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The present paper proposes a generalisation of the notion of disjunctive (or rich) sequence, that is, of an infinite
sequence of letters having each finite sequence as a subword. Our aim is to give a reasonable notion of disjunc-
tiveness relative to a given set of sequengEesWe show that a definition likeeVery subword which occurs

at infinitely many different positions in sequences in F' has to occur infinitely often in the sequence” fulfils
properties similar to the original unrelativised notion of disjunctiveness. Finally, we investigate our concept of
generalised disjunctiveness in spaces of Cantor expansions of reals.

Copyright line will be provided by the publisher

1 Introduction

A semi-infinite sequence is called disjunctive (or rich) if it has all finite words as subwords (infixes) (cf [JST83,
JT83]). This condition is, obviously, equivalent to having every finite word infinitely often as infix.

The real number associated to a disjunctive sequérmeer {0, ..., — 1} is 0.£. Itis interesting to note
that in contrast to properties like randomness (cf. [CJ94, HWO03, Ca02, St02b]) or Kolmogorov complexity
(cf. [CH94, St02b]) disjunctiveness is not invariant under base conversion, more precisely speakimg, if
{0,...,r=1}¥andn € {0,...,b— 1}* satisfy0.£ = 0.n (as reals) theg might be disjunctive whereasneed
not be so. For a more detailed treatment see [He96].

Along with the usual baseexpansions of real numbers one can also consider so-called Cantor expansions. In
general, a Cantor expansion of a real is defined as follows (cf. [Dr64, HW54]) (Let f(2), ..., f(n),...bea
fixed infinite sequence of positive integers greater thand 0 < z,, < f(n), for everyn > 1. The real number

T
= L e £ .
has0.z;zs ... as (one of) it<antor expansion(s)

It is easy to see that the set of subwords occurring in a sequfe&cé’(f) ={x1zg.. a0 < a; <
f(@)} depends on the functiofi: IN — IN. Thus we need a definition of disjunctiveness for Cantor expansions.
In this paper we propose a possible modification of the notion of disjunctive sequence in the followihg way
A sequencg € F C IN¥ is F-disjunctive if every infix which occurs at infinitely many different positions in
sequenceg € F occurs infinitely often ig. This proposal has some similarity with fairness concepts in which
a process is called strongly fair when an action enabled infinitely often is carried out infinitely often (see e.qg.
[Fr86, Va91l]). Here, of course, the phrase “which may occur infinitely often in some sequence” needs further
specification.

* Corresponding author: e-mastaiger@informatik.uni-halle.de, Phone: +49 34555 24714, Fax: +49 34555 27009.
L. Staiger’s research was in part supported by Project Number 3602449/9343 of the University of Auckland Research Fund, which is hereby
gratefully acknowledged.

1 We base our generalisation on infinite occurrences of subwords. This proposal seems to be justified by the results of Section 3.
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4 Cristian S. Calude and Ludwig Staiger: Generalisations of Disjunctive Sequences

2 Preliminaries

2.1 Notation

By IN = {0,1,2,...} we denote the set of natural numbers. In order to treat arbitrary finite alphabets we let
X, :={0,...,r — 1} be an alphabet of cardinalityX,.| = », » € IN,r > 2. In this paper we will use finite
alphabets X.) andIN as a countably infinite alphabet. In both case we shall simply \Aite

By X* we denote the set of finite strings (words)&nincluding theemptyword e. We consider also the space
X« of infinite sequencesswords) overX. Forw € X* andn € X* U X¥ letw - n be theirconcatenationThis
concatenation product extends in an obvious way to subBets X* andB C X* U X“. If (W;)2, is a family
of subsets of{ * then the infinite produd];~, W; is defined ag¢ : £ € X“ A& = wy-ws -+~ w; - - wherew; €
Wi}, If W; = W for all i we will briefly write W« instead off [, , W.

By “LC" we denote the prefix relation, that is, C 7 if there is any’ such thatw - ' = 5, andpref(n) := {w :
w € X* Aw C n} andpref(B) := UnGB pref(n) are the languages of finite prefixesrpnd B, respectively.
The set of subwords (infixes) gf ¢ X* U X“ will be denoted byinfix(n) := {w : w € X* A Jv (vw C n)}
andinfix(B) := |, ¢ p infix(n).

In the sequel, we will be mainly interested in sets of the fotitd) := {25 : 0 < a; < f(i)} C N
which depend orf : IN — IN. For the constant functiofi(z) = r we get the cas& (/) = X,

We introduce a metric itk (/) as follows:

|w]
preon) =t { [T s we g nwenf @
=1

which makeg X /), p) a compact metric spate
Theorem 2.1 The metric spacéX /), p;) is compact.
It is easily verified thapy is indeed a metric which, in addition, satisfies the ultra-metric inequality:

pr(¢,€) <max{ps(¢,n),pr(&m)} (3)

Open balls (in view of Eq. (3) they are simultaneously closed) in the stéé),pf) are sets of the form
X nw - IN“. Then open sets iX /) are of the formX () N W - IN¥, whereWW C pref(X/)). From this
it follows that a subseF € X (/) is closediff pref(¢) C pref(F) implies¢ € F. Theclosureof a subset
F C XY) in the spacé X (), p;), that is, the smallest closed subsetdf containingF is denoted byC(F).
One hag’(F) = {¢ : pref(§) C pref(F)}.

It should be mentioned that, due to the special choice of the msgtrfsee Eq. (2)), the following additivity
property for balls is satisfied:

Z diam (XY Nw -z - INY) = diam (X nw - IN¥), 4)
TEX (] +1)

as

U XD w2z - INY =X nw- INv.
TE€Xf(jw|+1)

2.2 Measure

Using Eq. (4) we introduce a measyren X /) by defining it on balls ag (w-IN“NX ()) := diam ;(w - IN* 0 X (1)
and extending it in the usual way to subsets{df) (cf. [Ox71]). This measure has the property théF) equals
the usual Lebesgue measure of the set

{;f(l)f(z)f(l) 3551132"'371‘"'6F}Q[0,1].

2 There are other possibilities to structuxé/) as a compact metric space. Here we want to stress the similarity betagén, p ;)
and the Cantor expansions of real numbers, so we require the property of Eq. (4) which is implicit in our defipition of

Copyright line will be provided by the publisher



mlqg header will be provided by the publisher 5

2.3 Density and Baire Category

Next we introduce the topological concepts of density and Baire category for our complete metri(détfa\qef)
(see e.g. [Ku66, Ox71]). A substtC X (/) is calleddensen X (/) provided its closur€(F') is the whole space
X, AsetM C X&) is nowhere densi (X (), p;) provided its closur€ (M) does not contain a nonempty
open subset. A sef is of first Baire category(or meagrg if it is a countable union of nowhere dense sets;
otherwise it is ofsecond Baire categoryrhe complements of sets of first Baire category are cadisitiual

2.4 Porosity

A further topic related to density is porosity, introduced e.g. in [Za87, Section 2.C] or [Re01]. This concept,
however, does rely on the particular metric chosen for the space. We explain it for the(sﬁét@f). Let
ME, u) = sup{diam(w - IN* N X)) : w CwAw-IN* N E = ()} be the diameter of a largest ball contained
inwu-IN“ N X, but disjoint fromE. Theporosityof E at the point is:

AE, u)

B,6) =1 : 5
P(E,&) = limsup G " A X ) ®)

For example, ifE is closed and ¢ E, thenp(E,§) = 1.

AsetE C XU) is calledporousif p(E,¢) > 0, for all ¢ € X, It is obvious that every porous set is
nowhere dense, but the converse need not be true. It should be noted, however( Xfatdn every nowhere
dense set definable by a finite automaton is porous (see [St76, St98, St02a]).

The following connection between porosity and measut® i is immediate by the Lebesgue density theo-
rem ([Ox71, Theorem 3.20]).

Lemma 2.2 LetE C XU, If u(E) > 0, thenE is not porous in X /), p¢).

2.5 Disjunctive sequences itk

Finally, we list some properties of the set of disjunctive sequehgeS X known from [CPS97, St02al]:
Theorem23 1. D, = {£: £ € X¥ A |pref(§) N W] = N}, whereW = {wzx : w € X Az €
X, A In (infix(wz) 2 X Ainfix(w) 2 X))}

2. D, isIl,-definable and a residual set iF¥.
3. X2\ = | (3N X7wx2) = (e {wh)”.
weX weX
4. X¥ \ D, is the union of all nowhere denselanguages definable by a finite automaton.
5. X¥ \ D, is a countable union of porous sets.

6. u(D,) = 1, for all non-degenerate product measuresXfi.

3 Generalised Disjunctiveness

In this section we make precise the fact, stated informally, that-amord £ € F' should be calledlisjunctive
if every wordw € IN* which can appear at infinitely many different positions in sequencéshas to appear
infinitely often as an infix of.

To this end we observe that a necessary condition for a wotd appear infinitely often as an infix i
is the following one. Lefinfix. (F) := {w : 3*°nJu(Ju| = n A uw € pref(F)}. An w-word¢ is called
F-disjunctiveprovided¢ € F andInfix, (F) = Infix,, ({¢}).3

For general subsets @& or X (/) this condition is complicated. To simplify it we introduce the following
notion which, when satisfied fdinfix.. ('), will alleviate the investigation of disjunctive sequences. A set
W C IN* is referred to aeft prolongableif for everyw € W there is anc € IN such thatr - w € W.

3 In what follows we shall writdnfix . (&) as a shorthand fdmfix ({£})
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6 Cristian S. Calude and Ludwig Staiger: Generalisations of Disjunctive Sequences

Proposition 3.1 Let Infix., (F') be left prolongable. Theimfix(£) O Infix., (F) impliesInfix.(£) 2
Infix (F), forall £ € F.

Proof. Assumew € Infix.(F) andw ¢ Infix. (). Then there is a longest prefix C ¢ such that
w-w C & If infix(§) O Infix(F') andInfix (F) is left prolongable we have @, |v| > |u| such that
v - w € infix(¢) which contradicts the choice af O

The following example shows that prolongability is essential.

Example 3.2 Let F := []:°,{i1,00}. ThenInfix.(F) = 0* U1 - 0%, and, indeed, fo = 210 we have
infix(n) D Infix. (F) D Infix.(n) = 0*.

As a corollary to Proposition 3.1 we obtain properties of the set af'alisjunctivew-words similar to those
in Theorem 2.3 (foD,.).

Corollary 3.3 If Infix.(F) is left prolongable, then

Drp= (] (FnN-w N
weInfix,, (F)
is the set of allF-disjunctivew-words.
Corollary 3.4 If Infix. (F) is left prolongable, then

F\Dp = U @E\Nw N

weInfix (F)
[w|-1

U (Fﬂ N mj.(mlw\{w})W).

weInfix (F) j=0

4 Disjunctiveness in Ultimately Connected Sets

Here we consider the case of a subBaif a Cantor spac&“ having the following property:
Vu (u € pref(F) — Jv(v € X Au-v-F CF)). (6)

These sets, calledltimately connectedcan be characterised by the so-caligabiliserof F* C X¥, Stab(F)
(cf. [Lt88, Lt91, St80, St97]):

Stab(F) := {w : w € pref(F)\ {e} Aw-F C F}. @)

Stab(F) is closed under concatenation, so it is a subsemigroufy‘of
Proposition 4.1 Anw-languageF’ C X¥ is ultimately connected iffref (F') C pref(Stab(F)).

Examples of ultimately connectedlanguages are the so-calledpower language$l’* whenW C X*.
Obviously, the stabiliser of aw-power languagé?V« satisfiesW™* \ {e} C Stab(W*) C Stab(C(W%)) C
pref(W«) andStab(W*) - W« = W«. Here, as usual, we denote the subsemigroufi,ofenerated byV’,
Usso W, by W™,

For ultimately connected-languaged’ the languagdnfix.,(F') has the following properties.

Proposition 4.2 We havdnfix., (F) = infix(Stab(F)) and Infix., (F') is both left and right prolongable.

Corollary 3.4 applies immediately to ultimately connectethnguages.

Corollary 4.3 If FF C X is ultimately connected, then

|w|—1
F\Dp= |J (F\X;-w-x2)= |J (FﬂﬂX¥-<Xr”\{w}>“)~
(F)

wEStab(F) wEStab j=0
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We conclude the part on ultimately connectedanguages by mentioning some results from [St97] sim-
ilar to Theorem 2.3.4 concerning-languages definable by a finite automaton which are nowhere dense in
F. To this end we mention that a sét C X< is nowhere dense i’ C X iff Vu (u € pref(F) —

v (v € X} Au-v € pref(F) \ pref(E))).
Lemma 4.4 If F C X is ultimately connected an# is definable by a finite automaton then:

1. Eis nowhere dense if iff there is aw € Stab(F') such thatE NC(F) C C(F) \ Stab(F)* - w - X¥, and
2. E C C(F)is nowhere dense i iff there is aw € Stab(F') suchthatE C C(F)\ X -w - X¥.

A proof can be found in Section 5 of [St97].

5 Disjunctiveness in(X), p)

In this section we derive some simple properties of thelsitx .. (X (/)). From these properties we derive that
Infix.. (X)) is both left and right prolongable, whence similar properties as those described in Theorem 2.3
and Corollaries 3.3 and 3.4 hold for the set of all disjunctiveords in X (1), D¢, independently of the choice

of f.

5.1 General Properties

We start with a few simple properties.
Proposition 5.1 1. We havew - INY C IN* - w - IN¥ iff w € infix(u).

2. Letu € pref(X) and|u| < n. Then0" - w € pref(X ) iff u - 07714 . w € pref(X (1),
3. If w € Infix o (X(") then{0,1}* - w - {0,1}* C Infix,, (X ().

Proof. 1. The direction from right to left is trivial. Let< {0, 1} be a letter different from the last letter of
w. Thenu - a¥ € N, If u-a* € IN* - w - IN¥, thenw € infix(u - a¥), and, since: is not the last letter of,
w € infix(u) follows.

The other properties are readily seen. O

As an immediate consequence of Proposition 5.1.3 we obtain the announced property.
Corollary 5.2 The seflnfix.. (X (/) is both left and right prolongable, for every functigh: IN — IN \
{0,1}.

Definel;(n) := limsup min{f(i +j) : 1 < j < n}.

Lemma 5.3 We haveX" C Infix.. (X)) iff £;(n) > r.
Proof. We havegf(n) > r iff for every m € IN there is an > m such thatf(i + j) > r,for1 < j < n.
Thus0? - w € pref(X)), for everyw € X7.

Conversely, ifX" C Infix,, (X /), then there are infinitely manyc IN such that’-(r—1)" € pref(X (),
whencef (i + j) > r,for1 < j < n. O

The following example shows th&hfix .. (X (/)) may indeed not be larger than indicated by Lemma 5.3 and
Proposition 5.1.3.

Example 5.4 For the function

. i+1,if i =n?,and
i) = { 2, otherwise,

we havelnfix., (X)) = {0,1}* - IN - {0, 1}*.

The contrary might be also true.

Corollary 5.5 If lim f(n) = oo, thenInfix,, (X (1)) = IN*,

Copyright line will be provided by the publisher



8 Cristian S. Calude and Ludwig Staiger: Generalisations of Disjunctive Sequences

5.2 Computability

If one considers computable functiofis IN — IN\ {0, 1}, then some computability constraintshufix . (X /))
follow. Using the Tarski-Kuratowski algorithm one can easily deduce an upper bound for the complexity of
Infix., (X)) in the Arithmetical hierarchy.

Lemma 5.6 If f is a computable function, thdmfix.. (X (1)) is II,-definable.

The following example shows that we cannot do better even if the fungtimbounded. For the case
lim; o f(i) = oo, Infix, (X)) = IN* is computable in view of Corollary 5.2.

Example 5.7 Let M C IN be inIl; \ X, so it has a representatidd = {n : 3*°m ((m,n) € R)}, where
R CINx INandR € 3y Nn1II;. Let R be ordered in some computable way, i = g(IN) for some injective
computable function. Then

X = [Txg O x, x29 X,
=0

whereg(i) is the pair(g; (i), g2(i)). ConsequentlyInfix..(X))N3.2*.3 ={3.2"-3:n € M}isin
I, \ ¥, hencelnfix (X () € Iy \ .

6 Topological and Metric Properties of X () \ IN* . w - IN

In this section we investigate some topological properties of the set of disjunctive sequeAtés. ifFirst we
investigate the relationship to density and measure.

6.1 Density
We start with a simple proposition which holds for all functighsIN — IN \ {0, 1}.
Lemma 6.1 The setX (/) \ IN* - w - IN“ is nowhere dense iiX (¥, p;) whenevew € Infix., (X /).

Proof. Ifw € Infix, (X)), then for everyu € pref(X(/)) there is av € IN* such thatuvw
pref(X (). Thusu - N“ N X ¢ XU\ IN* . w - IN¥, for everyu € pref(X ().

Om

In contrast to Theorem 2.3.6 the measure property does not hold in general.

Example 6.2 Let . be the measure o (/) introduced in Section 2.2. We consider the functi) :=
(i+1)?and the sef := X \IN* - 0-IN“ = [[° | (X \ {0}). Then, we have

R (e

i=1 j=2

Thus the sef” = X(f) \ IN* . 0 - IN“ is nowhere dense but has measuf€’) > 0.

6.2 Porosity in X (/)

From [Za87, Re01] (see also Lemma 2.2) it is known that a porous'set X (/) is nowhere dense and has
measure:(F') = 0. As we have seen in the preceding section the complement of the set of disjunctive sequences
in X(/) may have positive measure. In this section we investigate how this behaviour depends on the function

A first result and a comparison with Theorem 2.3 show that the case of bounded functions is similar to the
case of constant alphabets (see also [CZ95]).

Lemma 6.3 If f : N — IN is bounded, then for every € Infix, (X)) the setX/) \ IN* . w - IN¥ is
porous inX /),

Proof. Letw € Infix, (X)) andE := X() \ IN* . w - IN“. Then there are infinitely many € IN
such that” - w € pref(X (). According to Proposition 5.1.2, for evegye X/) and every prefix.,, C ¢
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of length |u,,| = n we haveu,, - w € pref(X()). Thenu, - w - N N X) is disjoint from E, whence
diam ¢ (uy, - w - INY N X)) < \(E, u,) and

_ diamy (u, -w- NN X)) 1 -
E.€)>1 - =1 2
p(E,§) =2 ey " diamy (u, - IN® 0 X D) i i_|1_[|+1 f@) ’
for b := max{f(i) : i € IN}. .

The case wheryf is unbounded needs a special treatment. A first result concerns funftidNs— IN tending
to infinity.

Theorem 6.4 Let f : IN — IN'\ {0, 1}. Then the following properties are equivalent.
1. We havelim; o, f(i) = co.
2. The setx /) \ IN* - 0 - IN“ is not porous.
3. For everyw € Infix,, (X)) \ {e} the setX (/) \ IN* - w - IN“ is not porous.

Proof. The equivalence of the first and second conditions follows from the fact that

diam(u -0 -IN¥ 0 X))
diamg(u - IN* N X))

The other equivalence is a consequence of the inequality

= f(lu| +1)7, foru € pref(X).

diam(u-0-IN* N X)) > diam s (u - w - N 0 X D),
wheneven - w € pref(X ")) andw # e. O
For unbounded functiong : IN — IN we introduce the following characteristic number

[ -1 ,ifall f=1(k) are finite, and
f sup{k : f~1(k) is infinite}, otherwise.
For technical reasons, we denotetbyN“ N X (/) a ball of largest diameter contained in the hallN* N X (/)

but disjoint fromE. This condition is equivalent to the fact thatis a shortest word having as prefix and
satisfyinga ¢ pref(FE). Then the following holds true.

||

AME,u)
8
diamy(u-IN*NX0)) |H+1 [10) (8)

We obtain the following sufficient condition for the non-porosity of s&td) \ IN* - w - IN,

Theorem 6.51f f : IN — IN is unbounded ané; < oo, then for everyi > ky andv,w € {0,1}* the set
X\ IN* - wiw - IN* is not porous inX (/).

Proof. First observe that in view of Proposition 5.1.3 thelsdtx ., (X (/)) contains the wordiw € IN*.

SinceX ) \ IN* - wiw - IN* D X ) \ IN* . . IN¥, it suffices to prove that the latter set is not porous, that is,

p(X@H\IN* .- IN¥, &) =0, for ¢ € X(F),

Sinceks < oo, for everyk > ky the setf~1(k) = {j : f(j) = k} is finite. Letly := 1 +sup{j : kf <
f(j) < k}. Thenf(j) > k wheneverj > ¢, andf(j) > kj.

If u € pref(X )\ IN*.i-IN“) and|u| > ¢}, the shortest word € pref(X (")) with v C @ andi € IN* -4
has to satisfyf (|a|) > ¢ > k¢. Thusf(|a|) > k and according to Eq. (8),

diam (4 - IN® 0 X (D) _1
diamf(u-]N“’ﬂX(f)) k

forallu C &, |u| > .
The particular case, whery = —1, that is, whenf tends to infinity was treated in Theorem 6.4. O
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10 Cristian S. Calude and Ludwig Staiger: Generalisations of Disjunctive Sequences

Summarising Lemma 6.3 and Theorems 6.4 and 6.5 we obtain the following exhaustive connection between
the porosity of sets of the fori¥ (/) \ IN* . w - IN* and the behaviour of the functighin case wherk; < oo.

Theorem 6.6 Let f : IN — IN be a function such that; < oo and letw € Infix,, (X)) \ {e}. Then the
following conditions hold:

1. f is bounded iff all set () \ IN* . w - IN“ are porous.
2. f tends to infinity iff none of the se®/) \ IN* - w - IN* is porous.

3. fis unbounded antim inf f(i) < oo iff some of the set¥ (/) \ IN* . w - IN* are porous and some are not.
In the remaining case whety = oo (heref is necessarily unbounded atithinf; ., f(i) < oo) we may
have both possibilities not excluded by Theorem 6.4.
First we give an example showing that every set of the fafff) \ IN* - w - IN“ wherew # e is porous.

Example 6.7 Let f(n) := 2 + (n — |/n]?). Itis well known thatf (72 + 1) = 2 + [ whenever < 2r. Thus
f~Y(k) is infinite for everyk € IN'\ {0,1}.

Considerw € IN*. Thenw € X, for an appropriate € IN. Chooseu € pref(X (")) with |[u| = s +r
wheres > 7 + |w|. Thenf(s? + 7 +i) =247 +i >r, for0 <i < |w|. Consequently, - w € pref(X(/))
and we have the inequalities

52 T w T w
diamf(u~w-]N‘*’ﬂX(f))> el B ﬁ 1 50
diam s (u - IN¥ N X))~ i=s24r+1 £(i) iz T2 .

This proves that for € X, the porosity ofX () \ IN* - w - IN“ is at leas{ [\, (r +i+2)"" > 0.

The final example covers the case when not all sets of the #6tm \ IN* - w - IN“ with w # e are porous.
Example 6.8 Define

2+ (n/5— [\/n/5]?),iff n=0 (mod 5),
f(n):=1¢ 2 ,ifn=+1 (mod 5), and
n ,ifn=42 (mod 5).

Similarly to the previous example, for evekye IN \ {0, 1} the setf~!(k) is infinite, but for every numben
with n = +1 (mod 5) we havef(n) = 2. Consider the wor@2. If u - 22 € pref(X(/)), then necessarily
lul| = 5-1+1, for somel € IN, and, by construction)>!*! . 22 ¢ pref(X/)), for all I € IN. Thus
22 € Infix,. (X)) and ifu - 22 € pref(X/)) we have

diamy(u - 22 - IN¥ N0 X)) 1 1

diam(u - IN* 0 X () = FQl D F(u[+2) ~ (ul+ D - (ul+2)

This shows that the séf (/) \ IN* - 22 . IN* is not porous i X ), p;).
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