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Abstract

Imagine a sequence in which the first letter comes from a binary alphabet, the second letter can

be chosen on an alphabet with 10 elements, the third letter can be chosen on an alphabet with

3 elements and so on. Such sequences occur in various physical contexts, in which the coding of

experimental outcome varies with scale. When can such a sequence be called random? In this

paper we offer a solution to the above question using the approach to randomness proposed by

Algorithmic Information Theory.
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I. MOTIVATION AND EXAMPLES

When it comes to comprehension and practical usefulness, the coding, or translation,

from physics into a formal language may be of decisive importance: depending on the code

chosen, what appears to be a disordered “mess” of data, may become structured and well

understood (and vice versa). A typical example is the right choice of coordinate system

utilizing the symmetry of a physical property. Thus far, little attention seems to have been

given to the careful choice of number bases employed in coding physical entities; even to the

extend that the coding sequence might use different bases for different positions.

Already Georg Cantor, the creator of naive set theory, considered such coding schemes. To

obtain a better understanding, let us, as an example, examine the old British unit system, in

which length can be measured in miles, furlongs, chains, yards, feet, hands, inches, lines [1].

These scales relate in the following way: 1 mile = 8 furlongs = 8·10 chains = 8·10·22 yards =

8·10·22·3 feet = 8·10·22·3·4 hands = 8·10·22·3·4·3 inches = 8·10·22·3·4·3·12 lines. Hence, the

sequence of scales starts with b1 = 10, b2 = 8, b3 = 10, b4 = 22, b5 = 3, b6 = 4, b7 = 3, b8 = 12

and can be continued ad infinitum. For example, the number 0.963(11)232(10)00 · · · 0 · · ·

represents a length of 9 miles, 6 furlongs, 3 chains, 11 yards, 2 feet, 3 hands, 2 inches and

10 lines.

As a second example, consider a ball in gravitational fall impinging onto a board of nails

with different numbers bn + 1 of nails at different horizontal levels (here, n stands for the

nth horizontal level and bn is the basis corresponding to the position n). Let us assume

that the layers are “sufficiently far apart” (and that there are periodic boundary conditions

realizable by elastic mirrors). Then, depending on which one of the bn openings the ball

takes, one identifies the associated number (counted from 0 to bn − 1) with the nth position

xn ∈ {0, . . . , bn − 1} after the point. The resulting sequence leads to the real number whose

Cantor expansion is 0.x1x2 · · ·xn · · ·.

As a third example we consider a quantum correspondent of the board of nails harnessing

irreducible complementarity and the randomness in the outcome of measurements on single

particles. Take a quantized system with at least two complementary observables Â, B̂, each

one associated with N different outcomes ai, bj, i, j ∈ {0, . . . , N − 1}, respectively. Notice

that, in principle, N could be a large (but finite) number. Suppose further that Â, B̂ are

“maximally” complementary in the sense that measurement of Â totally randomizes the
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outcome of B̂ and vice versa (this should not be confused with optimal mutually unbiased

measurements [2]).

A real number 0.x1x2 · · ·xn · · · in the Cantor expansion can be constructed from successive

measurements of Â and B̂ as follows. Since all bases bn used for the Cantor expansion are

assumed to be bounded, choose N to be the least common multiple of all bases bn. Then

partition the N outcomes into even partitions, one per different base, containing as many

elements as are required for associating different elements of the nth partition with numbers

from the set {0, . . . , bn − 1}. Then, by measuring

Â, B̂, Â, B̂, Â, B̂, . . .

successively, the nth position xn ∈ {0, . . . , bn − 1} can be identified with the number asso-

ciated with the element of the partition which contains the measurement outcome.

As an example, consider the Cantor expansion of a number in the bases 2, 6, and 9.

As the least common multiple is 18, we choose two observables with 18 different outcomes;

e.g., angular momentum components in two perpendicular directions of a particle of total

angular momentum 9
2
~ with outcomes in (units are in ~){

−9

2
,− 4,−7

2
,..., +

7

2
, + 4, +

9

2

}
.

Associate with the outcomes the set {0, 1, 2, . . . , 17} and form the even partitions

{{0, 1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15, 16, 17}},

{{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, {12, 13, 14}, {15, 16, 17}},

{{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}},

(or any partition obtained by permutating the elements of {0, 1, 2, . . . , 17}) associated with

the bases 2, 6, and 9, respectively.

Then, upon successive measurements of angular momentum components in the two per-

pendicular directions, the outcomes are translated into random digits in the bases 2, 6, and

9, accordingly.

As the above quantum example may appear “cooked up”, since the coding is based on a

uniform radix N expansion, one might consider successive measurements of the location and

the velocity of a single particle. In such a case, the value xn is obtained by associating with
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FIG. 1: First construction steps of a generalized Cantor set.

it the click in a particular detector (or a range thereof) associated with spatial or momen-

tum measurements. Any such arrangements are not very different in principle, since every

measurement of a quantized system corresponds to registering a discrete event associated

with a detector click [3].

This is a generalisation of self-similarity with intrinsic scale dependence. Geometric

objects of this type might not scale in a self-similar manner but could be codable by a

Cantor expansion.

Consider a generalized Cantor set obtained, for example, by cutting out in the nth con-

struction step 1/(n+1)th of each of the remaining segments (starting from the real interval

[0, 1] at n = 1) at a random position of n + 1 positions of equal length [4]. In Figure 1, the

construction process is depicted.

Another example is the generalized Koch curve obtained by inserting in the nth con-

struction step n + 1 scaled down copies of the object obtained in the nth construction step

at random positions. A different variation of the Koch curve is obtained if different objects

(as compared to previous construction steps) are inserted. Any one of the above examples

can be efficiently coded by Cantor expansions of random reals. For an efficient encoding,

associate with every construction step a place in the expansion. Then, the basis chosen

for this particular place in the expansion should be identified with the number of different

segments in that construction step. For example, in the generalized Cantor set discussed

above, there are n+1 segments at the nth construction level; therefore, the basis chosen for

the nth position should be n + 1. (This linear dependence is only an example, and much

more general functions for the bases are possible.)

It is not too speculative to assume that this might reflect the physical property of dif-

ferent object formations at different (e.g., length or time) scales, which might be caused by

nonsimilar interactions at different scales.
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II. VARYING ALPHABETS AND THE CANTOR EXPANSION

In what follows we shall present methods to characterize and quantify Cantor encoded

stochastic random sequences. Algorithmic Information Theory (see [5–7]) deals with random

sequences over a finite (not necessarily binary) alphabet. A real number is random if its

binary expansion is a binary random sequence; the choice of base is irrelevant (see [7] for

various proofs).

Instead of working with a fixed alphabet we can imagine that the letters of a sequence

are taken from a fixed sequence of alphabets. This construction was introduced by Cantor

as a generalization of the b–ary expansion of reals. More precisely, let

b1, b2, . . . bn, . . .

be a fixed infinite sequence of positive integers greater than 1. Using a point we form the

finite or infinite sequence

0.x1x2 . . . (1)

such that 0 ≤ xn ≤ bn − 1, for all n ≥ 1. Consider the set of rationals

s1 =
x1

b1

,s2 =
x1

b1

+
x2

b1b2

, · · · ,sn = sn−1 +
xn

b1b2 · · · bn

, · · · (2)

The above sum is bounded from above by 1,

0 ≤ sn ≤
n∑

i=1

bi − 1

b1b2 . . . bi

= 1− 1

b1b2 . . . bn

< 1,

so there is a unique real number α that is the least upper bound of all partial sums (2). The

sequence (1) is called a Cantor expansion of the real α ∈ [0, 1].

If xn = bn − 1, for all n ≥ 1, then sn = 1 − 1/(b1b2 . . . bn), so α = 1. If bn = b, for all

n ≥ 1, then the Cantor expansion becomes the classical b–ary expansion. If xn = 1 and

bn = n + 1, for all n ≥ 1, then 2 + α = e.

The genuine strength of the Cantor expansion unfolds when various choices and interac-

tions on different scales are considered.

The main result regarding Cantor expansions is the following theorem. Fix an infinite

sequence of scales b1, b2, . . .. Assume that we exclude Cantor expansions in which starting

from some place after the point all the consecutive digits are xn = bn − 1. Then, every real
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number α ∈ [0, 1] has a unique Cantor expansion (relative to b1, b2, . . .) and its digits are

determined by the following relations:

ρ1 = α, x1 = bb1ρ1c, ρn+1 = bnρn − xn, xn+1 = bbn+1ρn+1c.

Consequently, if we exclude Cantor expansions in which starting from some place after

the point all the consecutive digits are xn = bn − 1, then given α ∈ [0, 1] there is a unique

sequence whose Cantor expansion is exactly α.

For more details regarding the Cantor expansion see [1, 8].

III. NOTATION AND BASIC RESULTS

We consider N to be the set of non-negative integers. The cardinality of the set A is

denoted by card (A). The base 2 logarithm is denoted by log.

If X is a set, then X∗ denotes the free monoid (under concatenation) generated by X

with e standing for the empty string. The length of a string w ∈ X∗ is denoted by |w|. We

consider the space Xω of infinite sequences (ω-words) over X. If x = x1x2 . . . xn . . . ∈ Xω,

then x(n) = x1x2 . . . xn is the prefix of length n of x. Strings and sequences will be denoted

respectively by x, u, v, w, . . . and x,y, . . .. For w, v ∈ X∗ and x ∈ Xω let wv, wx be the

concatenation between w and v,x, respectively.

By “v” we denote the prefix relation between strings: w v v if there is a v′ such that

wv′ = v. The relation “@” is similarly defined for w ∈ X∗ and x ∈ Xω: w @ x if there

is a sequence x′ such that wx′ = x. The sets pref(x) = {w : w ∈ X∗, w @ x} and

pref(B) =
⋃

x∈B pref(x) are the languages of prefixes of x ∈ Xω and B ⊆ Xω, respectively.

Finally, wXω = {x ∈ Xω : w ∈ pref(x)}. The sets (wXω)w∈X∗ define the natural topology

on Xω.

Assume now that X is finite and has r elements. The unbiased discrete measure on X is

the probabilistic measure h(A) = card (A)/r, for every subset of X. It induces the product

measure µ defined on all Borel subsets of Xω. This measure coincides with the Lebesgue

measure on the unit interval, it is computable and µ(wXω) = r−|w|, for every w ∈ X∗. For

more details see [7, 9, 10].

In dealing with Cantor expansions we assume that the sequence of bases b1, b2, . . . bn, . . . is

computable, i.e. given by a computable function f : N → N\{0, 1}. Let Xi = {0, . . . , f(i)−
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1}, for i ≥ 2, and define the space

X(f) =
∞∏
i=1

Xi ⊆ Nω .

The set

pref(X(f)) = {w : w = w1w2 . . . wn, wi ∈ Xi, 1 ≤ i ≤ n}

plays for X(f) the role played by X∗ for Xω.

Prefixes of a sequence x ∈ X(f) are defined in a natural way and the set of all (admissible)

prefixes will be denoted by pref(x). As we will report any coding to binary, the length of

w = w1w2 . . . wn ∈ pref(X(f)) is ‖ w ‖= log(
∏n

i=1 f(i)); |w| = n. In X(f) the topology is

induced by the sets [w]f = {x ∈ X(f) : w ∈ pref(x)} and the corresponding measure is

defined by

µ([w]f ) =

|w|∏
i=1

(f(i)−1),

for every w ∈ pref(X(f)). An open set is of the form [A]f = {x : ∃n(x(n) ∈ A)}, for

some set A ⊆ pref(X(f)). The open set [A]f is computably enumerable if A is computably

enumerable.

If x ∈ X(f), then we denote by αx the real whose Cantor digits are given by the sequence

x, hence xαx
= x and αxα

= α.

The following two lemmas will be useful:

Let 0 ≤ a < 2m and let α, β be two reals in the interval (a · 2−m, (a + 1) · 2−m). Then, the

first m bits of α and β coincide, i.e., if α =
∑∞

i=1 xi2
−i and β =

∑∞
i=1 yi2

−i, then xi = yi,

for all i = 1, 2, . . . ,m.

Let b1, b2, . . . be an infinite sequence of scales and a = j/(b1b2 . . . bm) ∈ [0, 1]. Let α, β

be two reals in the interval (a, a + 1/(b1b2 . . . bm)). Then, the first m digits of the Cantor

expansions (relative to b1, b2, . . .) of α and β coincide, i.e., if α =
∑∞

i=1 xi/(b1b2 . . . bi) and

β =
∑∞

i=1 yi/(b1b2 . . . bi), then xi = yi, for all i = 1, 2, . . . ,m.

IV. DEFINITIONS OF A RANDOM SEQUENCE RELATIVE TO THE CANTOR

EXPANSION

In this section we propose five definitions for random sequences relative to their Can-

tor expansions and we prove that all definitions are mutually equivalent. We will fix a
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computable sequence of scales f .

We say that the sequence x ∈ X(f) is Cantor–random if the real number αx is random

(in the sense of Algorithmic Information Theory). e.g., the sequence corresponding to the

binary expansion of α is random.

Next we define the notion of weakly Chaitin–Cantor random sequence. To this aim we

introduce the Cantor self-delimiting Turing machine (shortly, a machine), which is a Turing

machine C processing binary strings and producing elements of pref(X(f)) such that its

program set (domain) PROGC = {x ∈ {0, 1}∗ : C(x) halts} is a prefix-free set of strings.

Sometimes we will write C(x) < ∞ when C halts on x and C(x) = ∞ in the opposite case.

The program-size complexity of the string w ∈ pref(X(f)) (relative to C) is defined by

HC(w) = min{|v| : v ∈ Σ∗, C(y) = w}, where min ∅ = ∞. As in the classical situation

the set of Cantor self-delimiting Turing machines is computably enumerable, so we can

effectively construct a machine U (called universal ) such that for every machine C, HU(x) ≤

HC(x) + O(1). In what follows we will fix a universal machine U and denote HU simply by

H.

The sequence x ∈ X(f) is weakly Chaitin-Cantor–random if there exists a positive constant

c such that for all n ∈ N, H(x(n)) ≥‖ x ‖ −c.

The sequence x ∈ X(f) is strongly Chaitin-Cantor–random if the following relation holds

true: limn→∞(H(x(n))− ‖ x ‖) = ∞.

The sequence x ∈ X(f) is Martin-Löf-Cantor–random if for every computably enumerable

collection of computably enumerable open sets (On) in X(f) such that for every n ∈ N,

µ(On) ≤ 2−n we have x 6∈ ∩∞n=1On.

The sequence x ∈ X(f) is Solovay-Cantor–random if for every computably enumerable

collection of computably enumerable open sets (On) in X(f) such that
∑∞

n=1 µ(On) < ∞ the

relation x ∈ On is true only for finitely many n ∈ N.

Let us state a theorem. Let x ∈ X(f). Then, the following statements are equivalent:

1. The sequence x is weakly Chaitin-Cantor–random.

2. The sequence x is strongly Chaitin-Cantor–random.

3. The sequence x is Martin-Löf-Cantor–random.

4. The sequence x is Solovay-Cantor–random.

8



These equivalences are direct translations of the classical proofs (see, for example, [7]).

Moreover, we have the following additional relations: Let x ∈ X(f). Then, the sequence

x is weakly Chaitin-Cantor–random if x is Cantor–random. If the function f is bounded,

then every weakly Chaitin-Cantor–random x is also Cantor–random sequence.

Only the equivalence between the notions of Cantor–randomness and weakly Chaitin-

Cantor–randomness will be proven.The argument is modification of the proof idea of Theo-

rem 3 in [11].

Assume first that x ∈ X(f) is not Cantor–random and let α = αx. Let y = y1y2 . . . be the

bits of the binary expansion of α. We shall show that y is not a binary random sequence.

Fix an integer m ≥ 1 and consider the rational

α(m) =
m∑

i=1

xi

b1b2 . . . bm

.

We note that w = x1x2 . . . xm is in pref(X(f)) and ‖ w ‖= log(b1b2 . . . bm). Further on,

0 < α(m) < α and

α− α(m) ≤
∞∑

t=m+1

xt

b1b2 . . . bt

≤
∞∑

t=m+1

bt − 1

b1b2 . . . bt

=
1

b1b2 . . . bm

.

Next we define the following parameters:

Mm = blog(b1b2 . . . bm)c, (3)

am = bα(m) · 2Mmc. (4)

and we note that

α− α(m) ≤ 1

b1b2 . . . bm

≤ 2−Mm . (5)

We are now in a position to prove the relation: for every integer m ≥ 1,

[α(m), α] ⊆
[
am · 2−Mm , (am + 2) · 2−Mm

)
. (6)

Indeed, in view of (5) and (4) we have α < (am + 2) · 2−Mm as:

α · 2−Mm ≤ α(m) · 2−Mm + 1 < am + 2.

Again from (4), am ≤ α(m) · 2Mm .

Using (6), from w = x1x2 . . . xm plus two more bits we can determine y1y2 . . . yMm , that is,

from the first m digits of the Cantor expansion of α and two additional bits we can compute
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the first Mm binary digits of α. In view of a result obtained earlier we obtain a computable

function h which on an input consisting of a binary string v of length 2 and w produces as

output y(Mm).

We are ready to use the assumption that y is random but x is not Cantor–random, that

is, there is a universal self-delimiting Turing machine U2 working on binary strings and there

is a positive constant c such that for all n ≥ 1,

HU2(y(n)) ≥ n− c, (7)

and for every positive d there exists a positive integer ld (depending upon d) such that

H(x(ld)) ≤‖ x(ld) ‖ − d. (8)

We construct a binary self-delimiting Turing machine C2 such that for every d > 0,

there exist two strings ld and v, sld ∈ {0, 1}∗, such that |v| = 2, |sld | ≤ ‖ x(ld) ‖ −d =

log(b1b2 . . . bld)− d and C2(v, sld) = y(Mld).

Consequently, in view of (7) and (8), for every d we have:

Mld − c ≤ HU2(y(Mld))

≤ HC2(y(Mld)) + O(1)

≤ |sld |+ 2 + O(1)

≤ log(b1b2 . . . bld) + O(1)

= Mld + O(1)− d,

a contradiction.

Recall that α =
∑∞

i=1 xi/(b1b2 . . . bi) =
∑∞

i=1 yi2
−i. Now we prove that x is Cantor–

random whenever y is random. Let m ≥ 1 be an integer and let α2(m) =
∑m

i=1 yi2
−i. Given

a large enough m we effectively compute the integer tm to be the maximum integer L ≥ 1

such that

2−m ≤ 1

b1b2 . . . bL

. (9)

We continue by proving that for all large enough m ≥ 1:

[α2(m), α] ⊆
[
α(tm)− 1

b1b2 . . . btm

, α(tm) +
1

b1b2 . . . btm

]
. (10)

We note that α2(m) < α and
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α =
∞∑
i=1

xi

b1b2 . . . bi

≤ α(tm) +
∞∑

i=tl

xi

b1b2 . . . bi

≤ α(tm) +
∞∑

i=tl

bi − 1

b1b2 . . . bi

≤ α(tm) +
1

b1b2 . . . btm

.

As α ≤ α(tm)+1/(b1b2 . . . btm) we only need to show that α(tm) ≤ α2(m)+1/(b1b2 . . . btm).

This is the case as otherwise, by (9), we would have:

α(tm) > α2(m) +
1

b1b2 . . . btm

≥ α2(m) + 2−m ≥ α,

a contradiction.

In case when f is bounded, assume by contradiction that x is Cantor–random but y is

not random, that is there exists a positive constant c such that for all n ≥ 1 we have:

H(x(n)) ≥ log(b1b2 . . . bn)− c, (11)

and for every d > 0 there exists an integer nd > 0 such that

HU2(y(nd)) < nd − d. (12)

In view of a result stated earlier and (10), there is a computable function F depending

upon two binary strings such that |v| = 2, F (y(nd), v) = x(tnd
), so the partially computable

function F ◦ U2 which maps binary strings in elements of pref(X(f)) is a Cantor self-

delimiting Turing machine such that for every d > 0 there exists a binary string snd
of

length less than nd − d and a binary string v of length 2 such that F (U2(snd
), v) = x(tnd

).

As f is bounded, the difference | tm+1 − tm | is bounded. In view of (9), for large m ≥ 1,

b1b2 . . . btm > m− 1, so we can write:

2−nd +

nd∑
i=1

(1− yi)2
−i = 1−

nd∑
i=1

yi2
−i ≤ 1− 1

b1b2 . . . btnd

, (13)

nd − c− 1 ≤ log(b1b2 . . . btnd
)− c

≤ HU(x(tnd
))

≤ HF◦U2(x(tnd
)) + O(1)

≤ |snd
|+ 2 + O(1)

≤ nd − d + O(1),

a contradiction.

It is an Open Question whether the above result holds true for unbounded functions f .

Consider the following statement:

11



Let x be a binary sequence. If there exists a computable infinite set M of positive integers

and c > 0 such that for every m ∈ M , HU2(x(m)) ≥ m− c, then x is random.

Note that if the above statement would be true, then the answer to the Open Question

would be affirmative.

It is interesting to note that in case of unbounded functions f we may have Cantor–

random sequences x ∈ X(f) which do not contain a certain letter, e.g. 0 ∈ Xi. Let

f(i) = 2i+2. Then the measure of the set F =
∏∞

i=1 X ′
i, where X ′

i = Xi \ {0} satisfies

µ(F ) =
∏∞

i=1(1− 2−i−1) > 0. Thus F contains a Cantor–random sequence x. However, by

construction, x does not contain the letter 0 which is in every Xi.

V. ON THE MEANING OF RANDOMNESS IN CANTOR’S SETTING

So far, a great number of investigations have concentrated on the meaning and definition

of randomness in the standard context, in which bases remain the same at all scales. That

is, if one for instance “zooms into” a number by considering the next place in its expansion,

it is always taken for granted that the same base is associated with different places.

From a physical viewpoint, if one looks into a physical property encoded into a real in,

say, fixed decimal notation, then by taking the next digit amounts to specifying that physical

property more precisely by a factor of ten. A fixed “zoom” factor may be the right choice if

all physical properties such as forces and symmetries and boundary conditions remain the

same at all scales. But this is hardly to be expected. Take, for instance, a “fractal” coastline.

How is it generated? The origins of its geometry are the forces of the tidal and other forces

on the land and coastal soil. That is, water moving back and forth, forming eddies, washing

out little bays, and little bays within little bays, and little bays within little bays within little

bays, . . . and so on. There may be some structural components of this flow which results

in scale dependence. Maybe the soil-water system forming the landscape will be “softer” at

smaller scales, making bays relatively larger that their macroscopic counterparts. Indeed,

eventually, at least at subatomic scales, the formation of currents and eddies responsible for

the creation of ever smaller bays will break down.

In such cases, the base of the expansion might have to be modified in order to be able to

maintain a proper relation between the coding of the geometric object formed by the physical

system and the meaning of its number representation in terms of “zooming”. All such
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processes are naturally stochastic, and therefore deserve a proper and precise formalization

in terms of random sequences in Cantor representations.
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