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Abstract. An infinite sequence of incomparable classes of semilinear
languages bounded between the class of regular and respectively context-
sensitive languages is introduced. This sequence is obtained by the re-
laxation of word order in a sentence represented by a (possibly) non-
projective DR-tree, while keeping the projectivity of the corresponding
D-tree. Our results argue a significant difference between the (non-)pro-
jectivity constraints of DR-trees and respectively D-trees and focus on
the intrinsic importance of DR-trees.

1 Introduction

The notion of free-order dependency grammar (or simply dependency grammar)
was introduced in [3] as a formal system suitable for a dependency-based parsing
of natural languages. In a certain way this notion enriches the types of depen-
dency grammars described in [1].

The proposal of this system was based upon the experience acquired dur-
ing the development of a grammar-checker for Czech and as a possible next
step towards a complete syntactic analysis following the underlying ideas of
the dependency-based framework of Functional Generative Description - FGD
([5]). Compared to FGD and other usual formal systems describing the syntax
of natural languages, the framework introduced by dependency grammars takes
a serious account for the freedom of word order in a sentence and assigns the
same importance to linear precedence (LP) rules as to immediate dominance
(ID) rules.

As the freedom of word order is not total, even in so-called free-word-order
languages, one needs to constrain the formalism in order to not overgenerate the
actual language.

In [4], a measure for the freedom of the word order was studied, based on
the number of gaps issued in a sentence by the order of their words (node-
gaps-complezity). Both global and local constraints on the maximal number of

* This work was supported by the grant of GACR No. 201/02/1456 and by the project
of the Ministry of Education of the Czech Republic No. LN00A063.



2 R. Gramatovici and M. Platek

gaps at some node in the structure underlying the sentence were studied. In the
view of node-gaps-complexity, word order relaxation means to stepwisely relax
the constraints in order to obtain more complex language constructions. In this
paper, we work only with global constraints.

Two types of syntactic structures are used in the relationship with depen-
dency grammars, DR-trees (Delete Rewrite trees) and D-trees (Dependency
trees). If D-trees concern the dependency structure of the sentence, DR-trees
rather concern the generation/parsing of the sentence. The two types of struc-
tures are related by the fact that any DR-tree can be transformed in an uniform
way into a D-tree. The measure for the number of gaps in a sentence computed
in the nodes of the structure is introduced for both DR-trees and D-tree. A
DR-tree (D-tree) with no gaps is called projective, while a DR-tree (D-tree) with
at least one gap is called non-projective. In this paper, we work only with de-
pendency grammars which possibly create non-projective DR-trees, but cannot
create non-projective D-trees (D-trivial grammars).

The main result of this paper presents an infinite sequence of incomparable
classes of semilinear languages generated by D-trivial grammars (Section 3).
Moreover, all these classes of languages are strictly bounded between the class
of regular languages and the class of context-sensitive languages, each of them
containing context-free and non-context-free languages (Section 4).

We prove by the results we obtain in this paper that there is a significant dif-
ference between the projectivity of DR-trees and, respectively, D-trees. We also
try to argue in this way the importance of the non-projective generation/parsing
of the sentence, which is represented by the DR-tree compared to the non-
projectivity of the sentence itself which is represented by the D-tree. In other
word, even if is a sentence is represented by a projective D-tree, this D-tree can
hide some non-projective concurrency phenomena raising in the generation or
the parsing of the sentence.

2 DR-trees and D-trees

Let M be a set. Let Tr = (Nod,Ed,Rt,Ann) be a 4-tuple , where Nod is a set
(the set of nodes), Rt € Nod is a special node (the root), Ed : Nod \ {Rt} —
Nod is a function (the set of edges) and Ann : Nod — M is a function (the
annotation function). We call path in Tr any sequence of nodes from Nod,
p = (n1,n2,...,ng), with & > 1, such that Ed(n;) = nsy1, fori =1,...k — 1.
We say that p is a path of length k — 1 from ny to ng. If & > 1, we denote p
by Path(ni,ng). We say that Tris a M-annotated tree iff there is no path of
positive length in Tr from a node n € Nod to itself. Let n € Nod be a node in
Tr. We say that n is a leaf iff n # Ed(n'), for any n’ € Nod.

We say that Tr is a finite M-annotated tree iff its set of nodes, Nod, is
finite. In the sequel of this paper, we will work only with finite annotated trees,
without clearly mention it.

If Tr = (Nod, Ed, Rt, Ann) is an annotated tree and n € Nod is a node in
T'r then there exists exactly one path from n to Rt. Moreover, if n;,n, € Nod
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are two nodes in T'r then there exists at least one node n3 € Nod such that there
exist a path from n; to n3 and a path from ns to ng. This last remark allows us
that for any two nodes if n1,n2 € Nod to denote by sup(ni,ns) the first node
in Tr which connects ny and na, i.e. (ny,...,Rt) and (ns, ..., Rt) are the paths
from n;y respectively ny to Rt, then sup(ni,ns) is the first node, which belongs
to both of these paths. From the definition of an annotated tree, sup(ni,nsa) is
uniquely defined by this property.

Let Try = (Nody, Edy, Rt1,Anny) and Try = (Noda, Eds, Rty, Anns) be
two M-annotated trees. We say that Try and T'ro are equivalent iff there is
a bijection f : Nod;y — Nody such that: i) f(Edi(n)) = Eda2(f(n)), Vn €
Nodi \{Rt:1}; i) f(Rt1) = Rto;iii) Annq(n) = Anna(f(n)), Vn € Nod;. We call
f an isomorphism between Tr; and T'rs.

In [3], (free-order) dependency grammars were introduced, as a rewriting
device over two alphabets, of non-terminals and, respectively, terminals. In its
general form, a dependency grammar can rewrite both non-terminals and ter-
minals, by a finite set of rules (productions). Through out this paper, we will
work with dependency grammars, which rewrite only non-terminals (in a simi-
lar way to context-free grammars), therefore, we will not use terminals on the
lefthand-sides of the rules.

We call dependency grammar a structure G = (N, T, S, P) such that
N and T are non-empty, finite sets (the set of nonterminals, respectively, of
terminals), S € N is the start symbol and P is a finite set, called the set of
productions such that P C (N x VV x {L,R})U (N xT), where V.= NUT.
Sometimes, we will write the productions in P as A -+ BC, A -gr BC, A — a
instead of (4, BC, L), (A, BC, R), respectively (A4, a).

Denote by Nat the set of natural numbers not equal to 0 and by Naty =
Nat U {0}.

Let G = (T, N, S, P) be a dependency grammar and denote V= NUT.
A DR-tree created by G is a V-annotated tree Tr = (Nod,Ed,Rt,Ann) such
that:

1. Nod C Natx Nat.If Ed(i, j) = (k,1) then j < l. Rt = (i,max{k | 3j, (j, k) €
Nod}).
2. A node (i,j) € Nod is a leaf if and only if j = 1 and Ann(i,j) € T.
3. If (i,j) € Nod, with j # 1 and Ann(i,j) = A, then one of the following
cases necessarily occurs:
a. j = 2 and there is exactly one node n € Nod such that Ed(n) = (i,5);
in this case n = (4,1) and if Ann(n) = a, the production A — a belongs
to P.
b. There are exactly two nodes ni,ns € Nod such that Ed(ny) = Ed(ns2) =
(4,7); in this case either:
bl. ny = (i,k) and ny = (I,m) with | > ¢, max(k,m) = j — 1 and if
Ann(ny) = B and Ann(ns) = C, the production A -, BC belongs
to P, or
b2. n; = (I,k) and ny = (¢,m) with | < ¢, max(k,m) = j — 1 and if
Ann(ni) = B and Ann(ns2) = C, the production A —r BC belongs
to P.
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Let n, € Nod,n, = (i,5). We say that 4 is the horizontal position of n, and
Jj is the vertical position of n, (see two examples of a DR-tree in Figure 1). Let
Ed(ny) = ne, i.e., e = (n1,n2) € Ed. Let 1 be the horizontal position of n; and
j the horizontal position of ny. If ¢ = j we say that e; is a V-edge, if i > j we
say that e; is an L-edge, if i < j we say that e; is a R-edge. We say that a DR-

B,
Az
. 2 . ! dTI
A, by
By b
2 b i l\
] . k
S
a1 as (12/b1 by b1 b a1 a2 a2 1 b a ¢

Fig. 1. Two examples of DR-trees and corresponding D-trees

tree Tr = (Nod, Ed, Rt, Ann) is complete iff for any leaf (i,1) € Nod, if i > 1
then also (i — 1,1) € Nod. For any complete DR~tree Tr = (Nod, Ed, Rt, Ann)
created by a dependency grammar G = (N,T,S, P), we define the sentence
associated with Tr by s(Tr) = a1as ... an, where n = max{i | (¢,1) € Nod} and
Ann(i, 1) = a;, for any i € [n]. Obviously, s(Tr) C T™.

Let G = (N, T, S, P) be a dependency grammar. We denote by:

— T(G) the set of complete DR-trees created by G and rooted by S;
— DR-L(G) = {s(Tr) | Tr € T(G)} the language generated by G, through the
set of DR-trees.

Let TT1 = (NOdl, Edl, Rtl, Annl) and TTQ = (NOdQ, Edg, RtQ, ATLTLQ) be
two DR~ trees created by the grammar G = (N, T, S, P). We say that T'ry and
Try are DR-equivalent iff there is an isomorphism f : Nod; — Nods between
Tr, and Try as V-annotated trees and:

1. f(i,7) = (s,4), for any node (i,j) € Nod;.
2. If (i,j) € Nody, with j # 1 and f(i,j) = (s, ), then:
a. if there is exactly one node n € Nod; such that Ed(n) = (¢,5) then
fn)=(s,j - 1).
b. if there are exactly two nodes ni,n2 € Nod such that Ed(n;) = Ed(ns)=
(7,7) then either:
bl. if ny = (i,k) and ny = (I,m) with [ > i, then f(ni) = (s,k) and

f(na) = (t,m) with ¢ > s or
b2. if ny = (I,k) and ne = (4,m) with [ < 4, then f(n1) = (¢,k) and
f(n2) = (s,m) with t < s.
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We say that f is a DR-isomorphism between Ty and T'rs.

Let T be an alphabet and Tr = (Nod, Ed, Rt, Ann) be a T-annotated tree
such that Nod C Nat. We call Tr a D-tree over T (see two examples of
D-trees in Figure 1). Any DR-tree Tr = (Nod, Ed, Rt, Ann) can be uniformly
transformed in a unique D-tree dTr = (dNod, dEd, dRt, dAnn) in the following
way:

1. dNod = {i | (i,1) € Nod}. dRt = i iff Rt = (i, ), for some j € Nat.

2. Let i € dNod be anode in dTr and (i,1) € Nod the corresponding leaf in Tr.
We consider the path p = (n1,no,...,nt) in Tr from ny = (i,1) to ny = Rt.
We also consider the natural number r = max{l | n; = (i,5),j € Nat}. Then
one of the following cases necessarily occurs:

If r = k then dRt = i. If r < k and n,.41 = (s,t) then dEd(i) =

3. dAnn(i) = Ann(i, 1), for any i € dNod.

We say that dTris the D-tree corresponding to Tr. The D-tree dT'r represented
in Figure 1 is corresponding to the DR-tree T'r from the same figure. Similarly
dT'l corresponds to Tl. If dTr is a D-tree corresponding to a DR-tree created
by a dependency grammar G, we say that dTr is created by G as well. A D-
tree is complete if it corresponds to a complete DR-tree. Let dEd(i) = j, i.e.,
e1 = [i,j] € dEd. If i > j we say that e; is an L-edge, if i < j we say that e; is
a R-edge.

Let Tr = (Nod, Ed, Rt, Ann) be an annotated tree, n € Nod be a node.
We define the covering subtree of n in T'r by the following annotated tree,
Tr, = (Nod,, Ed,, Rt,, Ann,) such that :

i) Nodn = {n' | there is a path from n' to n in Tr};
ii) Ed,(n') = Ed(n'), Vn' € Nod,, \ {n};
iii) Rt, =n;
iv) Ann,(n') = Ann(n'), Vn' € Nod,,.

Let Tr = (Nod, Ed, Rt, Ann) be a complete DR-tree, n € Nod and let
Tr, = (Nod,, Ed,, Rt,, Ann,) be the covering subtree of n in T'r. We define the
coverage of n in T'r by the set Cov(n,Tr) = {i € Nat | there is a node (i,1) €
Nod,}. Let n € Nod be a node in Tr such that Cov(n,Tr) = {i1,42,...,%m},
with 41 <149 <... <4y, and 494 —¢; > 1 for some j € Nat, j < m. We say that
the pair (¢;,9,41) is a gap in T'r at the node n. Let Tr = (Nod, Ed, Rt, Ann)
be a complete DR-tree, n € Nod be a node and Cov(n,Tr) be its coverage. The
symbol DR-Ng(n,Tr) represents the number of gaps in T'r at the node n. The
symbol DR-Ng(Tr) is the maximum number of gaps in T'r at any node n € Nod:

DR-Ng(Tr) = max{DR-Ng(n,Tr) | n € Nod}.

We say that DR-Ng(Tr) is the DR-node-gaps complexity of Tr. We say that
Tr is projective iff DR-Ng(Tr)=0.
Let G = (N,T, S, P) be a dependency grammar. We denote by:

— T(G,i) C T(G) the set of complete and rooted by S DR-trees T'r created by
G with at most ¢ gaps, DR-Ng(Tr) < i;
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— DR-L(G,i) ={s(Tr) | Tr € T(G,i)} the language generated by G, through
DR-trees with at most i gaps.

We mention the following obvious claims.

Claim. Let G be a dependency grammar. Then the following inclusions hold for
any ¢ € Natyp.
T(G,i) CT(G,i+ 1) C T(G), DR-L(G,i) C DR-L(G,i+1) C DR-L(G).

Claim. For any complete DR-tree T'r; created by a dependency grammar G
there exists a DR-equivalent projective complete DR-tree T'ry created by the
same grammar G.

Let us suppose that T'r3 is a DR-tree DR-equivalent to 7T'r;. Then T'r3 is also
created by G.

The same node-gaps-complexity measure can be defined for D-trees. In this
paper, we are interested only in projective D-trees, therefore we will define in
the following only this notion.

Let dTr = (dNod,dEd,dRt,dAnn) be a complete D-tree, n € dNod be a
node and dT'r, = (dNod,,dEd,,dRt,,dAnn,) be the covering subtree of n in
dTr. We define the coverage of n in dT'r by the set Cov(n,dTr) = dNod,.
Let n € dNod be a node in dT'r such that Cov(n,dTr) = {i1,42,...,%m}, With
i1 <2 < ... < ipy and 441 —4; > 1 for some j € Nat, j < m. We say that the
pair (i;,%;4+1) is a gap in dT'r at the node n. We say that dTr is projective
iff dT'r has no gaps at any node n € dNod. The following result between the
projectivity of DR-trees and corresponding D-trees can be easily proved.

Claim. If Tr is a projective complete DR-tree, then dTr, the corresponding
D-tree is also projective.

The reverse statement is not true as we may see in the below example.

Ezample 1. Let us consider G = (N, T, S, P) a dependency grammar, with N =
{A,B,C,S}, T ={a,b,c,l}, P=1{S = Aa,S - 1,A - Bb,B = Cc,B =
le,C—p Aa}. We can easily define a non-projectively parsed DR-tree for which
the corresponding D-tree is projectively parsed (see in Figure 1 the DR-tree Tl
and D-tree dT'1).

3 D-trivial grammars with restrictions

In this section, we will define and study several particular forms of DR-trees
and dependency grammars. In the sequel of this paper, we will consider only
dependency grammars in a normal form described by the following properties:
the start symbol does not occur in the righthand side of any production; in any
production of the form A — a, the lefthand side nonterminal is the start symbol;
any production is used in at least one complete DR-tree created by the grammar
and rooted by the start symbol.

It is not hard to see that the D-grammars with the previous restrictions keeps
the power of nonrestricted D-grammars due to the generation of the languages
and of the sets of D-trees.



On D-trivial Dependency Grammars 7

Definition 1. Let G be a dependency grammar. We say that G is o D-trivial
grammar if G creates only projective D-trees.

Definition 2. Let dTr = (dNod,dEd,dRt,dAnn) be a D-tree and dNod =
{1,...,n}. We say that dT'r is a D-trivial D-tree iff it holds:

a) Let Pl be a path of dT'r which contains an L-edge. Then all edges in Pl
are L-edges. Obviously, if Pr is a path which contains an R-edge then all edges
in Pr are R-edges.

b) There exists at most one node ng € dNod (ng, € dNod) such that into ng
(nr) lead ot least two R-edges (L-edges). We call the ng the left cross-node
of dT'r and the nr, the right cross-node of dT'r.

We can see that if ng = ny, then also ng = dRt. In this case we call dTT an
LR-bush.

If ng # nr we call the covering subtree of ng (nr) the R-bush (L-bush) of
dTr. We can see that Cov(ng,dTr) = {1,...,ng} (Cov(ng,dTr) = {ng,...,n})
and the nodes {1,...,ng — 1} ({nr +1,...,n}) are leaves of dT'r.

We will say that two D-trees dT'r1, dT'ro are D-equivalent iff there are two
DR-equivalent DR-trees Tr1, Try such that dT'r1 corresponds to Try and dTr,
corresponds to Trs.

Let us focus on Fig. 2, which contains some types of D-trivial D-trees. The
picture a) depicts an LR-tree. The picture b) depicts a so called L-path. The
D-tree c¢) does not contain the R-bush, but does contain the L-bush. The D-tree
d) contains only L-edges. The D-tree dT'l in Fig. 1 is an L-bush.

We can make gradually the following observations on the form of D-trees
created by a D-trivial grammar.

Claim. i) Let dT'r be a D-trivial D-tree. We can see that any D-tree D-equivalent
to dT'r is D-projective and D-trivial.

ii) To any D-tree which is not a D-trivial D-tree there is a D-equivalent D-tree
which is not D-projective.

From the previous observations and from Claim 2, it follows the next state-
ment.

Claim. Let G = (N, T, S, P) be a dependency grammar. Then G is a D-trivial
grammar iff any D-tree created by G is a D-trivial D-tree.

Based on the above claims and observations, the following result characterizes
the form of productions in a D-trivial grammar.

Proposition 1. Let G = (N, T, S, P) be a dependency grammar. Then G is
a D-trivial grammar iff there is a partition of N such that N = |J; ;<10 Ni,
N;NN; =0, for any 1 <14 < j <12, Ny = {S}, and the set of productions is
described by:

PC{N: x[TU({(TTUTN2UNg(NsUT)) x{R})U
U((TTUNsTU (NsUT)Nyp) x {L}H]}U
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Fig. 2. Four examples of typical D-trivial D-trees.

{No x [((TTUTNy) x {R})U((TT U NgT U (N;UT)Ny;) x {L}]}U
{N3 x [((TTUTNgUNyg(Ng UT)) x {R})U ((TTUN3T) x {L})]}U

{Ny x (TTUNgTUTN11) x {L}}U{N5 x (TTUTN;U NoT) x {R})}U
{Ng x [((TTUTNsg) x {R})U ((TT U NgT) x {L})]}U

{Nz x (TTUTN7) x {R}} U{Nsg x (TTUNsT) x {L}} U

{Ny x (TT U NgT UTNyo) x {R}} U{N1o x (TT UTNyp) X {R}} U

{N11 x (TT UTN11 UN12T) x {L}} U {N1s x (TT U N12T) x {L}}

Definition 3. Let G = (N, T, S, P) be a D-trivial grammar and let us denote
V =NUT. We say that G is a LD-trivial grammar if G does not contain
productions of the form A —g BC, i.e. P C (N x (V\{S}H(V \{S}) x {L}H U
({S}xT).

Remark 1. Let us consider G = (N,T,S,P) a LD-trivial grammar, dT'r =
(dNod,dEd,dRt,dAnn) a complete D-tree created by G and dNod = {1, ...,n}.
Then dT'r is D-trivial and contains the L-edges only. It means that dT'r is ei-
ther an L-bush, or consists from an L-bush, and from the path leading from the
(right) cross-node to the root, or it does not contain the L-bush (in this case we
call it an L-path).

The following result characterizing LD-trivial grammars can be easily derived
from the previous observation, or from Proposition 1.

Claim. Let G = (N,T,S,P) be a dependency grammar. G is a LD-trivial
grammar iff there exists a partition of the set of nonterminals such that N =
N1 UN>;UN3, Ny = {S}, N; N N; ={, for any 1 <i < j < 3 and holds:

PC{N; x[TU((TTUTN3) x{LP]}U{N2 x (TTUTN,UNsT)x {L}}U
{N3 x (TT U N5T) x {L}.

Let us observe that the dependency grammar defined in Example 1 is a LD-trivial
grammar.
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Using Claim 3 (or directly, as in [2]) one can prove the following result char-
acterizing the form of DR-trees created by a LD-trivial grammar.

Claim. Let Tr = (Nod, Ed, Rt, Ann) be a complete DR-tree created by a LD-
trivial grammar G = (N, T, S, P). The following properties hold:

a) Let ny = (4,5) € Nod be a node in Tr. Let T'r,,; be the covering subtree of
ny in Tr. Then (k,l) € Try, implies i < k.

b) Denote k = max{i | 3j > 1, (i,j) € Nod}. If (k,l) € Nod then (k,j) € Nod,
forany 1 <j <I.

¢) Denote | = max{j | (k,j) € Nod}. Then for any node (i,j) € Nod, with
1 <k,7>1impliesj=k—1+1.

d Rt=(1,k+1-1).

e) Denote m = max{i | 3j € Nat, (4,5) € Nod}. Then m =k +1 — 1.

f) If T'r contains m leaves, then the longest path in T'r has exactly m nodes.

We say that a DR-tree created by a LD-trivial grammar is a LD-trivial
DR-tree. Using notations from Claim 3, we say that a LD-trivial DR-tree T'r
is a DRL-bush if ¥ = 1 and a DRL-path if [ = 2. Let us note that these
notations are derived from the shape of corresponding D-trees.

To prove the main results of this paper we will consider two types of languages
of a particular kind. Let n € Nat be a natural number, V' = {by,...,b,} be an
alphabet and I € V be a distinct symbol. Denote by Ly, .5, and Lfgffffbn two
languages over V U {I} such that Ly, 5, = {l(b1)™...(by)™ | m € Nato} and
Ligtal, = {lw € V* | |wly, = ... = |wly, }, where |w|y denotes the number
of occurrences of the symbol b in the string w. Note that the grammar G in
Example 1 generates the language L{°tal.

We will show the following result which will allow us to work with LD-trivial
grammars instead of D-trivial grammars.

Proposition 2. Let i,n € Nat, V = {b1,...,b,} be an alphabet, | ¢ V be a
distinct symbol, L be a language over V U {l} such that Ly, .5, C L C Lig',
and G be a D-trivial grammar such that DR-L(G,i) = L. Then, there exists a
LD-trivial grammar G" such that DR-L(G",i) = L.

Proof. Let us consider G = (N, T, S, P) a D-trivial grammar such that Ly, .5, C
DR-L(G,i) C Lfgfffl.bn. From the fact that all sentences generated by G should
begin with [, it results that any (D-trivial) D-tree generated by G does not
contain the R-bush. In any such tree there is at most one path leading from
a leave trough the R-edges only (let us call it R-path). Let us consider such a
D-trivial D-tree dT'r with an R-path. We can see that there is exactly one LD-
trivial D-tree dT'L such that it has the same set of nodes as dT'r, and the same
L-bush as dT'r and the same annotation function as dI'r. We say that dT'L is
L-transformed from dT'r.

Considering the previous claims, remarks and Proposition 1 it is not hard to
see, that it is possible to construct an LD-grammar G" such that DR-L(G",4) =
DR-L(G,i) for any natural i, where the D-trees generated by G" are the L-
transformations from D-trees generated by G. O
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We introduce the main classes of languages which we address in our paper.
We denote by:

— DR-L (tDR-L, tIDR-L) the class of languages generated by all dependency
grammars (respectively, D-trivial and LD-trivial grammars) through the set
of DR-trees;

— DR-L(i) (tDR-L(%), t!DR-L(%)) the class of languages generated by all depen-
dency grammars (respectively, D-trivial and LD-trivial grammars) through
the set of DR-trees with at most 7 gaps.

Proposition 3. Let i € Naty be a natural number, V.= {b1,...,bai11} be an
alphabet and 1 ¢ V be a distinct symbol. Then there exists a language L over

V U {l} such that Ly, . 4y, €L C Lf,‘jltf’.l.bgi+1 and L € tIDR — L(7).

Proof. Consider G = (N, VU{l}, Bai+1, P) a LD-trivial grammar such that N =
{Bj |j € [2i+1]}, P ={Bjy1 = Bjb; | j € [2]} U{B1 = Bait1bzit1, Baiy1 —
I}. We take L = DR-L(G, ¢), hence L € t!DR — L(i).

It is easy to observe that L C Lg™, .
Let m € Naty be a natural number and Tr,, = (Nody,, Edp,, Rty, Anng,)

be a D-trivial left Dr-tree such that
— Nod,, ={(L,t+1) [t € [(2i + 1)m + 1]} U {(s,1) | s € [(2i + 1)m + 1]}.

(1t +1), if 5 =1;

(+2i+1)y-1)+21) ifs=(x—-1)m+y+1,t=1,
z=2(z-1)+1,z€ i +1],
y € [m];

4+ 2i+1)(m—-y)+2,)ifs=(z—-1)m+y+1,t=1,
x=2z,z€[i+1],y € [m],

Ed,(s,t) =

for any (s,t) € Nod,,.
— Rty = (1,(20 + 1)m + 2);

l, ifs=1,t=1;
BQH_l if s = ].,t= 2,
Anng(s,t) =< B, ifs=1t=2+2i+1)(y—1)+2,2 € [2i +1],
y € [m];
by ifs=(@—1)m+y+1,t=12¢c[2+1],y€m)],

for any (s,t) € Nod,,.
We can count the number of gaps of any node (s,t) in T'r,, in the following way:
z, ifs=1t=2z4+20rt=22+3,2z€ [i];
i, ifs=1,2+4<t< (2 +1)(m—1)+3;
DR-Ng((s,t),Trm) =R i—2z,ifs=1,t=(2i+1)(m—1)+ 22+ 2 or

t=2i+1)(m—-1)+22+3,z€[i —1];
0 otherwise.
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We have that DR-Ng(T'r,,) = max{DR-Ng(no,Try) | no € Nod,,} = i, which
proves that T'r, is a LD-trivial DR-tree with at most ¢ gaps, created by G. Thus
1(b1)™ ... (bn)™ = s(Trm) € L, for any m € NatU{0}, hence Ly, .. 5,,., C L. O

Lemma 1. (pumping lemma) Let L € tIDR-L(i) be a language. Then, there
exist two natural constants p,r € Nat such that for any sentence w € L with
|w| > p, there exists a decomposition of w in w = aya1z . ..a.a.ar11 such that
the following conditions hold:

i) |an| >0, for any h € [r];
i) lay...a;| <p; _
i) a1(a1)as...ap(a;) arqr1 € L, for any j € Naty.
w) If r > i+ 1 there are at most i distinct indices h such that 1 < h <r +1
and |ag| > p.

Proof. Let G = (N,T, S, P) be a LD-trivial grammar such that L = DR-L(G,i).
Let n be the number of nonterminals in G. Denote p = n + 1. Let us consider a
sentence w € L with |w| > p and a LD-trivial DR~tree T'r created by G such that
s(Tr) = w. Since T'r has exactly |w| leaves, from Claim 3 f), we have that there
exists at least a path (ny,na,...,ny) in Tr (the longest path in 7'r). Since |w| >
n+1, nodes on this path are annotated by more than n nonterminals, thus in the
sequence Ann(nz), ..., Ann(n,|) there exist at least two equal nonterminals. Let
us consider the first two equal nonterminals in this sequence, i.e. let us consider
two indices 1 < s < t < |w| such that Ann(ns) = Ann(n:) and all nonterminals
in the sequence Ann(nsa),..., Ann(n;_1) are distinct.

In the following, we will use for T'r notations from Claim 3. There are three
possible cases:
1.1 < s < t < I. We consider the sequence of nodes n; = (k,t),n;—1 = (k,t —
1),...,ns+1 = (k,s + 1). Each of these nodes has a left dominated daughter,
which is a leaf. Consider this sequence of leaves, (no, 1),. .., (no;_s, 1) such that
Ed(no;,1) = nsyy, for any 1 < i <t —s. We denote by ap, with A from 1 to a
certain r, a sequence of terminals Ann(nog, 1)Ann(nogy1,1) ... Ann(nogyy, 1),
where no,, n0z41, - . ., noy is a maximal sequence of consecutive natural numbers.
Let w = aqarz...a,a,0r41. We have |ay ...a.| = r. Since the path from
ns+1 to my has at least one node and at most n nodes (as all nonterminals
on this path are distinct), we obtain r < p, which, together with |ap| > 0,
for any h € [r] fulfills conditions i) and ii) of the pumping lemma. We may
replace the covering subtree T'r,, with the covering subtree T'r,, (preserving
the completeness under the transformation) and the resulted DR-tree T'rg is
still a complete DR-tree created by G. Obviously the transformation will not
increase the number of gaps. It results s(Trg) = ayas - .. a,41 € L, which proves
condition iii) of the lemma for j = 0. For j = 1, aya1as . . . arar0pp1 = w, which
obviously belongs to L. Moreover, we may replace the covering subtree T'r,,, with
the covering subtree T'r,,, in such a way that new introduced leaves corresponding
to a string ap, h € [r] will stick immediately after the leaves from the initial
covering subtree T'r,,, corresponding to the same sequence ap. The resulted DR-
tree Tro is still a complete DR-tree created by G. Again the transformation
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will not increase the number of gaps. We can repeat this transformation for
an unlimited number of times, obtaining in this way an infinite sequence T'r;,
with j > 2, of complete DR-trees created by G with at most ¢ gaps. It results
that s(Tr;) = ai1(a1)ias ...a.(a;)?apq1 € L, for any j > 2 which completes
condition iii) of the lemma.

Finally, if » > i + 1, suppose towards a contradiction that there exist i + 1
distinct indices h; such that 1 < h; < r+1 and |ap;| > p, for all j € [i +1]. We
observe that none of the gaps induced by ay;, with j € [i + 1] in the coverage of
ng in T'r can be fulfilled by the coverage of ns in T'r, since the latest one has at
most p elements. It follows that DR-Ng(n¢, Tr) > i + 1 which is a contradiction
with the assumption that Tr € T(G,4). This means that also the condition iv)
of the lemma is true.

2.1 < s <1 < t. If we replace the covering subtree T'r,, with the covering
subtree T'r,, in a similar way as above, we obtain a DR-tree created by G, but
which is not a LD-trivial DR-tree. This contradicts the fact that G is a LD-trivial
grammar, which creates only LD-trivial DR-trees. Thus, this case is not possible
under the pumping lemma’s assumptions.

3.1 <s <t < |w|]. We proceed in a similar way as for the first case, by taking
r = 1. Condition iv) of the lemma does not apply in this case. O

Proposition 4. Let i,k € Naty be two natural numbers such that i < k, V =
{b1,...,bag41} be an alphabet, | € V be a distinct symbol and L be a language
over V.U {1} such that Ly, . by, € L C Lig* Then L ¢ tIDR-L(i).

lbl...b2k+1 *

Proof. Suppose towards a contradiction that L € t!{DR — L(i). It follows that
the pumping lemma holds for L. Consider p and r the two constants from
the pumping lemma, a natural number n such that n > 2p and the sentence
w=1(b1)"...(bag+1)". We have |w| = (2k+1)n+1 > p, hence, from the pump-
ing lemma, it should exists a decomposition of w in w = aya102 ... 0,041
such that conditions i)-iv) of the lemma hold. Take j = 0 in condition iii). It

results that wo = ajaias ... arara.41 € L. Since L C Lfgfff{b2k+l, it follows that
|wolp, = -.. = |wol|pgy,, and further that also |ay ... ar|p, = ... = |a1...ar|py,,-

Since |a1 - ..ar| < pand n > 2p, it results that ap, for some h € [r] cannot include
more than two distinct symbols from w, hence r > k+ 1 > ¢ 4+ 1 and there are
at least k > ¢ distinct indices h such that 1 < h < 7 + 1 and |ap| > p, which
yields a contradiction with condition iv) from the pumping lemma. It results
that L ¢ tIDR-L(3). O

Corollary 1. Let i,k € Naty be two natural numbers such that i < k, V =
{b1,...,bags1} be an alphabet, | ¢ V be a distinct symbol and L be a language
over VU {l} such that Ly, C L C Ligtad Then L € tDR-L(i).

sbokta Ib1...bok41”

Proof. Suppose towards a contradiction that L € tDR — L(i). It follows that
there is a D-trivial grammar G such that L = DR — L(G, ). From Proposition
3, it results that there is a LD-trivial grammar G’ such that DR — L(G',i) =
DR — L(G,i) = L. We obtain that L € t!DR — L(), which is a contradiction
with Proposition 4. O
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Corollary 2. tIDR-L(k) \ tDR-L(i) # 0, for any i,k € Nato, with i < k.

Proof. Let V = {by,...,bap+1} be an alphabet and [ ¢ V' be a distinct symbol.
From Proposition 3, we have that there exists a language L over V U {l} such
that Lip,.. by, C L C Lig!*, . and L € tIDR-L(k). From i < k and from

Corollary 1, we have that L ¢ tDR-L(i). Thus L € tIDR-L(k) \ tDR-L(3). ]
Proposition 5. tIDR-L(i) \ tDR-L(k) # 0, for any i,k € Nat, with i < k.

Proof. Let V = {b1,...,bi+3} be an alphabet and I ¢ V' be a distinct symbol.
One can prove in a similar way as we did for Proposition 2, that there exists
a language L over V U {I} such that {I(b1)™ ... (b2:)™ (b2i+1b2i+2b2i43)™ | m €
Nato} € L C L', . and Ly € #IDR-L(i). A similar kind of LD-trivial
grammar should be defined and only the LD-trivial DR-tree corresponding to
a sentence l(bl)m . (bg,’)m(b2i+1b2i+2b2i+3)m, m € Nat(], has a different form,
but a maximal number of ¢ gaps.

Suppose to a contradiction that L € tDR-L(k). It means that there exists a D-
trivial grammar G such that L = DR-L(G,k). From Proposition 2, it results that
there is a LD-trivial grammar G’ such that DR-L(G', k) = DR-L(G, k) = L. Let
m € Nat be a natural number. Since w,,, = l(bl)m . (bzi)m(b2i+1b2i+2b2i+3)m S
L, there exists a LD-trivial DR-tree T'r,, such that s(Trp) = w.,. We can
suppose - without any loss of generality - that T'r,, is a L-bush®.

We disregard the manner in which leaves are distributed in T'r,, and keeping
the spine of T'ry, we build, bottom-up, a L-bush T'r!  in the following way: We
consider all nodes on the spine of T'r,,;, bottom-up, from (1,3) to Rt (the leaf
(1,1) will remain in the same position).

For any node of the spine, we arrange its right daughter (which is a leaf)
annotated with a symbol b, in a sequence bounded to the left by the leaf ((z —
1)m + 2,1) and to the right by the leaf (zm + 1, 1).

The leaves are arranged consecutively on a first-met-first-arranged base, left
to right for leaves annotated with a symbol ba,_1, 2z € [i + 2] and right to left
for leaves annotated with a symbol bs,, z € [i + 1].

After the L-bush T'r], is completed, we observe that:

i) s(Trl,) =1(b1)™...(by13)™;

ii) Trl, € T(@);iii) Tr!, € T(G,i + 1) (at any moment we have at most
i + 2 islands of natural numbers in the coverage of any node in T'r/,, thus T},
cannot have more than i + 1 gaps).

Since i < k, it results that T, € T(G,k), hence I(b1)™ ... (b2i43)™ €
DR-L(G k). We obtain that {I(b1)™ ... (b2it3)™|m € Nato} C L C Lfgt*, .
Using this last statement, the fact that ¢ < j and Proposition 4, we have that
L ¢ tIDR-L(i), which is a contradiction with the initial assumption.

It follows that L € tIDR-L(i) \ tDR-L(k). O

! Tr,, may include only a bounded ”path” prefix, since otherwise we would be able to
"pump” in w,, only a part of the symbols b1, ..., bsi+3, keeping the same number of
gaps for the DR-tree, hence either L # DR-L(G’,k) or L € Lf,‘,’f_“_l_b2i+3. In this case,
the rest of proof would be done for a natural number m greater than the longest

"path” prefix in such a LD-trivial Dr-tree T'r,,. Still, the final conclusion would hold.



14 R. Gramatovici and M. Platek

Theorem 1. The classes of languages, generated by D-trivial grammars with a
bounded number of gaps, form an infinite sequence:

tDR-L(1),tDR-L(2),...,tDR-L(n),...
such that any two different classes in this sequence cannot be compared.

Proof. Tt results from the fact that tIDR-L(i) C tDR-L(i), for any ¢ € Naty,
from Corollary 2 and Proposition 5. O

4 Other properties

We denote with REG, LIN, CF and CS the classes of regular, linear, context-
free, and respectively, context-sensitive languages.

Let V = {a4,...,a,} be an alphabet. We define the Parikh mapping &y :
V* — Natd by dv(z) = (|Z|ayy---;|T|ay), for any z € V*. We extend the
mapping in a natural way to languages. Two languages L1, Ly € V* such that
Py (L) = Py (L2) are said to be letter equivalent. Consider the operations of
componentwise addition and multiplication by a constant over the set of natural
vectors of a given dimension. A subset M of Natj is said to be linear if there
exist the vectors v, v1,...,Um, m > 0, such that M = {vo + > ;" pivi | pi €
Natg,1 > i > m}. A finite union of linear sets is called a semilinear set. A
language L C V is called semilinear if v (L) is a semilinear set.

Proposition 6. Let L € DR-L(i), for some i € Nat. Then L is semilinear.

Proof. Let G be a dependency grammar such that L = DR-L(G,i). Denote
Ly = DR-L(G,0). From Claim 2, we know that any DR-tree Tr € T(G,1) is
DR-equivalent with a projective DR-tree T'rg € T(G,0). Then &y (s(Tr)) =
Py (s(Trg)). Since Ly C L (Claim 2), it results that ¢y (L) = &y (L), i.e. L is
letter equivalent to Lg. But Ly is a context-free language (see e.g. [4]) and from
the Parikh Theorem it is semilinear. It results that also L is semilinear.

O

Proposition 7. i) tIDR-L(0) = REG;

#) LIN C tDR-L(0);

i) REG C tIDR-L(7), for any i € Nat (all inclusions are strict);
iv) tDR-L(i) C CS, for any i € Naty (all inclusions are strict).

Proof. i) If G = (N, T, S, P) is a regular grammar, then we can define a LD-
trivial grammar G' = (N,T,S,P') with P' = {(A,aB,L) | (A,aB) € P} U
{(4,a) | (A,a) € P}. It results DR-L(G',0) = L(G). Let G = (N,T, S, P)
be a LD-trivial grammar and N = N; U Ny U N3 be the partition of the set
of nonterminals defined in Claim 3. We can define a non-deterministic finite
automaton M = (Q,T, S, F,6) such that Q = NU{B4 | A€ No,B € N3} U
{qF}U {pb | (Aaab7L) € P7A € Nl UNQ}U {rg’b | (A,ab,L) € PaB € N27A €
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N3}, F = {qy} and the transition function § is defined by:

({¢F | (¢,a) € P}U{q' | (¢,aq', L) € P}U
U{ps | (¢,ab,L) € P} if¢g=25,
{d'| (qq, ag',L) € P} U {py|(g,ab,L) € P}U
u{ry,|(A,ab,L) € P,A € N3} if ¢ € Ny,
8(g,a) =+ A 15 ’ )
(¢:a) {qF} if ¢ = pa,
{BA} if g = Té w
{CA| (C,Ba,L) € P,C € N3} U{qF | (A, Ba,L) € P}if ¢ = B4,
U] otherwise.

We have L(M)=DR-L(G,0).

ii) Let G = (N,T,S, P) be a linear grammar. We may suppose that G con-
tains rules of the form: A — aB, A — Ba, A =— ab, S — a, where A/B € N,
with B # S, and a,b € T. We define a D-trivial grammar G' = (N, T, S, P') with
P' = {(A,aB,R) | (A,aB) € P}U{(4,Ba,L) | (A,aB) € P} U {(A,ab,L) |
(A,ab) € PYU{(4,a) | (4,a) € P}. It results DR-L(G',0) = L(G).

iii) Like for i), if G is a regular grammar, we can define a LD-trivial grammar
G' = (N,T,S,P") with P' = {(A,aB,L) | (4,aB) € P}U{(4,a) | (4,a) €
P} and we have DR-L(G',0) = L(G). But G creates only projective DR-trees
(T(G',4) = T(G,0), for any i € Natg), hence DR-L(G',i) = DR-L(G',0) =
L(G), for any i € Natg. If i € Nat, from the item i) of this proposition and from
Corollary 2, we obtain the strictness of the inclusion.

iv) Let L € tDR-L(7), 1 € Natg be alanguage, G = (N, T, S, P) be a D-trivial
grammar such that L = DR-L(G,i). We can define a linear bounded automaton
M = (Q,T,%,8,#,q0,F,d) with a work space of n + 2 cells where n is the
length of the input word. $ and # are the left (respectively, right) side markers
(none of these two tape symbols is in T'). ¢0 is the initial state of the automaton
M, while the set of final states is defined by F' = {gF'}. The set of states @,
the tape’s alphabet and the transition function § are defined according to the
method described in the following. We define an instant configuration of M as
a triple (q,a,1), where ¢ € Q, @ € X%, |a| = n + 2, for some n € Nat and
1 <i < n+2. We will use instant configurations to describe the behavior of M.

The initial configuration of M is (go, Sw#,2), with w € TT, |w| = n. In the
first step, the automaton ” guesses” the horizontal position h of the start symbol
in the DR-tree corresponding to w. First the application of a production of the
form S — a, with a € T is investigated. In this case, the symbol on the position
h = 1 should equal a. If this is the case, the automaton rewrites a by S and
checks for the rest of the tape. If there are no more other terminal symbols on
the tape, M enters the final state ¢F' and accepts the initial input word.

If the application of a (unique) production S — a fails, the automaton starts
to rewrite (every time two) symbols from the tape, according to the productions
from G. At this stage, two types of transitions are possible.

1. A production of the form A - za (respectively A —g az), with
z € NUT and a € T is under investigation.

In this case, the symbol on the position A should be equal to z, if = is a
terminal, or to z* if 2 is a non-terminal (the variable k, with 0 < k < 4, counts
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the current number of gaps, see below) and somewhere on the tape, to the right
(respectively, to the left) of the position h, an unmarked terminal equal to a
should exist. Then, the application of the production consists in marking the
corresponding terminal symbol and rewriting the symbol on the position h with
Al where [ is modified according to the transformation occurred in the number
of gaps. The value of | can increase/decrease with 1, or remain the same with &
(if z is a terminal, then k is treated as 0), according to the following procedure
(we consider only productions of the form A —p, za).

If the new marked symbol is not near (to the left or to the right of) an already
marked symbol (or is not on the position h+1), then the indicator for the number
of gaps will increase with 1 (a new gap is created; obviously, the indicator cannot
be ever greater than 7), as in:

(q1,8a1...an_12%apt1...bac...an#t, h) - (q1,8a1...ap_1 A" ajiq . bac...an#t, h).

If the new marked symbol is near an already marked symbol, but not to the
left and to the right in the same time (or on the position h + 1, but not near
other marked symbol), then the indicator for the number of gaps will remain
unchanged, as in (only the left case is considered):

(q1,%a1...ap_12*Fap .. bac...an#, h) F (q1,$a;...an_1 A*apyq...bac...an 3, h).

If the new marked symbol is near an already marked symbol, both to the left
and to the right (or on the position h + 1, and near other marked symbol), then
the indicator for the number of gaps will decrease with 1 (a gap was filled-in),
as in: .

(@1,%a1..an—12%apy1..baC...an#t, b) b (g1, 8a1...ap_1 A" Lapi. bac...an#, h).

2. A production of the form A — zB (respectively A —g Bz), with
2 € NUT and B € N is under investigation.

In this case, the symbol on the position A should be equal to z, if z is a
terminal, or to z* if  is a non-terminal. The automaton writes A¥ on the posi-
tion h (or A° if x is a terminal) and remembers the non-terminal B under the
name of the current state. Consider for discussion the case A - Bz only (the
procedure for a production of the form A — xB is similar, but is carried on
to the right). The automaton can apply a (possibly empty) sequence of produc-
tions of the form A — Bb, with B € N, b € T, using transitions of the form:

*
(¢*,%a1 ...aj_1aja41 - . -an#, §) F (¢5,8a1 ... aj_1baji1 ...an#,j — 1),

until an arbitrary state g? is reached. Than, M proceeds to the same kind of
rewriting as in the general case 1., starting with the current position A instead
of h and considering only productions of the form A — xza. This phase is ran
until all the terminals from 1 to [h — 1 are marked. If in this state, the symbol
on the position Ih equals B°, then M goes back to continue the analysis at the
position h.

If the automaton M succeeds to rewrite all the input symbols on the tape
and the symbol on the position j is equal to S°, then M enters the final state
qF and accepts the initial input word. The detailed definitions of () and ¢ are
left to the reader. Since all languages in tDR-L(i) C DR-L(i) are semilinear
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(Proposition 6), we can easily find a non-semilinear language in C'S \ tDR-L(%)
(like {a®" | n € Nato}). |

5 Conclusions

The main aim of this contribution was to discuss the fact that there is a sig-
nificant difference between the (non-)projectivity of DR-trees and respectively
D-trees. We stressed on the fact that D-trees can hide some word-order freedom
phenomena raising in the generation or the parsing of the sentence. As outcome,
an infinite sequence of incomparable classes of semilinear languages bounded
between the class of regular and respectively context-sensitive languages was
obtained. The massive incomparability achieved trough the global restrictions
only is the main novelty of this contribution. This result strengthens the results
from [4], where some infinite hierarchies of classes of languages were obtained.
Those hierarchies were obtained by using stronger combinations of local and
global restrictions applied to free-order dependency grammars.

In the close future, we will study the same types of global word-order re-
strictions as here, but applied on dependency grammars without any further
restrictive condition, like D-triviality. We believe that we will achieve new se-
quences of incomparable classes of languages. Moreover, we believe that to this
aim we can use the sequence of ”witness” languages, which we already used in
this paper.

We will study also free-order dependency grammars with several kinds of
topological restrictions in order to understand complex word-order and concur-
rency phenomena occurring in the syntax of natural languages. We believe that
the study of free-order dependency grammars can also contribute to the under-
standing of concurrency phenomena, in general, as well.

Acknowledgements. The authors acknowledge Tom4s Holan for fruitful
discussions.
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Abstract. We present a new method for expressing Chaitin’s random
real, £2, through Diophantine equations. Where Chaitin’s method causes
a particular quantity to express the bits of £2 by fluctuating between finite
and infinite values, in our method this quantity is always finite and the
bits of {2 are expressed in its fluctuations between odd and even values,
allowing for some interesting developments. We then use exponential
Diophantine equations to simplify this result and finally show how both
methods can also be used to create polynomials which express the bits
of 2 in the number of positive values they assume.

1 Recursive Enumerability, Algorithmic Randomness and
(9]

One of the most startling recent developments in the theory of computation
is the discovery of the number (2, through the subfield of algorithmic infor-
mation theory. {2 is a real number between 0 and 1 which was introduced by
G. J. Chaitin [2] as an example of a number with two conflicting properties: it
is both recursively enumerable and algorithmically random. Very roughly, this
means that (2 has a simple definition and can be computed in the limit from
below, yet we can determine only finitely many of its digits with certainty—for
the rest we can do no better than random.

Understanding the full importance of these properties requires some familiar-
ity with the recursive functions—commonly presented through models of com-
putation such as Turing machines or the lambda calculus. For the purposes of
algorithmic information theory, however, it is convenient to abstract some of
the details from these models and consider a programming language in which
the (partial) recursive functions are represented by finite binary strings.! These
strings are just programs for a universal Turing machine (or universal lambda ex-
pression) and they take input in the form of a binary string then output another
binary string or diverge (fail to halt). For convenience, we will often consider
these inputs and outputs to encode tuples of positive integers.

! For more details see Chaitin [3].
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On top of this simplified picture of computation, we impose one restriction
which is necessary for the development of algorithmic information theory (and
hence 2). The set of strings that encode the recursive functions must be prefix-
free. This means that no program can be an extension of another, and thus
each program is said to be self-delimiting. As algorithmic information theory
is intricately linked with communication as well as computation, this is quite
a natural constraint—if you wish to use a permanent binary communication
channel, then you need to know when the end of a message has been reached
and this cannot be done if some messages are extensions of others.

There are many prefix-free sets that one could choose and many recursive
mappings between these and the recursive functions. These different choices of
‘programming language’ lead to different values of {2, but this does not matter
much as almost all of its significant properties will remain the same regardless.
However, to allow talk of {2 as a specific real number we will use the same
language as Chaitin [3].

Now that we have explained what we mean by a programming language, we
can give a quick overview of computability in terms of programs. A program
computes a set of n-tuples if, when provided with input (xi,..., %), it returns
1 if this is a member of the set and 0 otherwise. A program computes an infinite
sequence if, when provided with input n, it returns the value of the n-th element
in the sequence. A program computes a real, r, if it computes a sequence of
rationals {r,} which converges to 7 and |r —r,| < . These sets, sequences
and reals that are computed by programs are said to be recursive.

There are also many sets, sequences and reals that cannot be computed,
but can be approximated in an important way. A program semi-computes a set
of n-tuples if, when provided with input {(zi,...,z,), it returns 1 if this is a
member of the set and diverges otherwise. A program semi-computes an infinite
sequence of bits if, when provided with input n, it returns 1 if the n-th bit in the
sequence is 1 and diverges otherwise. A program semi-computes a real, r, if, when
provided with input n, it computes a rational number, r,, where {r,} converges
to r from below. These sets, infinite bitstrings and reals that are semi-computed
by programs are said to be recursively enumerable or r.e.

There is an important point that needs to be made concerning reals and their
representations. Each real number between 0 and 1 has a binary expansion: a
binary point followed by an infinite sequence of bits that represents the real.?
Throughout this paper, we shall be making considerable use of the binary expan-
sions of real numbers so it is important to point out an oddity in the definitions
above: a real is recursive if and only if its binary expansion is recursive, but a
real may be r.e. even if its binary expansion is not r.e. We shall thus take care
to distinguish the weaker property of being an r.e. real from the stronger one of

2 For numbers that can be expressed with a representation ending in an infinite string
of 0’s, there is another representation ending in an infinite sequence of 1’s, but we
shall remove this ambiguity by only using representations with an infinite number
of 0’s. This will not affect the important reals in this paper, {2 and 7, as they are
irrational and thus have unique representations regardless.
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being a real whose binary erpansion is r.e.

An example of a real that is r.e. but not recursive is 7: the real number
between 0 and 1, whose k-th digit is 1 if the k-th program (in the usual lexical
ordering of finite bitstrings) halts when given the empty string as input and 0 if
the k-th program diverges. Equivalently:

= Y 2" (1)

Pn halts

T is an r.e. real because there is a computable sequence of rationals {7},

where
= o2 (2)
n<i
pr halts in <i steps
such that {r;} converges to 7 from below.

Furthermore, it is clear that the binary representation of 7 is also r.e. because
there is a program that simulates the k-th program, halting if and only if it does.
This program is a slightly modified universal program that first determines the
bits of the k-th program and then simulates it.

T is not recursive, however, because if a program could compute it to ar-
bitrary accuracy, it would determine whether each program halts or not when
given the empty string as input. This is known as the blank tape problem and
is easily shown to be equivalent to the more general halting problem—‘does a
given program halt on a given input?’. The halting problem is fundamental to
the theory of computation and is the most famous problem that cannot be re-
cursively solved. 7 merely encodes the information necessary to solve the halting
problem into the binary expansion of a real number and thus provides a very
simple example of a non-computable real to which we can contrast the more
exotic properties possessed by (2.

{2 encodes the halting problem in a more subtle way: it is the halting prob-
ability. We could, theoretically, generate a random program one bit at a time,
by flipping a fair coin and writing down a 1 when it comes up heads and a 0
for tails—stopping if we reach a valid program. The chance of generating any
given n bit program is therefore . 12 is the chance that this method of random
program construction generates a program that halts. Letting |p| represent the
size of p in bits, we can also express (2 as

n="3 2w 3)
p halts
As was the case for 7, there is a computable sequence of rationals {(2;}, where

o= Y 2w ()

Ip|<i
p halts in <i steps
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which converges to (2 from below, showing it to be an r.e. real. However, we
shall see shortly that the binary representation of (2 is not r.e.

A real is said to be algorithmically random [3] if and only if the ‘algorithmic
complexity’ of each n-bit initial segment of its binary expansion becomes and
remains arbitrarily greater than n.% In other words a real, r, is algorithmically
random if and only if any program that has access to outside advice in the form
of binary messages requires more than n bits of advice to compute the first n
bits of r’s binary expansion (for all values of n above some threshold).* Thus a
random real is one for which only finitely many prefixes of its binary expansion
can be compressed.

It is easy to see that a random real cannot have an r.e. binary expansion.
Let 2 be an arbitrary real whose binary expansion is r.e. By definition, there
must be a program, p,, that takes a positive integer, k, and halts if and only
if the k-th bit of x is 1. To determine n bits of z, we just need to know how
many of these n values of k make p, halt. We could then simply run p, on all
the values of k and stop when this many have halted, knowing that no more will
halt and thus determining the n bits of 2. Since all positive integers less than n
can be encoded in logn bits (rounding up), we only need to send a message of
about (logn +loglogn) bits. In this manner, any prefix of x can be significantly
compressed, so x cannot be random.

Because of this, we can see that 7 too is not random. However, Chaitin [3]
has proven that {2 is random and so cannot be compressed in this manner.?
For sufficiently high values of n, n bits of {2 provide n bits of algorithmically
incompressible information.

In addition to recursive incompressibility, random reals are also characterised
by recursive unpredictability [3]. Consider a ‘predictive’ program that takes a fi-
nite initial segment of an infinite bitstring and returns a value indicating either
‘the next bit is 1°, ‘the next bit is 0’ or ‘no prediction’. If any such program is run
on all finite prefixes of the binary expansion of a random real and makes an infi-
nite amount of predictions, the limiting relative frequency of correct predictions
approaches % In other words when any program is used to predict infinitely
many bits of a random real, such as (2, it does no better than random—even
with information about all the prior bits.

3 This is only one of four common definitions of algorithmic randomness, however, all
have been shown to be equivalent.

* The reason that slightly more than n bits of advice are needed is because in al-
gorithmic information theory the advice comes in self-delimiting messages (which
are actually programs that generate the advice—like self-extracting archives) and in
order to be self-delimiting, these messages need slightly more bits than they would
otherwise. In general, an n bit string requires about (n + logn) bits. Chaitin [3]
provides further details.

5 Indeed, it has since been shown through the work of R. Solovay, C. S. Calude,
P. Hertling, B. Khoussainov, Y. Wang and T. A. Slaman that the only r.e. random
reals are (2’s for different programming languages. See Calude [1] for more details.
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The power of this unpredictability can be seen when compare the predictabil-
ity of 7. In this case, the predictive program can easily predict an infinite amount
of bits with no errors. This is because infinitely many bits of 7 are ’easy’ to com-
pute. For example, consider the halting behaviour of Turing machines: there are
infinitely many Turing machines which have no loops in their transition graphs
and thus cannot possibly diverge. When the predictive program is asked to pre-
dict the n-th bit of 7, it can just check to see if the n-th program corresponds
to such a machine, returning ‘the next bit is 1’ if it does and ‘no prediction’
otherwise.®

With its inherent incompressibility and unpredictability, (2 really does go
beyond the type of uncomputability present in a more typical non-recursive real
such as 7. However, its contrasting property of being an r.e. real makes (2 seem
to be just beyond our reach. In the next section, we will introduce Diophantine
equations and show how these can be used to bring uncomputability into the
more classical field of number theory. Then, in Section 3, we will show two ways
of using Diophantine equations to bring (2 and randomness to number theory—
Chaitin’s original method and our new technique.

2 Diophantine Equations and Hilbert’s Tenth Problem

A Diophantine equation is a polynomial equation in which all of the coefficients
and variables take only positive integer values. Many natural phenomena with
discrete quantities are modelled well by Diophantine equations and they occur
frequently in number theory. It is often convenient to express a Diophantine
equation with all terms on the left hand side:

D(z1,...,2,) =0 (5)

Here D is a polynomial of z1,...,z,, in which the coefficients can take both
positive and negative integer values.

The number of solutions for a Diophantine equation varies widely. For exam-
ple, 3z1 + 6 = 0 has one solution, while z1x> —2 = 0 has two and z122 — 22 =0
has infinitely many. Some however, such as 2 — 3z; = 0, have no solutions at
all. There are many different methods for deciding whether Diophantine equa-
tions of certain forms have solutions and determining what these solutions are,
but there has been a great desire for a single method that takes an arbitrary
Diophantine equation and determines whether or not it has solutions. In 1900,
David Hilbert [5] gave the problem of finding such a method as the tenth in his
famous list of important problems to be addressed by mathematicians in the
20th Century. Since then, the task of finding this method has become known
simply as Hilbert’s Tenth Problem.

5 From the definition of binary programs in algorithmic information theory, there must
be a recursive mapping between programs and Turing machines (or any such model).
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Another area of research concerns families of Diophantine equations. A family
of Diophantine equations is a relation of the form:

D(ay,...,Qn, @1y, %) =0 (6)
in which we distinguish between two types of variable. The variables 1, ...,z
are called unknowns, while ay, . .., a, and called parameters. By assigning values

to each of the parameters (and treating them as constants), we pick out an
individual Diophantine equation from the family. For example, the family a; —
3z1 = 0 consists of the equations: 1 —3z; =0,2—3z; =0, 3 -3z, = 0 and so
on.

Each family of Diophantine equations is naturally associated with a certain
set of n-tuples of positive integers, D, in the following manner:

(a1,--,an) €D <= Fzy...x2mD(a1,...,0n,%1,---,Zm) =0 (7)

In other words, a tuple is in the set if the equation it corresponds to has a
solution. Such sets are said to be Diophantine or to have a Diophantine repre-
sentation. For example, the set of all multiples of 3 is Diophantine because it is
represented by the family a; — 3x; = 0.

Over the 1950’s and 1960’s, M. Davis, H. Putnam and J. Robinson established
several important results regarding which sets are Diophantine. Their key result
concerned a characterisation, not of Diophantine sets, but their close relation:
exponential Diophantine sets.

A family of exponential Diophantine equations is a relation of the form:

D(ay,---,Gn, @1, Ty, 2%, ...,2"m) =0 (8)

where D is once again a polynomial, but now some of its variables are expo-
nential functions of others. Davis, Putnam and Robinson [4] used this additional
flexibility to show that all r.e. sets are exponential Diophantine. It had long been
known that all exponential (and standard) Diophantine sets are r.e. because it
is trivial to write a program that searches for a solution to a given equation
and halts if and only if it finds one. Therefore, the new result meant that the
exponential Diophantine sets were precisely the r.e. sets.

In 1970, Yu. Matiyasevich [6] completed the final step, proving that all ex-
ponential Diophantine sets are also Diophantine and thus that the Diophantine
sets are exactly the r.e. sets—a result now known as the bPRM Theorem.

The DPRM Theorem provides an intimate link between Diophantine equa-
tions and computability, reducing the task of determining whether a set has a
Diophantine representation to a matter of programming. For instance, there is a
program that takes a single input k£ and halts if and only if the k-th bit of 7 is 1.
Thus, the set of positive integers that includes & if and only if the k-th program
halts is an r.e. set and via the DPRM Theorem, there is a family of Diophantine
equations with a parameter k, that has solutions if and only if the k-th program
halts.

This family of equations provides an example of uncomputability in number
theory and shows that Hilbert’s Tenth Problem must be recursively undecidable
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because a program that finds whether arbitrary Diophantine equations have
solutions could be used to determine the bits of 7 and thus to solve the halting
problem. Indeed, it was long known that the recursive undecidability of Hilbert’s
Tenth Problem would follow immediately from the DPRM Theorem and this was
the main motivation for its proof—the Diophantine representations for all other
r.e. sets being largely a bonus.

3 Expressing Omega Through Diophantine Equations

While the DPRM Theorem demonstrates the existence of 7 and uncomputability
in number theory, it also denies the possibility of finding a similar family of
Diophantine equations expressing {2 and randomness. This is due to the fact
discussed in Section 1 that, while {2 is an r.e. real, its sequence of bits is not r.e.
However, the DPRM Theorem only prohibits a direct Diophantine representation
of {2 and says nothing about the more subtle properties of Diophantine equations
in which these bits could perhaps be encoded.

Chaitin [3] takes such an approach. While there is no program of one variable,
k, that halts if and only if the k-th bit of (2 is 1, Chaitin provides a program, P,
that takes two variables, k and N, and computes {2 somewhat less directly. For
a given value of k, P can be thought of as making an infinite series of ‘guesses’
as to the value of the k-th bit of 2—when P is run on k and N, it gives the
N-th guess as to the k-th bit of 2. What is impressive is that P gets infinitely
many of these guesses right and only finitely many wrong.

How does P do this? It simply computes the sequence {(2;} discussed in
Section 1 until it gets to 2y and then returns the k-th bit of 2. Just as {2;}
forms a sequence of approximations to {2, so the k-th bit of each {(2;} forms a
sequence of approximations to the k-th bit of (2.

Consider this k-th bit of each {2;} as ¢ is increased. This bit could change
between 0 and 1 many times, but since {{2;} approaches (2, it must eventually
remain fixed, at which point it must have the same value as the k-th bit of (2.
Therefore, if the k-th bit of (2 is 1, the k-th bit of {{2;} must be 0 for only finitely
many values of 7, and so P must return 0 for finitely many values of N and 1 for
infinitely many. On the other hand, if the k-th bit of (2 is 0, then the k-th bit of
{£2;} must be 1 for only a finite number of values of ¢ and P must return 1 for
finitely many values of IV and 0 for infinitely many. Either way, as IV increases,
the output of P applied to k and N limits to the k-th bit of (2.

It may seem as though this program is computing the bits of 2 but this is
not quite the case. P just computes the N-th ‘guess’ of the k-th bit. From the
infinite sequence of such guesses, the k-th bit could be determined but P does
not and cannot put the guesses together like that—it just returns one of them.

Since recursive functions are just a special type of r.e. function, we can apply
the DPRM Theorem and see that there must be a family of Diophantine equations

Xl(k,N,!El,...,!L’m):O (9)
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that has solutions for given values of ¥ and NV if and only if P returns 1 when
provided with these as input. For a given value of k, there are solutions for
infinitely many values of N if and only if the k-th bit of (2 is 1.

Thus, by using a more subtle property of the family of Diophantine equa-
tions, Chaitin was able to show that algorithmic randomness occurs in number
theory: as k is varied, there is simply no recursive pattern to whether this family
of equations has solutions for finitely or infinitely many values of N.

By modifying Chaitin’s method slightly, we can find a new way of expressing
the bits of 2 through a family of Diophantine equations [7]. Consider a new
program, (), that also takes inputs k and IV, and begins to compute the sequence
{§2;}. For each value of (2;, ) checks to see if it is greater than 2%, halting if this
is so, and continuing through the sequence otherwise. Since {(2;} approaches (2
from below, we can see that (2; > zﬁk implies that 2 > zﬂk and conversely, if
2> zﬂk there must be some value of ¢ such that (2; > zﬁk Therefore, () will halt
on k and N if and only if 2 > 2% Alternatively, we could say that @) recursively
enumerates the pairs (k, N) such that 2 > 2.

Just as we could determine the k-th bit of (2 from the number of values of
N that make P return 1, so we can determine it from the number of values of
N for which ) halts. In what follows, we shall refer to these quantities as as pg
and gj, respectively.

Unlike pg, qx is always finite. Indeed, an upper bound is easily found. Since
2 < 1, only values of k£ and N such that 2% < 1 can possibly be less than (2
and thus make () halt. Since both k£ and N take only values from the positive
integers we also know that zﬂk > 0 and thus for a given k, there are less than 2*
values of N for which @ halts and ¢;, € {0,1,...,2F — 1}.

From the value of gy, it is quite easy to derive the first k bits of 2. Firstly,
note that g, is equal to the largest value of N such that %Vg < f2—unless there is
no such N, in which case it equals 0. Either way, its value can be used to provide
a very tight bound on the value of £2: Zx < 2 < ‘1’“2—7{1. Since {2 is irrational, we
can strengthen this to £ < 2 < &l which means that the first k bits of &
are exactly the first k& bits of (2.

This gives some nice results connecting g and {2. The first k bits of Z are
just the bits of g when written with enough leading zeros to make k digits
in total. Thus ¢, when written in this manner, provides the first k& bits of (2.
Additionally, we can see that g is odd if and only if the k-th bit of (2 is 1.

Now that we know the power and flexibility of g, it is a simple matter to
follow Chaitin in bringing these results to number theory. The function computed
by @ is r.e. so, by the DPRM Theorem, there must be a family of Diophantine
equations

XZ(kaNaxla"wwm):O (10)

that has a solution for specified values of k¥ and N if and only if () halts when
given these values as inputs. Therefore, for a particular value of k, this equation
only has solutions for values of N between 0 and 2*¥ — 1 with the number of
solutions, ¢, being odd if and only if the k-th bit of (2 is 1.
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This new family of Diophantine equations improves upon the original one in
a couple of ways. Whereas the first method expressed the bits of (2 in the fluc-
tuations between a finite and infinite amount of values of IV that give solutions,
the second keeps this value finite and bounded, with the bits of {2 expressed
through the more mundane property of parity. It is the fact that this quantity is
always finite that leads to many of the new features of this family of Diophan-
tine equations. py, is infinite when the k-th bit of 2 is 1 and, since there is only
one way in which it can be infinite, it can provide no more than this one bit of
information. On the other hand, g can be odd (or even) in 2¥~! ways, which is
enough to give k — 1 additional bits of information, allowing the first k bits of
2 to be determined.

The fact that g is always finite also provides a direct reduction of the problem
of determining the bits of (2 to Hilbert’s Tenth Problem. To find the first &
bits of (2, one need only determine for how many values of N the new family
of Diophantine equations has solutions. Since we know that there can be no
solutions for values of N greater than or equal to 2¥, we could determine the
first k bits of £2 from the solutions to 2* instances of Hilbert’s Tenth Problem.
In fact, we can lower this number by taking advantage of the fact that if there
is a solution for a given value of N then there are solutions for all lower values.
All we need is to find the highest value of NV for which there is a solution and
we can do this with a bisection search, requiring the solution of only & instances
of Hilbert’s Tenth Problem.”

Finally, the fact that ¢ is always finite allows the generalisation of these
results from binary to any other base, b. If we replace all above references to
2k with b* we get a new program, Q, with its associated family of Diophantine
equations. For this family, the value of g now gives us the first k digits of the
base b expansion of (2: it is simply the base b representation of g with enough
leading zeroes to give k digits. The value of the k-th digit of (2 is simply gz mod b.

Chaitin [3] did not stop with his Diophantine representation of {2, but in-
stead moved to exponential Diophantine equations where his result could be
presented more clearly. He made this move to take advantage of the theorem
that all r.e. sets have singlefold exponential Diophantine representations, where
a representation is singlefold if each equation in the family has at most one
solution.

We can denote the singlefold family of exponential Diophantine equations for
the program P by

Xi(k,N,.’L'l,...,II}m')ZO (11)

For a given k, this equation will have exactly one solution for each of infinitely
many values of N if the k-th bit of (2 is 1 and exactly one solution for each of
finitely many values of IV if the k-th bit of {2 is 0. We can make use of this to
express the bits of {2 through a more intuitive property.

If we treat IV in this equation as an unknown instead of a parameter, we get
a new (very similar) family of exponential Diophantine equations with only one

" For details see [7].
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parameter
X5 (k, 2o, 21,...,Zm ) =0 (12)

Since the previous family was singlefold and N has become another unknown,
there will be exactly one solution to this single parameter family for each value of
N that gave a solution to the double parameter family. Thus, (12) has infinitely
many solutions if and only if the k-th bit of (2 is 1.

This same approach can be used with our method [7]. There is a two-
parameter singlefold family of exponential Diophantine equations for ) and this
can be converted to a single parameter family of exponential Diophantine equa-
tions

X;(k7x07:1:17"'7wm')=0 (13)

with between 0 and 2 — 1 solutions, the quantity being odd if and only if the
k-th bit of (2 is 1.

Finally, we have also shown [7] that both Chaitin’s finitude-based method
and our parity-based method can be used to generate polynomials for (2. For a
given family of Diophantine equations with two parameters,

D(k,N,z1,...,2m) =0 (14)
we can construct a polynomial, W, where
W(k,20,1,-..,%m) = 3o (1 — (D(k, 20,71, -, 2m))?) - (15)

Note that the parameter, N, is again treated as an unknown and thus denoted
Zo-

If we restrict the values of the variables to positive integers then, for a given
k, this polynomial takes on exactly the set of all values of N for which (14)
has solutions. We can thus use this method on x; = 0 and x2 = 0, generating
polynomials that express pr and gx in the number of distinct positive integer
values they take on for different values of k. We therefore have a polynomial
whose number of distinct positive integer values fluctuates from odd to even and
back in an algorithmically random manner as a parameter k is increased.
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Abstract. Similarity is an important topic in many fields such as Inter-
net search engines, information classification and genetic research. This
paper focuses on similarity measures based on algorithms that detect
pattern sharing. The pattern sharing concept is introduced using the
Lempel-Ziv algorithm as an example. We then discuss T-information, a
measure based on a self-learning automaton that also falls in the category
of pattern and structure-detecting algorithms. At the end of this paper,
we discuss several similarity measures using T-information, including two
newly presented measures, ma and ms.

1 Introduction

Similarity measures are important in many fields including Internet search en-
gines, information classification and genetic research. However, similarity is a
fuzzy concept which has no clear definitions.

An often-used method to evaluate the similarity between two objects works
as follows:

— Map each object to a point in a vector space. This point should represent
the main distinguishing features abstracted from the object.

— Compute the distance between these points in the vector space according to
some metric. Use the distance as a similarity measure.

However, there are some problems when using this type of measure:

— We may know little or nothing about which features distinguish objects.

— Even if distinguishing features are found, it may be difficult to map these
features to a point in a vector space unless a suitable mapping can be found.

— Different features have different weight in representing objects. This needs
to be taken into account when choosing a suitable metric. Features also have
different properties that make the choice of a metric difficult (e.g. features
of 3D-objects described in angles vs. features described as lengths or areas).

Another method [17,18,20-23] defines the distance between two objects in a
different way. It uses the length of the shortest program which is needed to

* nee Guenther
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transform the two objects into each other as the distance between these two
objects.

There are some problems using this type of measure, too. When consider-
ing DNA, for example, this distance does not properly measure evolutionary
sequence distance.

A huge class of objects are strings and all objects can be mapped into strings,
one way or another. When we talk about the similarity between two strings, we
often mean the amount of pattern and structure they share. What we thus need
is an algorithm that detects and measures this shared structure and pattern. This
paper discusses the application of such algorithms and points out the problems
associated with their use.

A well-known algorithm that detects repeated patterns in strings is the
Lempel-Ziv algorithm [1], used both as a string complexity measure and — in var-
ious variations — as a popular compression algorithm. It describes a self-learning
automaton parsing a string. In the next section, we shall use it to demonstrate
the principle of similarity detection with such algorithms. We shall then discuss
an alternative approach, a T-information based similarity measure.

2 Using the Lempel-Ziv algorithm for similarity
comparisons between strings

The principle described in this section is easily verified on most desktop comput-
ers. All that is needed is a number of more or less similar files of an appreciable
size (i.e., more than a few dozen bytes), and a Lempel-Ziv-based compression
program such as WinZip (under Windows) or gzip (under Linux/Unix).

Assume we have two files A and B. By concatenating A and B, we get another
file AB. Now use the compression program to compress A, B, and AB, and call
the compressed files CA, CB, and CAB. Let s(X) be the size of a file X. In
general, we expect:

max(s(CA),s(CB)) < s(CAB) < s(CA) + s(CB). (1)
Reformulate this to:

max(s(CA),s(CB)) + K1 = s(CAB) (2)
s(CA) + s(CB) — K2 = s(CAB), (3)

where K; and K, usually are two positive numbers. The more similar A and
B are, the more patterns they share and the more the size of the compressed
concatenated file decreases. We expect K; to decrease and K> to increase as the
similarity between A and B increases.

This shows how we could use the Lempel-Ziv algorithm for similarity compar-
isons between strings. However, there are some problems: The result is affected
by both the absolute and the relative lengths of the files. If the file lengths are
fixed, then this is not a problem. However, in all other cases, an appropriate
normalization is required in order to use the algorithm in practical similarity



T-information: A New Measure for Similarity Comparison 31

comparisons. For a practical application, one would probably use the Lempel-
Ziv production complexity of the strings rather than the compressed file size,
but the constraints mentioned above remain.

In the category of pattern and structure-detecting approaches, T-information [10,
7,9, 13] is another measure which can be used for similarity comparisons between
strings either standalone or in combination with Lempel-Ziv. Like the Lempel-
Ziv complexity, T-information is also based on a self-learning automaton, but the
parsing (called T-decomposition) of the string is entirely different from Lempel-
Ziv. The next sections give a brief introduction to the T-information measure
and to the underlying concepts of T-complexity and T-codes.

3 T-codes

T-codes [19,4,11] were first proposed by Titchener and have since been investi-
gated by a number of other authors [24-27,2, 5, 28].

What are T-codes? Given a finite alphabet S, a code set C C S* is a T-code
set (or T-code) if and only if:

—C=S5,o0r
— it can be derived from an existing T-code set using a process known as
T-augmentation, which is defined below.

The T-augmentation T(C,p, k) of a code set C' C S* is defined as follows:
T(C,p, k) = {m|m = p*'y where
0<K <k A yeO\p})
ufp*'} (4)

where p € C and k € INt. A code set C' can be derived from C using T-
augmentation iff:

IpeCke Nt st. C' =T(C,p, k). (5)

In this case, we call p the T-prefix and k the T-expansion parameter of the T-
augmentation. In the case of several sequential T-augmentations, these are given
subscripts, e.g., p1, k1, etc.

The number of T-augmentations used in the derivation of a T-Code set from
its alphabet S is called the set’s T-augmentation level.

In Figure 1, we derive a T-code set from an alphabet S. For simplicity, we
choose the binary alphabet S = {0,1} and trees to represent the respective T-
code sets, such that each leaf node in the depicted trees represents a codeword
in a T-code set. T-augmentation may be regarded as a copy-and-append process
in trees.

Firstly, we choose the codeword 1 in S as our first T-prefix p;. Secondly,
we make k; = 2 copies of S and then append these copies to the original tree
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(and each other) via the respective leaf nodes corresponding to the T-prefix
codeword 1. Thus we get the new tree shown. It represents the T-augmented
T-code set, which we denote as follows: S((sll)) = S((f)) . More generally, every T-

code set can be written in the form S ((ﬁ:,’j;”::,’ﬁ:)), where py, ps, ...p, represent the

prefixes, ki1, ka, ...k, represent the T-expansion parameters and n represents the
T-augmentation level of the T-code set.

In the second T-augmentation in our example, we choose po = 10 and k3 = 1
2’1)

to obtain the second-level set S((1,10)'

root root root

10 1

10110 10111

B ki St

Fig. 1. The construction of S’((f)) and S((i’;())) using T-augmentation from S(S = {0,1})

T-codes are also strongly self-synchronizing codes [19,4,11]. In essence, this
means that a T-code decoder will generally parse the suffix of a sufficiently
long string identically, independent of the actual decoder state at the beginning
of the decoding. A T-code decoder which repeatedly encounters the same (and
sufficiently long) pattern in a string should thus parse at least part of this pattern
identically each time.

4 T-decomposition

Over a certain alphabet, every finite string can be mapped via a recursive parsing
algorithm to a unique T-code set [2,8] in which this string is one of the longest
codewords. This algorithm is called T-decomposition. The basic process of this
algorithm is shown as follows.

(Let z € ST and a € S. We will use T-decomposition to find the unique
T-code set in which za is one of the longest codewords.)

. Set n =0.

. Decode za over Séﬁ;”ﬁ;’_’_’_’jﬂ"; . If the value of n equals to 0, decode za over S.

. If the result of 2 is a single codeword, goto 7.

. Find the second-to-last codeword (we call it d) in the result of 2, and set
Pn+1 to d.

5. Count the number (r) of the adjacent copies of d that immediately precede

the second-to-last codeword. Let kpy1 =7+ 1.

= N =
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6. Add 1 to n and then goto 2.
7. End. S ((::11 ’:22 ’;f:)) is the corresponding T-code set for za (In this T-code set,
za is one of the longest codeword).

Note that in za the last (rightmost) symbol a does not contribute to construct
the corresponding T-code set. If we were to change a to any other symbol a; € S,
we would still get the same T-code set. This is because in a T-code set, there
are more than one longest codewords.

If the cardinality of S is #JS, then there are #S longest codewords in the

T-code set S((:’: ’E’_’_’_’ﬁ:)) . These longest codewords are all in this form

kn kn—-1 kn—2

o pn 1 Fmmip, ofn-z pokep kg

where p,*~ is the string composed of k,, copies of p,, and a € S. All these longest
codewords in S((sll,’:j”::.‘;:)) differ from each other only in the last symbol a.
Example: Find the binary T-code set for which the string 0110001010100 is

one of the longest codewords by using T-decomposition:

— First, decode the string over S = {0,1}. The result is (commas are used to

indicate the boundaries between codewords):

Result; =0,1,1,0,0,0,1,0,1,0,1,0,0

We find that the second-to-last codeword in Result; is 0, so p; = 0. Since
there are no other copies of 0 that immediately precede the second-to-last
codeword, k; = 1.

— Decode the string again, this time over S(%)) = {1,00,01}. The result is:
Resulty = 01,1,00,01,01,01,00
The second-to-last codeword in Resulty is 01, so p, = 01. Since there are
2 other copies of 01 that immediately precede the second-to-last codeword,
k2 = 3.

— Now we decode the string over S
Resultz = 011,00,01010100
The second-to-last codeword in Results is 00, and there are no other copies
of 00 that immediately precede the second-to-last codeword. So p3 = 00 and
ks = 1.

— Decoding the string over S
Results = 011,0001010100
Resulty yields py = 011 and k4 = 1.

— Since Result, is not a single codeword, we have to continue the process. After
we decode the string over S(%:gil,ét),on)a we find that the result consists of a
single codeword only:

Result; = 0110001010100

According to the T-decomposition algorithm, we can stop the process now.
We have obtained the T-code set S(g'0; 56 o11), in Which the string 0110001010100
is one of the longest codewords.

(1,3)

(0.01)’ and the result is:

(1,3,1)

(0,01,00) W€ get the result:

As mentioned above, the suffixes of sufficiently long repeated patterns are gener-
ally parsed identically by a T-code decoder. If we apply this to T-decomposition,
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we may reformulate this statement as: The suffixes of repeated patterns are gen-
erally parsed identically by a T-code decoder at a sufficiently low level. Note that
the identical parsing at alphabet level is trivially guaranteed! Note also that iden-
tical parsing implies a lower number of decoding passes during T-decomposition:
as the copy of a pattern is used as a T-prefix, the remaining copies to the left are
absorbed into new codewords at the next level. This means that these copies are
no longer available as T-prefixes for future decoding passes. As a result, fewer
decoding passes are required.

5 T-complexity and T-information

T-complexity [10,7,9,13,15] is based on the T-decomposition algorithm. Its def-
inition is as follows:

Let z € ST. Further, let S((ﬁll’g’:;"sn")) be the T-code set in which za with

a € S is one of the longest codewords. The T-complezity Tc(z) of z is defined
as follows:

Cr(z) =) logy(ki + 1) (6)

Physically speaking, the T-complexity of x is the logarithm of the number of

(K1 ,k2yeeskn)
S(P1,P2,---7Pn)
Titchener [10,7,9,13] used the T-complexity measure to develop the con-

cept of T-information. The T-information IT(x) of a string z is defined to be
the inverse logarithmic integral of the T-complexity Cr(z) divided by a scaling
constant:

internal nodes in the tree of

1, Cr(2)
Ip(z) =1li—( o ). (7
Ir(z) is the total T-information for z and the natural logarithm gives the T-
information the unit of nats.

Note that the T-complexity (and hence the T-information) depends strongly
on the number of decoding passes in the T-decomposition. Having repeated pat-
terns in a string will lower its T-complexity and, by inference, its T-information.

For example, consider the strings x = “apples and grapefruit” and y =
“apples and pineapples”. Notice that x has the repeated pattern “apples”.

The T-complexity and T-information values of z and y are as follows:

Cr(z) = 17.00 Iy (z) = 44.34

Cr(y) = 11.58 Ir(y) = 25.23

As we can see, the T-complexity and T-information values of y are much
lower than those of z. This is a result primarily of the fact that the pattern
“apples” repeats in y, and its leftmost copy parses in a single T-decomposition
pass.

6 Using T-information as a similarity measure

As we have seen, both T-complexity and T-information of a string depend
strongly on the amount of repeating patterns within the string. The advantage of



T-information: A New Measure for Similarity Comparison 35

T-information over T-complexity is that its growth as a function of string length
is linearized, i.e., for most strings of length 2L, the T-information is roughly
twice that of their first (or last) L characters. This makes it a more desirable
measure to use in similarity comparison, as it makes it easier to compensate for
string length related effects.

The principle here is the same as in the case of Lempel-Ziv. Assume we have
two strings x and y whose similarity we want to investigate. For the T-complexity,
we could simply use equations equivalent to those for Lempel-Ziv:

max(Cr(z),Cr(y)) + K1 = Cr(2y) (8)
Cr(z) + Cr(y) — K2 = Cr(zy), 9)

where K and K> are again two numbers that behave the same under (dis)similarity
as in the case of Lempel-Ziv.

However, only the first of the above equations applies without restriction to
T-information as well:

max(Ir(z), Ir(y)) < Ir(zy). (10)

That is, the T-information in a concatenated string is generally higher than that
in its constituting parts. Substitute I7 for C'r in Equation 8 and 9:

max (I (), It (y)) + K1 = Ir(zy) (11)
Ir(xz) + It (y) — K> = Ir(zy). (12)

Usually K; is a positive number. The inspection of practical cases yields the
observation that K commonly assumes negative values if z and y are dissimilar,
i.e., the amount of T-information in zy may be higher than the sum of the T-
information in its parts. However, if there is a high degree of similarity between
z and y, K5 assumes positive values. In summary, the larger the value of K, is,
the more similar the strings are.

As an example, consider the three strings

x = “new zealand is a beautiful country”

y = “a garden of flowers”

y' = “countries of beauty”

z and gy’ share the patterns “beaut” and “countr”, thus we can say that x seems
more similar to y' than to y.

The T-information values of these strings and the corresponding concate-
nated strings are as follows:

Ir(z) = 64.27 Ir(y) = 29.92

IT(y') =36.94 Ip(zy) =99.42

Ir(zy') = 85.84

Substituting these values into the corresponding variables in Equation 11
and 12, we get:

max(Ir(z), IT(y)) + Ki = I7(zy) (13)
Ir(z) + IT(y) — K3 = Ir(zy) (14)
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and

max(Ir(z),Ir(y") + Ki' = Ir(zy') (15)
Ir(x) + Ir(y') — K3 = Ir(zy"), (16)

such that:
K] =35.15 K} = —5.32

K| =21.57 Kj =25.37

As we expect, K] is much larger than K{' and K} is much smaller than KJ.

This shows how we could use the T-information for similarity comparisons
between strings. However, this measure has the same problem as Lempel-Ziv al-
gorithm when dealing with similarity comparisons. C'; and I generally increase
as the length of the string increases, although It tends to increase more linearly
even for short strings (with a constant entropy rate). In practical application,
we must thus take the length of the strings into account.

The following measure given by one of the authors [16] could be a feasible
measure to similarity comparison between two strings x and y:

_ Ir(@) + Ir(y) — Ir(zy)
B |zy]

my (-T,y) ’ (17)
where |zy| is the length of zy.

We can use m; to measure the similarity between z, y and 3’ from the
previous example:

my(z,y) = —0.0986
my(z,y') = 0.2900

m1(z,y) < mi(z,y'), which indicates that = is more similar to y' than to y.

Note that Ir(xzy) # Ir(yz). So my is not a symmetrical measure, which
means the result will be affected by the order of x and y in the concatenated
string. To resolve this problem, we propose a more symmetric measure:

Ir(z) + Ir(y) — 3Ir(zy) — 3Ir(yz)
ma ($7 y) = 2 2 - (18)
|zy|

Using moy to measure the similarity between z, y and ¢’ from the previous

example:

ma(z,y) = —0.0986
ma(z,y') = 0.3730

Again, ma(z,y) < mso(z,y'), which indicates that x is more similar to y' than
to y.

Another possibility of accounting for the length is simply to have a look at
the amount of information per symbol added by x when it is concatenated with

y:
Ir(zy) — Ir(y)

B (19)

mg(-’lf,y) =
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This equation is highly asymmetrical. In the case of similarity, we would expect
little information to be added. This implicitly assumes that the information
content of y is larger than that of z, which is the case for most Internet search
engines. In this case, z is the query string that we are looking for, and y is the
larger record in the data repository in which we hope to find content similar to
z. In fact, our experiments indicate that ms seems to work well when measuring
the similarity between a long string y and a much shorter string z. If y merely
contains patterns that are found in z, but z contains extra information, then
this approach is problematic.

Note that while m; and my grow with similarity, mg shrinks.

Experiments with real data (see http://kiwitrails.tcs.auckland.ac.nz/
~jyan055/cgi-bin/similaritysearch.html) show that all three measures work
reasonably well — at least sufficiently well to permit a pre-classification of typical
text files of several kB in length compared to fuzzy search strings of several dozen
bytes in length. The web site also features an interface through which users can
enter values for z and y and compute the three measures described above for
their own data.

7 Conclusions

Similarity measures are a naturally fuzzy topic. T-information, based on a self-
learning automaton, introduces a parsing algorithm to reveal the sharing of
patterns and structure between strings. The research on similarity comparisons
using T-information is still at the beginning and a lot of work still has to be
done in order to derive a really practical measure. However, we believe that
T-information-based measures can at least complement existing measures.
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