
CDMTCS

Research

Report

Series

Eutactic quantum codes

Karl Svozil

University of Technology, Vienna

CDMTCS-214

April 2003

Centre for Discrete Mathematics and

Theoretical Computer Science



Eutactic quantum codes

Karl Svozil∗

Institut für Theoretische Physik, University of Technology Vienna,

Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria

Abstract

We consider sets of quantum observables corresponding toeutactic stars. Eutactic stars are systems of

vectors which are the lower dimensional “shadow” image, the orthogonal view, of higher dimensional or-

thonormal bases. Although these vector systems are not comeasurable, they represent redundant coordinate

bases with remarkable properties. One application is quantum secret sharing.
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The increased experimental feasibility to manipulate single or few particle quantum states, and

the theoretical concentration on the algebraic properties of the mathematical models underlying

quantum mechanics have stimulated a wealth of applications in information and computation the-

ory [1, 2]. In this line of reasoning, we shall consider quantized systems which can be considered

to be in a coherent superposition of constituent states in such a way that only the coherent super-

position of these pure states is in a predefined state; whereas one or all of the constituent states are

not. Heuristically speaking, only the coherently combined states yield the “encoded message,” the

constituents or “shares” do not.

This feature could be compared to “quantum secret sharing” schemes [3–7], as well as to “en-

tangled entanglement scenarios [8, 9]. There, mostly entangled multipartite system are investi-

gated. Thus, while the above cases concentrate mainly on quantum entanglement, in what follows

quantum coherence will be utilized: in the secret-sharing scheme proposed here, one party receives

part of a quantum state and the other party receives the other part. The parts are components of

a vector lying in subspaces of a higher dimensional Hilbert space. While the possible quantum

states to be sent are orthogonal, the parts are not, so that the parties must put their parts together

to decipher the message.

We shall deal with the general case first and consider examples later. Consider an orthonormal

basisE = {e1, . . . ,en} of then-dimensional real Hilbert spaceRn [whose origin is at(0, . . . ,0)].

Every pointx in Rn has a coordinate representationxi = 〈x | ei〉, i = 1, . . . ,n with respect to the

basisE . Hence, any vector from the originv = x has a representation in terms of the basis vectors

given byv = ∑n
i=1〈v | ei〉ei = v∑n

i=1[ei
Tei ], where the matrix notation has been used, in which

ei and v are row vectors and ”T” indicates transposition. (〈· | ·〉 and the matrix[ei
Tei ] stands

for the scalar product and the dyadic product of the vectorei with itself, respectively). Hence,

∑n
i=1[ei

Tei ] = In, whereIn is then-dimensional identity matrix.

Next, consider more general, redundant, bases consisting of systems of “well-arranged” linear

dependent vectorsF = {f1, . . . , fm} with m> n, which are the orthogonal projections of orthonor-

mal bases ofm- (i.e., higher-than-n-) dimensional Hilbert spaces. Such systems are are often

referred to aseutactic stars[10–14]. When properly normed, the sum of the their dyadic product

to sum up to unity; i.e.,∑m
i=1[f i

T f i ] = In, giving raise to redundant eutactic coordinatesx′i = 〈x | f i〉,

i = 1, . . . ,m> n. Indeed, many properties of operators and tensors defined with respect to standard

orthonormal bases directly translate into eutactic coordinates [14].

In terms ofm-ary (radixm) measures of quantum information based on state partitions [15],
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k elementarym-state systems can carryk nits [16–18]. A nit can be encoded by the pure one

dimensional subspaces ofRm spanned by some orthonormal basis vectorsE ′ = {e1, . . . ,em}. In

the quantum logic approach pioneered by Birkhoff and von Neumann (e.g., [19–22]), every such

basis vector corresponds to the physical proposition that “the system is in a particular one ofm

different states.” All the propositions corresponding to orthogonal base vectors are comeasurable.

On the contrary, the propositions corresponding to the eutactic star

F = {Pe1, . . . ,Pem}

formed by some orthogonal projectionP of E ′ is no longer comeasurable (or it just spans a one

dimensional subspace). Neither is the eutactic star

F ⊥ =
{

P⊥e1, . . . ,P
⊥em

}
formed by the orthogonal projectionP⊥ of E ′. Indeed, the elements ofF andF ⊥ may be con-

sidered as “shares” in the context of quantum secret sharing. Thereby, not all shares may be

equally suitable for cryptographic purposes. This scenario can be generalized to multiple shares

in a straightforward way.

Let us consider an example for a two-component two-share configuration, in which each party

obtains one substate from two possible ones. In particular, consider the two shares{w,x} and

{y,z} defined in fourdimensional complex Hilbert space by

w =
(

0,0,− 1
2
√

2
, 1√

2

)
, x = 1

2

(
0,0,−3

2,−1
)
,
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2
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)
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(
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)
,

(1)

While {w,x} and{y,z} constitute eutactic stars inR2, the coherent superposition ofw with y, and

x with z yield two orthogonal vectors inR4

{w+y,x+z} =
{

1
2

(
1√
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,−1,− 1√

2
,
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2

)
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1
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2
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)}
(2)

which could be used as a bit representation. As can be readily verified, the shares in (1) are

obtained by applying the projectionsP = diag(1,1,0,0) andP⊥ = diag(0,0,1,1) to the vectors

in (2) [“diag(a,b, . . .)” stands for the diagonal matrix witha,b, . . . at the diagonal entries]. The

comeasurable projection operators corresponding to the vectors in (2) are given by

[
(w+y)T(w+y)

]
=

1
4
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 and (3)
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[
(x+z)T(x+z)

]
=
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whereas the shares given to the parties are not comeasurable; i.e.,[wTw][xTx]− [xTx][wTw] 6= 0,

and[yTy][zTz]− [zTz][yTy] 6= 0. Only after recombining the shares it is possible to reconstruct the

information; i.e., to decide whether(w+y) or (x+z) has been communicated. This configuration

demonstrates the protocol, but it is not optimal, as four dimensions have been used to represent a

single bit. A more effective coding in base four could utilize the additional two “quadrit” states

(1/2)
(

1,
√

2,−1,0
)

and(1/2)
(

3/2,−1/
√

2,1/2,−1
)

.

A possible experimental realization of an arbitrarym-dimensional configuration could be

a general interferometer withm inputs andm output terminals [23], which are partitioned

according to the orthogonal projections involved. They should be arranged in such a way

that the single input/output terminals each correspond to one dimension. Consider, for ex-

ample, the two-component two-share configuration discussed above. The two bit states (2)

can be constructed from the orthogonal pair of vectorse1 = (0,0,0,1) and e2 = (1,0,0,0)

by subjecting them to four successive rotations in twodimensional subspaces ofR4; i.e., w +

y = R13(π/4)R12(π/4)R14(π/4)R13(π/4)e1 andx + z = R13(π/4)R12(π/4)R14(π/4)R13(π/4)e2,

whereR12, R14, R13 represent the usual clockwise rotations in the 1–2, 1–4, and 1–3 planes. The

corresponding (lossless) interferometric configuration is depicted in Fig. 1; the boxes standing for

a 50:50 mixing. The encoding phase depicted in Fig. 1(a) consist of either inserting a particle

into the first or the fourth terminal. Formally, its state undergoes the particular types of mixing

transformations outlined above. Finally, the two upper and the two lower exit terminals are subdi-

vided into the two shares. The decoding phase depicted in Fig. 1(b) requires both shares, which

are recombined in a reverse interferometric setup, in which the original states are reconstructed by

performing the reverse mixings in reverse order.

Some configurations are not usable for secret sharing. The “worst case” scenario might be one

in which the first share coincides with a basis vector of the orthonormal basis spanningRm. In

this case, the second share just consists of the remaining base states, making possible the detection

of the original message. Take, for instance, the basis{(0,0,1),(0,1,0),(1,0,0)} which, when

projected along thez-axis, results in the shares{(0,0,1)} and{(0,1,0),(1,0,0)}. These shares
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FIG. 1: Experimental realization of (a) the encoding stage of a two-component two-share configuration by

an array of effectively two-dimensional beam splitters depicted as boxes. The decoding stage (b) is just the

encoding stage (a) in reverse order, with inverse beam splitters.

enable the parties to deterministically discriminate between the first state and the rest (first share),

and between all states (second share).

A simple setup would correspond to a twodimensional case, in which a particle would enter

one of two input ports. A successive beam splitter would then scramble the original signal. In

this setup, the two shares would just correspond to the two output ports of the beam splitter. Even

though both parties would know that the other party would possess a one dimensional share, due

to phase coherence it would not be possible in a straightforward manner to reconstruct the secret

message by manufacturing the missing one-component share.

As has already been pointed out, the proposed scheme does not necessarily involve entangled

multipartite states; thus the parties are not given particles as shares. Rather, in the interferometric

realization they are given interferometric channels; and in order to reconstruct the original mes-

sage, it is important to keep quantum coherence among all the parties. Thus, in the encrypted
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stage, that is, before the decoding, no particle detection is allowed, since this would destroy coher-

ence. The decoding transformation is the coherent combination of the two shares whose channels

correspond each respectively to one and only one secret message.

We have proposed here to look into possibilities to utilize the higher dimensional components

of the quantum state by combining two or more states defined in effectively lower dimensional

subspaces. Only after all parties have put their parts of the states together, they are able to decypher

the message. The “extra dimensions” not used by the “flattened out” subspaces might be very

useful for other purposes as well. For instance, one might speculate that they could be exploited

for computational purposes such as speedups; analogously to the introduction of the complex plane

for the solution of certain problems, such as integrals, in analysis. There, the challenge might be to

extend the existing quantum algorithms to higher dimensions, thereby exploiting multidimensional

connectedness in search spaces and the like, and at the same time being able to reconstruct the

results in lower dimensions.
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