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Abstract

Within Bishop’s constructive mathematics (BISH) we prove that if T is a one-one
sequentially continuous linear mapping of a separable F-space E onto an F-space F ,
then T−1 is sequentially continuous.

1 Introduction

A constructive version of Banach’s inverse mapping theorem was proved in [10] for mappings
between Banach spaces. In this note we show that the result can be extended to the context
of F-spaces. The main difficulty in proving this result constructively is that we cannot apply
the open mapping theorem in the form used by the classical argument, because it has no
known constructive proof. For details on the constructive versions of this theorem the
reader is referred to [7, 4, 5, 8] and Chapter 2 of [6], and for constructive mathematics in
general to [1, 2, 12]. The technique the constructive proof is based on is proving that a
certain property P holds by showing that there are two alternatives, P and Q, and that Q
implies the limited principle of omniscience, (LPO)

If an is a binary sequence, then either an = 0 for all n, or there exists n such
that an = 1.

Then proving the classical form of the open mapping theorem using intuitionistic logic with
LPO, we derive a contradiction, so we can rule out alternative Q. Hence P holds.

We introduce some definitions which will be used in the rest of the paper. A metric d on
a vector space E is called invariant if

d(x + z, y + z) = d(x, y)

for all x, y, z in E. A topological vector space E is an F-space if its topology is induced
by an invariant metric d with respect to which E is complete.
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In a metric space (X, d) we denote by B(x, r) the closed ball of radius r centered in x. For
a subset S of X we denote by −S the metric complement of S, that is

−S = {x ∈ X : ∃r > 0∀s ∈ S(d(x, s) > r)}.

The inequality 6= on X is defined by x 6= y := (d(x, y) > 0).

2 Linear maps and F-spaces

The following propositions are generalizations of the results on Banach spaces in [3] to
F-spaces.

Proposition 2.1 Let T be a linear mapping between F-spaces E and F , and let x be a
point of E such that Tx 6= 0. Then x 6= y for all y ∈ Ker(T ).

Proof. Let y ∈ Ker(T ), and construct an increasing binary sequence {λn} such that

λn = 0 ⇒ d(x, y) <
1

(n + 1)2

λn = 1− λn−1 ⇒ d(x, y) > 0.

Then we construct a sequence {zn} in E and sequence {tn} in R as follows. If λn = 0, set
zn := 0 and tn := 0; if λn = 1− λn−1, then set zk := n(x− y) and tk := 1/n for all k ≥ n.
We will show that if m ≥ n, then d(zm, zn) < 1/n. For m ≥ n, either λm = 0, or λn = 1,
or λm = 1 and λn = 0. In the first case we have λn = 0 and d(zm, zn) = d(0, 0) = 0. In the
second case λm = 1 and there exists k ≤ n such that d(zm, zn) = d(k(x− y), k(x− y)) = 0.
In the third case we have λk−1 = 0, λk = 1 and zm = k(x− y) for some k with n < k ≤ m.
Hence

d(zm, zn) = d(k(x− y), 0) ≤
k∑

j=1

d(j(x− y), (j − 1)(x− y))

= kd(x− y, 0) = kd(x, y) ≤ k

k2
=

1

k
<

1

n
.

It follows that {zn} is a Cauchy sequence in E, hence it converges to an element z of E.
Clearly, {tn} is a Cauchy sequence in R and converges to a limit t. Since d(Tx, 0) > 0,
either d(tTz, 0) < d(Tx, 0) or d(tTz, 0) > 0. In the first case, if λn = 1 − λn−1, then
z = n(x − y) and tn = 1/n; hence d(tTz, 0) = d(Tx, 0) < d(Tx, 0) – a contradiction. It
follows that d(tTz, 0) > 0. Since the scalar multiplication is continuous, we have t > 0.
Therefore there exists n with λn = 1, and so x 6= y. �

A mapping f between metric spaces is said to be strongly extensional if f(x) 6= f(y)
implies x 6= y.

The following is an immediate corollary of the previous proposition.

Corollary 2.2 A linear mapping between F-spaces is strongly extensional.
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Proposition 2.3 A linear mapping T of an F-space E onto an F-space F is well-behaved,
that is Tx 6= 0 whenever x 6= y for all y ∈ Ker(T ).

Proof. Let x be in E such that x 6= y for all y in Ker(T ), and construct an increasing
binary sequence {λn} such that

λn = 0 ⇒ d(Tx, 0) <
1

(n + 1)2

λn = 1− λn−1 ⇒ d(Tx, 0) > 0.

Then we construct inductively a sequence {zn} in F and a sequence {tn} in R as follows.
If λn = 0, set zn := 0 and tn := 0; if λn = 1 − λn−1, then set zk := nTx and tk := 1/n
for all k ≥ n. Then {zn} and {tn} are Cauchy sequences in F and R, hence converge to z
and t, respectively. Let y ∈ E be such that z = Ty. We will show that x − ty ∈ Ker(T ).
To this end assume that T (x − ty) 6= 0. If there exists n such that λn = 1 − λn−1, then
Ty = z = nTx and t = 1/n, so T (x − ty) = 0 – a contradiction. Therefore λn = 0 for
all n and so t = 0, z = 0 and Tx = T (x − ty) = 0. This new contradiction entails that
x− ty ∈ Ker(T ). Hence x 6= x− ty or ty 6= 0, which means that t 6= 0, and so there exists
n with λn = 1. �

The notion of a located set plays an important role in constructive mathematics. If classi-
cally it is trivial to compute the distance from any point of the space to a subset, in BISH
the infimum in question may not be always computable. A subset S of a metric space X
is said to be located if for any x ∈ X we can compute the distance

d(x, S) = inf{d(x, y) : y ∈ S}.

Proposition 2.4 Let M be a closed located subspace of an F-space E. Then E/M is an
F-space with the invariant metric

dE/M(x, y) := d(x− y, M).

Proof. It is straightforward to see that dE/M is an invariant metric with the equality =E/M

on E/M defined by
x =E/M y ⇔ dE/M(x, y) = 0,

and that E/M is a linear space. It remains to show that E/M is complete with respect to
dE/M . Let {xn} be a Cauchy sequence in E/M . Then taking an increasing sequence {kn}
such that dE/M(xm, xnk

) < 2−k for all m ≥ nk and k, construct inductively a sequence {yk}
in M such that y1 = 0, and d(xnk

−xnk+1
, yk+1−yk) < 2−k or d(xnk

+yk, xnk+1
+yk+1) < 2−k

for each k. Setting zk := xnk
+ yk, it is easy to see that {zk} is a Cauchy sequnce with

respect to the metric d, and hence it converges to a limit z in E. Therefore noting that
dE/M(xnk

, zk) = 0 and dE/M(zk, z) < 2−k+1, we have for each m ≥ nk,

dE/M(xm, z) ≤ dE/M(xm, xnk
) + dE/M(xnk

, zk) + dE/M(zk, z)

< 2−k + 0 + 2−k+1 = 3 · 2−k,

so {xn} converges to z with respect to the metric dE/M . �
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3 The main results

Lemma 3.1 Let S be a separable subset of a metric space (X, d), and let C be a closed
located subset of X. If LPO holds, then either S ⊂ C or S ∩ −C 6= ∅.

Proof. Let {sn} be a dense sequence in S. By LPO, for each n, either d(sn, C) = 0 or
d(sn, C) > 0. Hence another application of LPO shows that either d(sn, C) = 0 for all n,
or there exists n such that d(sn, C) > 0. In the former case S = {sn} ⊂ C; in the latter
case S ∩ −C 6= ∅. �

Using LPO we can prove the following version of Baire’s category theorem.

Lemma 3.2 Assuming LPO, if {Cn} is a sequence of closed located subsets of a complete
separable metric space X with X =

⋃∞
n=1 Cn, then Cn has nonvoid interior for some n.

Proof. Note that any ball B in X is separable, and hence either B ⊆ Cn or B ∩ −Cn 6= ∅
by Lemma 3.1. Let x0 ∈ E and r0 := 1. Construct an increasing binary sequence {λn}
with λ0 = 0, a sequence {xn} in X, and a sequence {rn} of real numbers, such that for
each n ≥ 1,

1. 0 < rn < rn−1/2,

2. λn = 0 =⇒ B(xn, rn) ⊆ B(xn−1, rn−1) ∩ −Cn,

3. λn = 1 =⇒ xn = xn−1 and Ck has nonvoid interior for some k ≤ n.

We proceed by induction. Assume we have constructed λn, xn, and rn. If λn = 1, set

(*) λn+1 := 1, xn+1 := xn, and rn+1 := rn/2.

Otherwise, λn = 0 and either B(xn, rn) ⊆ Cn+1 or B(xn, rn)∩−Cn+1 6= ∅. In the first case,
define λn+1, xn+1, and rn+1 by (*). In the second case, set λn+1 := 0, and choose xn+1 in
−Cn+1 and rn+1 with 0 < rn+1 < rn/2, such that B(xn+1, rn+1) ⊆ B(xn, rn)∩−Cn+1. This
completes the induction.

If m > n ≥ 0, we have

d(xm, xn) ≤
m∑

i=n+1

d(xi−1, xi) ≤
m∑

i=n+1

ri−1 < rn.

Hence {xn} is a Cauchy sequence in X, and so converges to a limit x in X such that
x ∈ B(xn, rn) for all n. Choose N such that x ∈ CN . Then if λN = 0, we have x ∈
B(xN , rN) ⊆ −CN , a contradiction. Hence λN = 1, and therefore Ck has nonvoid interior
for some k ≤ N . �

We will only sketch the proof of the following lemma which in the presence of LPO is just
the classical argument [11].
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Lemma 3.3 Assuming LPO, if T is a sequentially continuous linear mapping of a separable
F-space E onto an F-space F , then T is open.

Proof. Let d be the invariant metric on E and let V be a neighbourhood of 0 in E. Define

Vn := {x : d(x, 0) < 2−nr},

where r > 0 is chosen such that V0 ⊂ V . We will show that there exists a neighbourhood
W of 0 in F such that

W ⊂ T (V1) ⊂ T (V ).

Note that V2 is separable, and by sequential continuity of T , we have T (V2) separable. Also
T (V2) is located in F by [[10], Lemma 2]. Hence writing F =

⋃
k≥1 kT (V2) we can use

Lemma 3.2 to see that T (V2) has nonempty interior; thus T (V1) has nonempty interior.

Fix now y1 ∈ T (V1). For n ≥ 1 assume yn has been constructed in T (Vn). Using a similar
argument as above, we can show that T (Vn+1) has nonempty interior, so

{yn − z : z ∈ T (Vn+1)} ∩ T (Vn) 6= ∅.

Hence there exists xn ∈ Vn such that

Txn ∈ yn + T (Vn+1).

Set yn+1 := yn − Txn; then yn+1 ∈ T (Vn+1). Inductively, we construct a sequence {xn}
such that d(xn, 0) < 2−nr for each n ≥ 1, and the sums x1 + x2 + . . . + xn form a Cauchy
sequence which converges to some x ∈ E, with d(x, 0) < r. Thus x ∈ V , and by continuity
of T , we show that y1 = Tx ∈ T (V ). �

Now we can prove the following version of Banach’s inverse mapping theorem.

Theorem 3.4 Let T be a one-one sequentially continuous linear mapping of a separable
F-space E onto an F-space F . Then T−1 is sequentially continuous.

Proof. Let {Txn} be a sequence in F converging to 0, and note that T−1 is strongly
extensional by Corollary 2.2. Then by [9, Lemma 2], for each ε > 0, either d(xn, 0) >
ε/2 for infinitely many n or d(xn, 0) < ε for all sufficiently large n. In the former case,
taking a subsequence, we may assume that d(xn, 0) > ε/2 for all n. Therefore there
exists a neighbourhood V of 0 such that xn ∈∼ V , and so Txn ∈∼ T (V ) by the strong
extensionality of T−1. Moreover LPO holds by [10, Lemma 1]. Hence by Lemma 3.3, there
exists a neighbourhood W of 0 with W ⊆ T (V ), a contradiction. Thus d(xn, 0) < ε for all
sufficiently large n. Since ε > 0 is arbitrary, it follows that T−1 is sequentially continuous
and this concludes the proof. �

A linear mapping T between F–spaces is sequentially open if, whenever Txn → 0, there
exists a sequence {yn} in Ker(T ) such that xn + yn → 0.

We omit the proofs of the following corollaries. For details the reader is referred to [10].

Corollary 3.5 Let T be a sequentially continuous linear mapping of a separable F-space
E onto an F-space F such that Ker(T ) is located. Then T is sequentially open.
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Corollary 3.6 Let T be a linear mapping between F-spaces such that graph(T ) is closed
and separable. Then T is sequentially continuous.
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