
CDMTCS
Research
Report
Series

A Uniform Method for
Testing Computational
Complementarity

E. Calude, B. Mills, L. Mills

Massey University at Albany, Auckland,
New Zealand

CDMTCS-221
June 2003. Revised December 2003

Centre for Discrete Mathematics and
Theoretical Computer Science



A Uniform Approach to Test Computational

Complementarity

Elena Calude, Bruce Mills, and Lan Mills
Institute for Information and Mathematical Sciences

Massey University at Albany,
Private Bag 102904, NSMC, Auckland, New Zealand.

Email: {E.Calude,B.I.Mills,L.Mills}@massey.ac.nz

December 22, 2003

Abstract

Studies of computational complementarity properties in finite state interactive
automata may shed light on the nature of both quantum and classical computation.
But, complementarity is difficult to test even for small-size automata. This paper
introduces the concept of an observation graph of an automaton which is used as
the main tool for the design of an algorithm which tests, in a uniform manner, two
types of complementarity properties. Implementations have been run on a standard
desktop computer examining all 5-state binary automata.

1 Two Computational Complementarity Principles

Building on Moore’s “Gedanken” experiments, in [15, 14] complementarity was modeled
by means of finite automata. Two new computational complementarity principles have
been introduced and studied in [3, 6, 5, 4, 2] using Moore’s automata.

To understand Moore’s approach it is enough, at this stage, to say that the machines
we are going to consider are finite in the sense that they have a finite number of states, a
finite number of input symbols, and a finite number of output symbols. Such a machine
has a strictly deterministic behaviour: the current state of the machine depends only on
its previous state and previous input; the current output depends only on the present
state. A (simple) Moore experiment can be described as follows: a copy of the machine
will be experimentally observed, i.e. the experimenter will input a finite sequence of
input symbols to the machine and will observe the sequence of output symbols. The
correspondence between input and output symbols depends on the particular chosen
machine and on its initial state. The experimenter will study the sequences of input
and output symbols and will try to conclude that “the machine being experimented on
was in state q at the beginning of the experiment”.1 Moore’s experiments have been
studied from a mathematical point of view by various researchers, notably by Ginsburg
[9], Chaitin [7], Conway [8], and Brauer [1]. A comprehensive survey on testing finite
state machines is presented in [11].

In what follows we are going to use two non-equivalent concepts of computational
complementarity based upon modeling finite automata (see [3]). Informally, they can

1This is often referred to as a state identification experiment.



be expressed as follows. Consider the class of all elements of reality2 and consider the
following properties.

A Any two distinct elements of reality can be mutually distinguished by a suitably
chosen measurement procedure.

B For any element of reality, there exists a measurement which distinguishes between
this element and all the others. That is, a distinction between any one of them and
all the others is operational.

C There exists a measurement which distinguishes between any two elements of re-
ality. That is, a single pre-defined experiment exists to distinguish between an
arbitrary pair of elements of reality. (Classical case.)

Complementarity corresponds to the following cases:

CI Property A but not property B (and therefore not C): The elements of reality can
be mutually distinguished by experiments, but one of these elements cannot be
distinguished from all the other ones by any single experiment.

CII Property B but not property C: Any element of reality can be distinguished from all
the other ones by a single experiment, but there does not exist a single experiment
which distinguishes between any pair of distinct elements.

2 Moore Automata

A finite deterministic automaton consists of a finite set of states and a set of transitions
from state to state that occur on input symbols chosen from some fixed alphabet. For
each symbol there is exactly one transition out of each state, possible back to the state
itself. So, formally, a finite automaton consists of a finite set Q of states, an input
alphabet Σ, and a transition function δ : Q× Σ → Q. Sometimes a fixed state, say 1, is
considered to be the initial state, and a subset F of Q denotes the final states. A Moore
automaton is a finite deterministic automaton having an output function f : Q → O,
where O is a finite set of output symbols. At each time the automaton is in a given
state q and is continuously emitting the output f(q). The automaton remains in state q
until it receives an input signal σ, when it assumes the state δ(q, σ) and starts emitting
f(δ(q, σ)). In this paper we are going to concentrate on the case of automata on a
binary alphabet Σ = {0, 1} having O = Σ. So, from now on, a Moore automaton will
be just a triple M = (Q, δ, f). Let Σ∗ be the set of all finite sequences (words) over the
alphabet Σ, including the empty word ε (the neutral element in the semigroup of string
concatenation); by Σ+ we denote Σ∗ \ {ε}. The transition function δ can be extended
to a function δ : Q × Σ∗ → Q, as follows: δ(q, ε) = q, δ(q, σw) = δ(δ(q, σ), w),∀q ∈
Q, σ ∈ Σ, w ∈ Σ∗. The output produced by an experiment started in state q with input
sequence w ∈ Σ∗ is described by E(q, w), where E is the function E : Q × Σ∗ −→ Σ∗

defined as follows: E(q, ε) = f(q), E(q, σw) = f(q)E(δ(q, σ), w), q ∈ Q, σ ∈ Σ, w ∈ Σ∗,
and f : Q −→ O(= Σ) is the output function. Consider, for example, Moore’s automaton,
in which Q = {1, 2, 3, 4}, Σ = {0, 1}. The transition is given by the following tables

2The terms “elements of reality”, “properties”, and “observables” will be used as synonyms.

2



q σ δ(q, σ)
1 0 4
1 1 3
2 0 1
2 1 3

q σ δ(q, σ)
3 0 4
3 1 4
4 0 2
4 1 2

Table 1.

and the output function is defined by f(1) = f(2) = f(3) = 0, f(4) = 1. The following
graphical representation will be consistently used in what follows:

t t

t t

1/0 2/0

3/04/1

0 1

10,1

0

6

�
�

�
�

�
�

�
�

�
�
��

�

6

�
@

@
@

@
@

@
@

@
@

@
@R

0,1

Figure 1.

The experiment starting in state 1 with input sequence 000100010 leads to the output
0100010001. Indeed, E(1, 000100010) = f(1)f(4)f(2)f(1)f(3)f(4)f(2)f(1)f(3)f(4) =
0100010001.

From a mathematical point of view properties A, B, C can be expressed as follows.
Let M = (Q, δ, f) be a Moore automaton. Following Moore [13] we shall say that a
state q is “indistinguishable” from a state q′ (with respect to M) if every experiment
performed on M starting in state q produces the same outcome as it would starting in
state q′. Formally, E(q, x) = E(q′, x), for all words x ∈ Σ+. A pair of states will be said
to be “distinguishable” if they are not “indistinguishable”.

• The automaton M has property A if every pair of different states of M are distin-
guishable, i.e. for every distinct states q, q′ there exists a word w ∈ Σ+ (depending
upon q, q′) such that E(q, w) 6= E(q′, w). This is simply the assertion that the
automaton is minimal.

• The automaton M has property B if every state of M is distinguishable from any
other distinct state, i.e. for every state q there exists a word w ∈ Σ+ (depending
upon q) such that E(q, w) 6= E(q′, w), for every state q′ distinct from q.

• The automaton M has property C if there exists an experiment distinguishing
between each different states of M , i.e. there exists a word w ∈ Σ+ such that
E(q, w) 6= E(q′, w), for every distinct states q, q′.

3



Of course, C implies B, which, in turn, implies A; none of the converse implications
is true, hence we get CI, CII.

We continue with some examples of Moore automata having C, CI, and CII.
First, the automaton in Figure 2 has C as experiment 10 distinguishes between any

pair of distinct states.

t t

t t

U

1/1 2/0

3/14/0

1

00,1

?

�
�

�
�

�
�

�
�

�
��	?

16

-

6

00

1

Figure 2.

Moore’s automaton in Figure 1 has A but non-B, hence CI (cf. [13]). Every pair of
distinct states can be distinguished by an experiment: states 1, 2 by x = 0, states 1, 3
by x = 1, states 1, 4 by x = 0, states 2, 3 by x = 0, states 2, 4 by x = 0, and states
3, 4 by x = 0. However, there is no (unique) experiment capable to distinguish between
every pair of arbitrary distinct states. If the experiment starts with 1, i.e. x = 1u,
then E(1, x) = E(2, x), that is x cannot distinguish between the states 1, 2 as E(1, x) =
E(1, 1u) = f(1)f(δ(1, 1))E(δ(1, 1), u) = f(1)f(3)E(3, u) = 00E(3, u) and E(2, x) =
E(2, 1u) = f(2)f(δ(2, 1))E(δ(2, 1), u) = f(2)f(3)E(3, u) = 00E(3, u). If the experiment
starts with 0, i.e. x = 0v, v ∈ Σ∗, then x cannot distinguish between the states 1, 3
as E(1, x) = E(1, 0v) = f(1)f(δ(1, 0))E(δ(1, 0), v) = f(1)f(4)E(4, v) = 01E(4, v) and
E(3, x) = E(3, 0v) = f(3)f(δ(3, 0))E(δ(3, 0), v) = f(3)f(4)E(4, v) = 01E(4, v).

The automaton in Figure 3 has B but not C, hence CII. Indeed, the following pairs of
states are distinguishable by every experiment: (1, 2), (1, 4), (2, 3), (3, 4). Accordingly,
1 is distinguishable from the other states by w = 0, 2 is distinguishable by w = 1, 3
is distinguishable by w = 0 and 4 is distinguishable by w = 1, so the automaton has
property B. It does not have property C because any experiment w which starts with 1,
i.e. w = 1x, x ∈ Σ∗, does not distinguish between 1 and 3, and any experiment w which
starts with 0, i.e. w = 0y, y ∈ Σ∗, does not distinguish between 2 and 4.

4



t t

t t

U

1/1 2/0

3/14/0

0,1

01

?

�
�

�
�

�
�

�
�

�
��	?

6
0,1

@
@

@
@

@
@

@
@

@
@

@R

0 1

Figure 3.

3 An Algorithm for Testing Simultaneously CI and CII

In this section we briefly review a few facts on partitions and present the algorithm that
is used to test properties A, B and C, which uses partitions defined on sets of states of an
automaton. An elegant algebraic theory for machine decomposition based on the closed
partition lattice of a machine is presented in [10] and efficient algorithms for constructing
the lattice are presented in [12]; here we construct a different partition lattice testing the
properties CI and CII, a different problem.

A partition P of a set Q is a set of non-empty disjoint sets whose union is Q. Partitions
are in an one-to-one onto correspondence with equivalence relations. In particular, we
will use the partition induced by the level sets of a map f : Q → Q, that is, the sets
[q]f = {x : f(x) = f(q)}, q ∈ Q.

Given two partitions P1 and P2 of Q, we say that P1 is no coarser than (or at least
as coarse as) P2, written P1 ≤ P2 if for every p1 ∈ P1, there exists p2 ∈ P2 such that
p1 ⊆ p2. We say that P2 is coarser than P1 if P1 ≤ P2 and P1 6= P2, in symbols P1 < P2.
The term finer means the inverse relation of coarser. When P1 ≤ P2 we say that P1 is a
refinement of P2, or that P2 is a coarsening of P1.

Treating the above refinement relation as a partial order ≤, we see that the greatest
lower bound P1 ∧ P2 is the coarsest partition of Q that is a refinement of both P1 and
P2. This operation, which we will call CCR (the coarsest common refinment), can be
conducted in principle by taking the intersection of all classes in P1 with all classes in
P2, and then throwing out the empty sets.

Let P1 and P2 be two partitions of Q, and ≡1 and ≡2 be the corresponding equiva-
lences. Then the equivalence relation p ≡ q defined by p ≡1 q and p ≡2 q, corresponds
to P1 ∧ P2.

The level sets of the composition f ◦ g are coarser than those of g; if g is invertible
then the level sets are the same. Let f×g : a → (f(a), g(a)). Then, the level set partition
of f × g is the coarsest common refinement of f and g.

For an automaton M , we construct a graph, called an observation graph, which
describes how information about the state of machine changes with observations. Each

vertex R is a record

[
t
P

]
, where the two fields t and P are the configuration of

5



states under the transition function and the partition induced by the output function
respectively. The partition induced by t, Π(t), is given by the following equivalence
relation: i is equivalent to j modulo Π(t) if f(t[i]) = f(t[j]).

An edge

([
t1
P1

]
,

[
t2
P2

])
belongs to the graph exactly when there exists s ∈ {0, 1}

such that t2 = δ(t1, s) and P2 = Π(f ◦ t2) ∧ P1. Since the CCR of two partitions is no
coarser than either it is apparent that along any path through the graph the partitions

may become finer. The function

([
t
P

]
, s

)
→ P , mapping vertices into lattice of

partitions, is monotonic.
If at the start of a path the condition P1 ≤ t1 occurs, then, P2 = Π(δ(t1, s)) ∧ P1 ≤

Π(δ(t1, s)) = Π(t2).

For any path

([
t1
P1

]
. . .

[
tn
Pn

])
in the observation graph, Pn ≤ P1. For any path([

t1
P1

]
. . .

[
tn
Pn

])
in the observation graph if P1 ≤ Π(t1), then Pn = P1. Finally,

suppose that

([
t
P

]
, B

)
is a rooted sub-tree of the observation graph, and P ≤ Π(t).

The partition P is constant throughout the entire tree since each node on the rooted

sub-tree is the end point of a path starting at the root

[
t
P

]
. Consequently, the node[

t
P

]
will be pruned (ignored).

The algorithm for testing properties A, B, and C for an automaton M generates
records that are nodes of an observation graph and checks whether the partitions com-
ponents of the nodes verify the conditions associated with the properties A, B, and C.
The algorithm has the following steps.

Step 1. Initialization of

• a vector Counter recording all non-repeating nodes generated so far

• a trimmed binary tree OG recording the nodes in the observational graph

• a vector TB recording those states for which the condition in property B is cur-
rently verified, and a Boolean variable hasB that is true if M has property B and
false otherwise

• a table TA recording those states for which the condition in property A is currently
verified, and a Boolean variable hasA that is true if M has property A and false
otherwise.

Step 2. Generate and test the first record

• Step 2.1. Generate the first record. The first record, say R, will be the root of
OG. Its two components are given by

– the vector of states (1, 2, . . . , n) and

6



– the partition PR, generated by the output function f ,

so R =

[
(1, 2, . . . , n)

PR

]

• Step 2.2. If M has C stop. Else:

• Step 2.3. Add the record to Counter

• Step 2.4. Update TA and hasA

• Step 2.5. Update TB and hasB

• Step 2.6. Add the record to OG

[Comment: We generate (from left to right) all children of non-pruned nodes. If no
child can be generated, we check the values of hasB and hasA to determine whether the
automaton has B or A, then stop.]

Step 3. While there are children to be generated do

• Step 3.1. Generate the next record obtained from the left/right child, say N =[
tN
PN

]
. Its two components are given by

– tN the vector of states (i1, i2, . . . , in), obtained by applying the transition
function on each element of sequence of states in the parent node with input
letter 0 for the left child and 1 for the right child and

– the partition PN obtained by taking the CCR of the parent’s partition com-
ponent and the partion of states induced by the output function on tN

• Step 3.2. If N is in Counter, then go to Step 3.1. Otherwise, add the current
record to Counter

• Step 3.3. If M has C, stop. Else:

• Step 3.4. Update TA and hasA

• Step 3.5. Update TB and hasB

• Step 3.6. If the record can be pruned, then go to Step 3.1

• Step 3.6. Add the node N to OG and go to Step 3.1

End of while loop.

If TA is false, then return non-A, stop; else, if TB is false, then return CI, stop; else,
retun CII, stop.

End of algorithm.

7



4 The Algorithm in Action

In this section we present some examples illustrating the algorithm presented in the
previous section.

Example 1. Let us run the algorithm on the automaton in Figure 1.

Step 1. Initialize OG to ∅, Counter to the ∅ vector, TA and TB, respectively, the
n×n matrix with all elements 0 and the n-element all 0 vector, and the Boolean variables
hasA and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R =

[
1, 2, 3, 4

{1, 2, 3}, {4}

]

Step 2.2 The record R does not satisfy C as PR 6= {1}, {2}, {3}, {4}

Step 2.3 Update Counter to [R]

Step 2.4 Update TA to


0, 0, 0, 1
0, 0, 0, 1
0, 0, 0, 1
1, 1, 1, 0

 and hasA to false

Step 2.5 Update TB to


0
0
0
1

 and hasB to false

Step 2.6 Update OG to (R, ∅)

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, N0, is[
4, 1, 4, 2

{1, 3}, {2}, {4}

]
,

where tN0 = (4, 1, 4, 2) is obtained by applying the transition function on 1, 2, 3, 4 to the
input letter 0. The partition induced by the output function on 4, 1, 4, 2 is {1, 3}, {2, 4}.
Taking the CCR between this partition and the partition component of its parent, i.e.
PR = {1, 2, 3}, {4}, we obtain the partition component of N0. Therefore

PN0 = {1, 3}, {2, 4} ∧ {1, 2, 3}, {4} = {1, 3}, {2}, {4}

Step 3.2 As the current node is not in Counter we add it:

Counter = [R,N0]

8



Step 3.3 The current automaton has not C as

PN0 6= {1}, {2}, {3}, {4}

Step 3.4 Update TA to


0, 1, 0, 1
1, 0, 1, 1
0, 1, 0, 1
1, 1, 1, 0

 and hasA to false

Step 3.5 Update TB to


0
1
0
1

 and hasB to false

Step 3.6 As

{1, 3}, {2}, {4} ∧ {1, 3}, {2}, {4} = {1, 3}, {2}, {4}

it follows that
{1, 3}, {2, 4} ∧ PN0 = PN0

and therefore this record has to be pruned (as none of its children can bring any new
information)

Step 3 Generate next child

Second iteration:

Step 3.1 The next record, N1 is[
3, 3, 4, 2

{1, 2}, {3}, {4}

]
,

where tN1 = (3, 3, 4, 2) is obtained by applying the transition function on 1, 2, 3, 4 and the
input letter 1. The partition induced by the output function on 3, 3, 4, 2 is {1, 2, 4}, {3}.
Taking the CCR between this partition and the partition component of the node’s parent,
i.e. PR = {1, 2, 3}, {4}, we obtain the partition component of N1. Therefore

PN1 = {1, 2, 4}, {3} ∧ {1, 2, 3}, {4} = {1, 2}, {3}, {4}

Step 3.2 As the current node is not in Counter we add it:

Counter = [R,N0, N1]

Step 3.3 The current automaton has not C as

PN1 6= {1}, {2}, {3}, {4}

Step 3.4 Update TA to


0, 1, 1, 1
1, 0, 1, 1
1, 1, 0, 1
1, 1, 1, 0

 and hasA to true

9



Step 3.5 Update TB to


0
1
1
1

 and hasB to false

Step 3.6 As {1, 2}, {3}, {4}∧PN = {1, 2}, {3}, {4}∧{1, 2}, {3}, {4} = {1, 2}, {3}, {4}
this record has to be pruned

Step 3 Generate the next child

Third iteration:

As OG = (R, ∅) and Counter = (R,N0, N1), there is no child to generate, stop. As
hasA is true and hasB is false, the output is “the automaton has CI”.

Example 2. Let us run the algorithm on the automaton in Figure 2.

Step 1. Initialize OG to ∅, Counter to the ∅ vector, TA and TB, respectively, the
n×n matrix with all elements 0 and the n-element all 0 vector, and the Boolean variables
hasA and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R =

[
1, 2, 3, 4

{1, 3}, {2, 4}

]

Step 2.2 As PR 6= {1}, {2}, {3}, {4} the automaton has not C

Step 2.3 Update Counter = [R]

Step 2.4 Update TA to


0, 1, 0, 1
1, 0, 1, 0
0, 1, 0, 1
1, 0, 1, 0

 and hasA to false

Step 2.5 Update TB to


0
0
0
0

 and hasB to false

Step 2.6 Update OG to (R, ∅)

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, N0, is[
4, 3, 2, 1

{1, 3}, {2, 4}

]

10



where tN0 = (4, 3, 2, 1) is obtained by applying the transition function on 1, 2, 3, 4 to the
input letter 0. The partition induced by the output function on 4, 3, 2, 1 is {1, 3}, {2, 4}.
Taking the CCR between this partition and the partition component of its parent PR =
{1, 3}, {2, 4}, we obtain the partition component of N0:

PN0 = {1, 3}, {2, 4} ∧ PR = {1, 3}, {2, 4}

Step 3.2 As the current node is not in Counter we add it:

Counter = [R,N0]

Step 3.3 The current automaton has not C as

PN0 = {1}, {2}, {3}, {4}

Step 3.4 Update TA to


0, 1, 0, 1
1, 0, 1, 0
0, 1, 0, 1
1, 0, 1, 0

 and hasA to false

Step 3.5 Update TB to


0
0
0
0

 and hasB to false

Step 3.6 As
{1}, {2}, {3}, {4} ∧ PN0 6= PN0

this record should not be pruned. Update OG = (R,N0, [R,N0])

Step 3 Generate the next child

Second iteration:

Step 3.1 The next record, N1, is[
2, 2, 1, 1

{1}, {2}, {3}, {4}

]

where tN1 = (2, 2, 1, 1) is obtained by applying the transition function on states 1, 2, 3, 4
and the input letter 1. The partition induced by the output function on 2, 2, 1, 1 is
{1, 2}, {3, 4}. Taking the CCR between this partition and the partition component of
the node’s parent, i.e. PR = {1, 3}, {2, 4}, we obtain the partition component of N1:

PN1 = {1, 3}, {2, 4} ∧ {1, 2}, {3, 4} = {1}, {2}, {3}, {4}

Step 3.2 The current node is not in Counter, so we add it:

Counter = [R,N0, N1]

11



Step 3.3 The current automaton has C as

PN1 = {1}, {2}, {3}, {4}

so the output is “the automaton has C”.

Example 3. Let us run the algorithm on the automaton in Figure 3.

Step 1. Initialize OG to ∅, Counter to the ∅ vector, TA and TB, respectively, the
n×n matrix with all elements 0 and the n-element all 0 vector, and the Boolean variables
hasA and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R =

[
1, 2, 3, 4

{1, 3}, {2, 4}

]

Step 2.2 The record R has not C as PR 6= {1}, {2}, {3}, {4}

Step 2.3 Update Counter = [R]

Step 2.4 Update TA to


0, 1, 0, 1
1, 0, 1, 0
0, 1, 0, 1
1, 0, 1, 0

 and hasA to false

Step 2.5 Update TB to


0
0
0
0

 and hasB to false

Step 2.6 Update OG to (R, ∅)

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, N0, is[
1, 2, 2, 2

{1}, {2, 4}, {3}

]
,

where tN0 = (1, 2, 2, 2) is obtained by applying the transition function on states 1, 2, 3, 4
to the input letter 0. The partition induced by the output function on 1, 2, 2, 2 is
{1}, {2, 3, 4}. Taking the CCR between this partition and the partition component of its
parent PR = {1, 3}, {2, 4} we obtain the partition component of N0:

PN0 = {1}, {2, 3, 4} ∧ PR = {1}, {2, 4}, {3}

Step 3.2 The current node is not in Counter, so we add it:

Counter = [R,N0]

12



Step 3.3 The current automaton has not C as

PN0 6= {1}, {2}, {3}, {4}

Step 3.4 Update TA to


0, 1, 1, 1
1, 0, 1, 0
1, 1, 0, 1
1, 0, 1, 0

 and hasA to false

Step 3.5 Update TB to


1
0
1
0

 and hasB to false

Step 3.6 As
{1}, {2, 3, 4} ∧ PN0 = PN0

this record has to be pruned

Step 3 Generate the next child

Second iteration:

Step 3.1 The next record, N1, is[
1, 2, 1, 1

{1, 3}, {2}, {4}

]
,

where tN1 = (1, 2, 1, 1) is obtained from applying the transition function on states 1, 2, 3, 4
and the input letter 1. The partition induced by the output function on 2, 1, 1, 1 is
{1, 3, 4}, {2}. Taking the CCR between this partition and the partition component of
the node’s parent PR = {1, 3}, {2, 4} we obtain the partition component of N1:

PN1 = {1, 3, 4}, {2} ∧ {1, 3}, {2, 4} = {1, 3}, {2}, {4}.

Step 3.2 As the current node is not in Counter we add it:

Counter = [R,N0, N1]

Step 3.3 The current automaton has not C as

PN1 6= {1}, {2}, {3}, {4}

Step 3.4 Update TA to


0, 1, 1, 1
1, 0, 1, 1
1, 1, 0, 1
1, 1, 1, 0

 and hasA to true

13



Step 3.5 Update TB to


1
1
1
1

 and hasB to true

Step 3.6 As {1, 3, 4}, {2} ∧ PN = PN this record has to be pruned

Step 3 Generate the next child

Third iteration:

As OG = (R, ∅) and Counter = [R,N0, N1], there is no child to generate, stop. As
hasA is true and hasB is true, the automaton has property B, but not C, so the output
is “the automaton has CII”.

5 Experimental Results

The proposed algorithm was implemented in C and the program3 was run on a Pentium
III, i686 processor using Redhat 8.0 Linux, 250 Mb of RAM. The aim was to study the
distributions of CI and CII over the set of all possible automata with a given number
of states and input/output symbols. Table 2 presents the results of the main tests that
have been done so far.

n× s # automata time CI CII CII/CI % CI % CII %
2 × 2 32 < 1 sec 0 0 0 0 0
3 × 2 2916 < 2 sec 0 0 0 0 0
4 × 2 524288 < 11 sec 73728 30720 41.67% 14.06% 5.86%
5 × 2 156250000 < 8435 sec 46862400 19436160 41.47% 29.99% 12.44%
4 × 3 452984832 < 14018 sec 54577152 46227456 84.70% 12.05% 10.12%

Table 2.

In the first column n× s stands for the class of automata with n states and s input
letters. Because of symmetries (the automaton (Q, δ, f) “is equivalent” to the automaton
(Q, δ, 1−f)), the program actually tests only half of automata of type n×s; the numbers
of tested automata are shown in the second column. The third column contains the time
for processing all automata mentioned in the second column. The numbers of automata
verifying CI and CII are given in the next two columns. The last three columns present
the percentage of CII over CI and the percentage of CI, respectively, CII, over the total
number of automata processed.

We also tested automata with more than five states. For example, the 10-state
automaton in Table 3

3See http://www.massey.ac.nz/~bimills/obgraph.c for the program.

14



q δ(q, 0) δ(q, 1) f(q)
1 2 1 0
2 3 2 0
3 4 3 0
4 5 4 0
5 6 5 0
6 7 6 0
7 8 7 0
8 9 8 0
9 9 10 0
10 10 10 1

Table 3.

has A (00000001 distinguishes the pairs (i, j) for i = 1, 2, 3, j = 1, 2, . . . , 10 and i 6= j,
00001 distinguishes the pairs (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), 0001 distinguishes the pairs
(5, 6), (5, 7), (5, 8), (5, 9), 001 distinguishes the pairs (6, 7), (6, 8), (6, 9), 01 distinguishes
the pairs (7, 8), (7, 9), 1 distinguishes the pair (8, 9) and ε distinguishes the pairs (i, 10)
for i = 1, 2, . . . , 9), has B (as state 1 is distinguished from all other states by the word
00000001, state 2 by 000000101, state 3 by 00000101, state 4 by 0000101, state 5 by
000101, state 6 by 00101, state 7 by 0101, state 8 by 101, state 9 by 1, and state 10 by ε)
and has C (the word 101010101010101 distinguishes every pair of distinct states). The
algorithm has scanned 766 nodes in less than a second.

6 Final Remarks

Based on the concept of observation graph of an automaton, new equivalent definitions
have been given for two types of computational complementarity studied in [3]. As a
result, we proposed an algorithm for simultaneously determining these properties. The
algorithm has been shown in practice to be fast enough (on a standard desktop machine)
for testing all binary Moore machines up to five states. Some other experiments reported
in the paper illustrate the power of the algorithm.

Many problems remain open; for example, what is the complexity of the decision
problems CI, CII.

Acknowledgement

We are grateful to the anonymous referee for suggestions which improved the paper.

References

[1] Brauer, W. Automaten theorie. Teubner, Stuttgart, 1984.

[2] Calude, C. S., Calude, E. and Ştefănescu, C. Computational complemen-
tarity for Mealy automata, EATCS Bull. 66 (1998), 139–149.

[3] Calude, C., Calude, E., Svozil, K. and Yu, S. Physical versus computational
complementarity I. International Journal of Theoretical Physics 36 (1997), 1495–
1523.

15



[4] Calude, C. S. and Lipponen, M. Computational complementarity and sofic
shifts, in X. Lin (ed.). Theory of Computing 98, Proceedings of the 4th Australasian
Theory Symposium, CATS’98, Springer-Verlag, Singapore, 1998, 277–290.

[5] Calude, E. and Lipponen, M. Minimal deterministic incomplete automata.
Journal of Universal Computer Science 11 (1997), 1180–1193.

[6] Calude, E. and Lipponen, M. Deterministic incomplete automata: Simulation,
universality and complementarity, in C. S. Calude, J. Casti, and M. J. Dinneen
(eds.). Unconventional Models of Computation, Springer-Verlag, Singapore, 1998,
131–149.

[7] Chaitin, G. J. An improvement on a theorem by E. F. Moore. IEEE Transactions
on Electronic Computers EC-14 (1965), 466–467.

[8] Conway, J. H. Regular Algebra and Finite Machines. Chapman and Hall Ltd.,
London, 1971.

[9] Ginsburg, S. On the length of the smallest uniform experiment which distinguishes
the terminal states of the machine. Journal of the Association for Computing Ma-
chinery 5 (1958), 266–280.

[10] Hartmanis J. and Stearns R. E. Algebraic Structure Theory of Sequential Ma-
chines, Prentice-Hall, Englewood Cliffs, NJ, 1966.

[11] Lee, D. and Yannakakis, M. Principles and methods of testing finite state
machines—A survey, Proc. IEEE 84, 8, (1996),1089–1123.

[12] Lee, D. and Yannakakis, M. Closed partition lattice and machine decomposi-
tion, IEEE Transactions on Computers, 51, 2 (2002), 216–228.

[13] Moore, E. F. Gedanken-experiments on sequential machines, in C. E. Shannon
and J. McCarthy (eds.). Automata Studies, Princeton University Press, Princeton,
1956.

[14] Schaller, M. and Svozil, K. Automaton partition logic versus quantum logic.
International Journal of Theoretical Physics 34, 8 (1995), 1741–1750.

[15] Svozil, K. Randomness &Undecidability in Physics. World Scientific, Singapore,
1993.

16




