convex, as an example below shows.

One could obtain an intuitive picture ¥ by imagining it as an object (in high dimensions) created from “soap surfaces”
which is suspended on the edge<tpfand which is blown up with air: the original polytope faces which are hyperplanes get
“bulged” or “curved out” such that, instead of a single plane per face, a continuity of tangent hyperplanes are necessary
characterize it [21].

II. NUMERICAL STUDIES

In what follows, we shall first consider the parameterization of projections and states. The numerically calculated expectati
values obey the Tsirelson bound, exceeding the values for the classical Clauser-Horne-Shimony-Holt (CHSH) inequality. The
we shall deal with the Clauser-Horne (CH) inequality and a higher dimensional example taken from [15] in more detalil, followe
by an attempt to depict the convex bo@yitself.



FIG. 1. Measurements of spin components corresponding to the projeEtianslF;.

A. Parameterization

Consider a two spin-1/2 particle configuration, in which the two particles move in opposite directions algraxteeand
the spin components are measured indkeplane, as depicted in Figure 1. In such a case, the single-particle spin observables
along® correspond to the projectios andFy; i.e., Ej, Fj = E(6;),F(8;) with

E(e):F(G):%(H—kn(G)-G)_f e

~1/1+4cos® sind
5 ( ) @

wherea is the vector composed from the Pauli spin matrices.

Any state represented by the operaférmust be (i) self-adjoinW/™ = W, (ii) of trace class W) = 1, and (iii) positive
semidefinite(u/W|u) > 0 (in another notationy"Wu> 0) for all vectorsu € H @ H. For the state to be pure, it must be a
projectorW? = W, or equivalently, ttW?) = 1.

In order to be able to parameteri?é, we recall (e.g., [23§72]) that a necessary and sufficient condition for positiveness

is the representation as the square of some self-adpine., W = B2. In n dimensionsB can be parameterized ny real
independent parameters. Finally,can be normalized by /tr(W). Thus, for a two particle problem associated witk 4,

by bs+ibg bi1+ibiz bis+ibse

_ 1 bs —ibg b b7 +ibg bi3+ibia

o 4 b2 42 16 12 bi1—ibiy by —ibg b3 bg +ib1g
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for by, by,...,big € R.

The probability for finding the left particle in the spin-up state along the afglis given by q = tr{W[E(6) ® I]}.
g; = r{W[I® F(6;)]} is the probability for finding the particle on the right hand side ald@jgin the spin up state.
ai; = tr{W[E(6;) ® F(8j)]} denotes the joint probability for finding the left as well as the right particle in the spin-up state
along6; and®j, respectively. The associated expectation values are giv&r{doyB) = tr{W[oq ® ag]}, whereos = n(a) - g,
andn(a), n(P) are unit vectors pointing in the directions of spin measuremertdf3, respectively.

B. Violations of Bell-type inequalities

We can utilize the parameterizations of measurement operg{ofs from Eq. (2) and of state$/ from Eq. (3) to find
violations of Bell-type inequalities. The general procedure is to choose a particular set of projection operators and randon
generate arbitrary stat®8. Having created a certain number of states, another set of projection operators can be chosen
measurement operators. A proper parameterization of the two sets representing samples of measurement operators and :
yields the basis for expressing the maximal violations which reflect the quantum hull. The choice of projection operatol
depending continuously on one parameter corresponds to a smooth variation of the measurement directions.

Restriction of the different measurement directions tatkeplane perpendicular to the propagation direction of the particles
(cf. Fig. 1) permits a two-dimensional visualization of the quantum hull. An extension to more than one parameter associat
with other measurement directions is straightforwardly implementable. On inspection we find that, despite the shortcomings
the visualization, no new insights can be gained with respect to the model calculations presented here. Thus, we adhere to t
elementary configurations of measurements inktteeplane described above.



1. CHSH case

In a first step, we shall concentrate on the expectation values rather than on probabilities. Consider the CHSH-opera
OcHsH(a,B,Y,8) = 040y + 0p0y + 005 — 0 T giving raise to a sum of expectation valugdtr OcrsH(a, B, Y, 8)] = E(a,y) +
E(B,y) + E(B,0) — E(a,d). Here,a, B andy, 6 denote coplanar measurement directions on the left and right hand side of a
physical setup according to Figure 1, with= 61, B = 62 andy = 84, 6 = 05, respectively.

The quantum expectation values obey the Tsirelson bound|@djsn(a, B, Y, d)|| < 2v/2 for the configuration = 0, B = 26,
y=10, 6=230 along 0< 8 <1t (The classical CHSH-bound from above is 2.) The particular parameterization include the
well-known measurement directions for obtaining a maximal violation for the singlet stite at/4 and 31/4. An analytic
expression of the quantum hull for the full range6bfs obtained by solving the minmax problem [280] for the CHSH
operator; i.e.,

HcrisH(0) = +1/2[3— cog48)] < 2v/2. 4

The quantum hulHcHsh, along with the singlet state curve, is depicted in Figure 2.
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FIG. 2: The quantum huMcysy as a function of a single parameger

2. CHcase

Next we study the quantum hull corresponding to the CH inequalltyl Pcy <0, withPey = p13+ P14+ P2a— P23— P1— Pa-
As this inequality is essentially equivalent to the CHSH inequality discussed above if the expectation values are expressed
probabilities [32], we could in principle produce the same plot as in Figure 2 by the same choice of parameterization and
relabeling of the axes.

Again, the minmax principle yields the analytic expression for the hull; i.e.,

Hon(8) = 5 [i 3-cos26) °§S<29) _ 1] . ®)

Thus, in terms of probabilities, the upper bound admitted by quantum mechaHigs(8) < (v/2—1)/2, corresponding to the
Tsirelson bound of 22 in the CHSH case.

To explore the quantum hull also for general configurations where the singlet state does not violate the inequality maximal
we restrict the projection operatoi, F; by E1(0), E2(8) = F1(8), F»(28) to variations of one parametér In Figure 3 the
guantum hullHcy of Pcy obtained by substituting throughq is plotted along 6< 8 < 1. We can observe a maximum at
0 = 11/2 that does not coincide with the maximum value reached by the singlet state.
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FIG. 3: Quantum hulHcy as a function of a single parameter
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FIG. 4: Quantum hulHg as a function of a single parameter

3. Two particle three observable case

As a third example, consider a quantum hull associated with the configuration involving two spin 1/2 particles and thre
measurement directions. One of the 684 Bell-type inequalities enumerated in {348 P15+ P16+ P24+ P26+ P34+ P3s—
P3s < +p1+ p2+ pa+ ps. The associated quantum operator is given by

O=-EI-BElI-IcFk -IeoRh-E R +E10R+E1 @R+ ©6)
EoR+EoR+EB9R+E30FR -E3®Fs.
Taking t{W O) with a symmetric choice of measurement directi&as= F, = E(0), E; = F, = E(8), E3 = F3s = E(208) ensures
a violation of the inequality for the singlet statefat 211/3 [15]. The associated quantum hHl is depicted in Figure 4.

The three examples depicted in Figure 2-4 provide tests of the validity of quantum mechanics in the usual Bell-type inequali
setup. They clearly exhibit dependence of the quantum hull on the measurement directions; i.e., a particular set of project
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operators determines the maximal possible violation of a Bell-type inequality, although the choice of a state is only restricted |
fundamental quantum mechanical requirements.

C. Quantum Correlation Polytope

So far, we have considered certain quantum hulls associated with the faces of classical correlation polytopes, as well as bot
on expectation values, but we have not yet depicted the convex®@dadglf. In what follows, we shall get a view (albeit, due to
the complexity of the contributions 1@, a not very sharp one) of the quantum correlation polytope for the two particle and two
measurement directions per particle configuration. Note that classically, the corresponding CH polytope, deG(2¢didy
bound by the 2 vertices(0,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0),...(1,1,1,1,1,1,1,1). These vertices are also elements of the
quantum bodyQ(2) consisting of vector$s, 02, gz, 0a, 013, 023, d14, O24) according to Eq. (1).

Consider a two-dimensional cut through the quantum bQd®) by restrictinggs = 02 = gz = a and 13 = 14 = Qoa =
b, a,b const.; i. e., by taking vectors of the forfa,a,a,qs,b,q23,b,,b). These restrictions allow for a set of stat®¥sand
corresponding projection operatdes Fj [33] such that six out of eight quantum probabilities have a definite value and the
remaining probabilitieg), and g3 can vary within the quantum bounds. Numerically, after generating arbitrary states and
arbitrary projection operators, a postselection is required for conformity to these restrictions. To find sufficiently many vector
we specify the constangsb only up to a given tolerance valige More precisely, only states and projection operators yielding
01 = g2 =gz = at€andgiz = g4 = 24 = b+ € for somea, c are chosen.

We have sea=1/2, b= 3/8, and the tolerance o= +0.015. Note that this choice implicates the existence of vectors in
Q(2) which are outsid€(2), since the CH-inequality is violated faps < 1/8 andgs = 1/2.

Figure 5 depicts a projection of the quantum b@{®) on the plane spanned loy andgys. Since the inequalities constituting
the boundary lines have to be modified to accountfdahe size ofC(2) is enlarged to the dotted lines instead of the dashed
lines indicating classical inequalities. Due to the non-uniform distribution of generated states some regions are only spars
populated. Nevertheless one can observe clearly points outside the classical po(#&ofWe stress the importance of this first
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FIG. 5: Cut through the quantum bo@yfora=1/2,b=3/8,& = £0.015.

glance ormQ(2), since it constitutes the quantum analogy of the classical correlation pol@t@pewhich has been the basis of
numerous experiments.

Ill. CONCLUSION

Starting from the correlation polytopes which represent the restrictions of classical probabilities, we have used a gene
parameterization of quantum states and measurement operators to explore the quantum analogue. On the basis of the
damental Bell-type inequalities, the quantum bounds have been visualized for specific configurations. We have presente
two-dimensional cut through an eight-dimensional quantum body clearly exhibiting regions of non-classical probability value:



The quantum bounds predicted in this article suggest experimental tests in at least two possible forms. First, our calculatic
provide an explicit way to construct quantum states, which, for the measurement setups associated with the orientation of St¢
Gerlach apparatus or polarizing beam splitters, yelikimalviolations of the classical bounds by quantized systems. This is
an extension of Tsirelson’s original findings [12, 13], as well as of the analytical bounds derived from the minmax principle
[23, §90] by the computation of the maximum of the absolute values of the proper values of the associated operators. Based
the parametrization introduced above, Cabello has proposed such measurements [25] with a suitable set of maximally entan
states. These bounds of quantum correlations have been experimentally tested and verified bgtBd\ji2@).

Apart from the concrete experiments mentioned above, there is a remote possibility of violations of the quantum bounc
At the moment, these speculations of stronger-than-quantum correlations [18—20] appear hypothetical at best, since ther
no theoretical indication that they may be realized physically (besides postselection schemes). The situation in this resp
is clearly different from the classical bounds in Bell-type inequalities. Although Bell’s inequality does not compare classica
probability theory with a specific theory either, an experimentalist can utilize these predictions because of the stronger-the
classical correlations of quantum mechanics. For instance, in the CHSH case, the experimenter chooses quantum mecha
setup and preparation procedures such that the quantum mechanical sum of correlations violates this bound most stror
Stated pointedly, Bell's inequality tells the experimentalist what to measure, but there is no empirical evidence supporting a
experiment to trespass and falsify the quantum bounds. Nevertheless, it is interesting to know the quantum predictions exac
not only from a principal or hypothetical point of view. Empirical implementations such as the Bev&lo[29] experiment
test the fine structure of the quantum limits beyond the Tsirelson bound.
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