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Abstract. This paper is devoted to the study of the relationship between regularity
and definability of relations in structures presented by finite automata. An emphasis is
given to relations in fragments of arithmetic, in particular in (w, <), (w, S), (w,+) and
some of their variants. A relation in a structure is intrinsically regular if it is regular
in every automatic presentation of the structure. All definable relations in the first
order logic with finite number of parameters are intrinsically regular. We investigate
questions related to whether or not intrinsically regular relations are definable. For
example, on the one hand, we show that the set M? of all even numbers in every
automatic presentation of (w,<) is intrinsically regular (but not definable). On the
other, we show that there exists an automatic presentation of (w,S) in which the set
M? is not regular. In particular, we show that a unary relation in (w, S) is intrinsically
regular if and only if it is definable.

1 Introduction

The aim of this paper is to study the relationship between regularity and defin-
ability in automatic structures. This is an old topic that goes back to the results
of Biichi in the 1960’s who proved, for example, that a language L is regular if
and only if it is definable in the monadic second order logic over finite words.
This is closely related to work in which regular languages are characterised
via definability in certain fragments of arithmetic. For example, work of Biichi,
Cobham, Semenov, Muchnik, Bruyere et al. (see [2]) a for good exposition), is
devoted to characterising those relations in fragments of arithmetic that can be
recognised by finite automata. In this paper we continue this line of research in
light of current interest and results in the theory of automatic structures. We
are also motivated by the intense investigations in computable model theory on
the relationship between computability and definability, a research program first
proposed by Ash and Nerode in their famous paper on intrinsically recursive re-
lations [1]. In this paper we refine the Ash-Nerode program by considering the
class of automatic structures rather than the much general class of computable
structures.

Assume, we have a structure A that is automatically presentable (Definition
23). This means that there is an encoding of the domain A of A such that the
domain, functions and relations of A are regular. Let R C A™ be a relation
in A, though not necessarily in the language of A. For example, R can be the
reachability relation if A is a graph, or R can be the dependency relation if A is



a group. Automata theoretic properties of R depend on automatic presentations
of A. For example, in one presentation of A the relation R may be recognised
by an n state automaton, in another presentation R may be recognised by an
m state automaton with n # m, and there could be automatic presentations of
A in which R is not regular. One of our goals is to study those relations in A4
that are regular under every automatic presentation of A. We single out such
relations in the following definition.

Definition 11 (cf. [1]) A relation R in an automatic structure A is intrinsi-
cally regular if for every automatic structure B isomorphic to A the image of
the relation R in B is regular.

Thus the intrinsically regular relations in A are the ones for which regularity is
invariant under all automatic presentations of A. A natural class of intrinsically
regular relations is the class of all definable relations. We say that a relation R is
definable in A if there exists a formula ¢(z, ¢) in the language of the first order
logic extended by the 3% (there exist infinitely many) quantifier with finitely
many parameters ¢ from A such that R = {a | A = ¢(a, ¢) }. Definable relations
in a given automatic structure are intrinsically regular as provided by the next
theorem (see [7] or [3]).

Theorem 12 Given an automatic structure A and a relation R that is definable
in A, one can effectively construct an automaton recognising R. O

In light of this, we name the class of automatic structures for which the intrinsic
regular relations are exactly the definable ones.

Definition 13 An automatic structure A is intrinsically regular if every in-
trinsically regqular relation R in A is definable.

We illustrate these concepts with a well studied example, the standard model of
Presburger Arithmetic, that is the structure (w, +). For each m € w consider the
presentation A, of w over the alphabet X, = {0,...,m — 1}. Here the natural
number n € w is coded in A,, as the reverse of its base m-representation. For R C
w™, write R,, for the image of R in A,,. Then for m > 1, (A, +n,) is automatic
(Definition 23) because an automaton for +,, can essentially implement the
standard algorithm for base m addition. The Cobham-Semenov theorem (see [2])
states that for R C w", if (A, Rx) and (A;, R;) are both automatic structures for
multiplicatively independent k£ and [, then R is definable in (w,+). Here k£ and
[ are multiplicatively independent if (Yn, m > 0)k™ # ["™. So if R is intrinsically
regular for (w,+) then it is definable in (w,+). Thus, the Cobham-Semenov
implies that:

Theorem 14 The structure (w,+) is intrinsically regular. O

In this paper we concentrate on subsystems of the weak arithmetic (w, S, +, <).
In particular, we concentrate on the relationship between automatic presen-
tations and intrinsically regular relations in the structures (w,+), (w, <), and



(w,S) and among the binary relation < and the unary relations M* = {n €
wl| (3 €wn==kj}and P*={n € w| (35 € w)n = k}. We also investigate
how to expand these structures in order to make them intrinsically regular.

Here is now an outline of the paper. The next section gives necessary defini-
tions and some examples. In Section 3, we study the structure (w, +) and show
that in every automatic presentation of (w,+) there is a regular relation in it
whose image is not regular in another automatic presentation of (w,+). Section
4 investigates regular relations in the structure (w, <). We show that (w, <) is
not intrinsically regular. For example, we prove that the set M2 of all n € w at
even positions is an intrinsically regular unary relation but M? is not definable.
Section 5 studies intrinsic regularity of the structure (w,S). The main result of
the section is that a unary relation R is intrinsically regular if and only if it is fi-
nite or co-cofinite. Finally, we briefly study trees and investigate the relationship
between regularity of the partial order and successor relation on trees.

2 Automata Preliminaries

A thorough introduction to automatic structures can be found in [3] and [7].
A recent survey paper [8] discusses the basic results and possible directions for
future work in the area. Familiarity with the basics of finite automata theory is
assumed though for completeness the necessary definitions are included here.
A finite automaton A over an alphabet X' is a tuple (S,¢, A, F'), where S is a
finite set of states, + € S is the initial state, A C S x X' x S is the transition
table and F' C S is the set of final states. A computation of A on a word
010y ...0, (0; € X)) is a sequence of states, say qo, q1, - - - , ¢s, such that g = ¢ and
(G, 0iv1,qi41) € Aforalli € {0,1,...,n—1}.If ¢, € F, then the computation is
successful and we say that automaton A accepts the word. The language accepted
by the automaton A is the set of all words accepted by A. In general, D C X* is
finite automaton recognisable, or regular, if D is equal to the language accepted
by A for some finite automaton A.

Classically finite automata recognise sets of words. The following definitions ex-
tends recognisability to relations of arity n, called synchronous n—tape automata.
Informally a synchronous n-tape automaton can be thought of as a one-way
Turing machine with n input tapes [4]. Each tape is regarded as semi-infinite
having written on it a word in the alphabet Y followed by an infinite succession
of blanks, ¢ symbols. The automaton starts in the initial state, reads simulta-
neously the first symbol of each tape, changes state, reads simultaneously the
second symbol of each tape, changes state, etc., until it reads a blank on each
tape. The automaton then stops and accepts the n—tuple of words if it is in a
final state. The set of all n—tuples accepted by the automaton is the relation
recognised by the automaton. Here is a formalisation:

Definition 21 Let Xy be X U {O} where O ¢ Y. The convolution of a tu-
ple (wy,---,wy,) € (X*)" is the tuple (wq, -+, wy)® € ((Xs)*)" formed by con-
catenating the least number of blank symbols, ¢, to the right ends of the w;,



1 < i < n, so that the resulting words have equal length. The convolution of a re-
lation R C (X*)™ is the relation R® C ((Xs)*)™ formed as the set of convolutions
of all the tuples in R.

Definition 22 An n—tape automaton on X' is a finite automaton over the al-
phabet (X,)". An n—ary relation R C X*" is finite automaton recognisable or
regular if its convolution R° is recognisable by an n—tape automaton.

We now relate n—tape automata to structures. A structure A consists of a set A
called the domain and some constants, relations and operations on A. We may
assume that A only contains relational and constant predicates as the operations
can be replaced with their graphs. We write A = (4, R%, ..., R, ci, ..., cf)
where R# is an n;—ary relation on A and cj‘ is a constant element of A.

Definition 23 A structure A is automatic over X if its domain A C X* and
the relations R} C X*™i all are finite automaton recognisable. An isomorphism
from a structure B to an automatic structure A is an automatic presentation of
B in which case B is called automatically presentable (over X). A structure is
called automatic if it is automatic over some alphabet.

Examples of automatically presentable structures are the fragments of arithmetic
considered here, the group of integers (Z, +), the order on the rationals (Q, <),
the Boolean algebra of finite or co-finite subsets of w. An example of an automatic
structure is the word structure ({0,1}*, L, R, E, <), where for all strings x,y €
{0,1}* we have L(z) = 20, R(z) = z1, E(z,y) iff || = |y|, and < is the
lexicographical order.

So an automatic structure is one that is explicitly given by finite automata
that recognise the domain and the basic relations of the structure. An automati-
cally presentable structure is one that is isomorphic to some automatic structure.
Informally, automatically presentable structures are those that have finite au-
tomata implementations. This, the same structure may have different (indeed
infinitely many) automatic presentations. It is a goal of this paper to study the
relationships between different automatic presentations of a given structure, and
understand how queries about the this structure change (automata theoretically)
when one varies the presentation.

3 Closed-regular structures

One can tighten the notion of intrinsic regular structure to require that regularity
and definability coincide. It turns out that there are natural examples of such
automatic structures. We first give a definition:

Definition 31 An automatic structure A is closed-regular if every regular
relation in A is definable in A.

Note that if a structure A has a closed-regular presentation then A is intrin-
sically regular. Indeed, assume that A has a closed-regular (hence automatic)



presentation B. Let R be an intrinsically regular relation in A. Then R is regu-
lar in B. Therefore R is definable. However, we note the notion of closed-regular
is sensitive in the sense that if A and B are both automatic presentations of
the same structure, A may be closed-regular while B may not be. We illustrate
these concepts with some natural examples. Consider the automatic structure
U, = (4,,+,|,) for p > 1, where A,, is an automatic presentation of w over
the alphabet X, = {0,...,m — 1}, and z|,y if z is a power of p and z di-
vides y. A relation R C A} is regular if and only if it is definable in U, see [2]
or [3]. So U, is closed-regular for p > 1. Similarly, the automatic presentation
A= (1", <, (M*)e,) of (w, <, (M*);), is closed-regular since it is complete for
the class of unary automatic structures (see [3]). However this structure has an
automatic presentation over the binary strings B = (Ay, <, (M*);e.) that is not
closed-regular, since for example + is regular in B. Note that in the last example,
we are allowing the signature to be infinite.

We have already seen that (w,+) is intrinsically regular. It is also an example
of a structure that does not have a closed-regular presentation. Recall that a
subset M of w is eventually periodic if there exists ng,p € w such that for all
x >ng, x € M if and only if x +p € M.

Lemma 32 [5, Theorem 32F] A unary relation is definable in (w,+) if and only
if it is an eventually periodic set.

Proof. The structure (w, +, (* =, ¥)mew) admits quantifier elimination and the
eventually periodic subsets of w are closed under union and complementation.O

Theorem 33 The structure (w,+) does not have a closed-reqular presentation.

Proof. Assume that (D, E) is an automatic presentation of (w, +). We construct
a unary regular relation R in (D, E') that is not definable in (w, +). Without loss
of generality, the empty string is in D. There is a constant ¢ such that for every
x € D, the length of z + z is at most |z| + ¢. For every n let

D,={zeD||z|<c-nk
R={z € D | 3In(x € D, ANz =max(D,))};

where in the definition of R the maximum refers to the ordering of < of (w, +).
The relation R is regular in the given presentation because the binary relation
D' ={(z,y) | z € D, |z| < |y|, and |y| is a multiple of ¢} is regular.

If z,y € R and = < y, then z,y belong to different sets D,, D,,, respectively
with n < m. Since z + x has length at most |z| + ¢, x + 2 € D,, for all m > n.
So if z € R then the next number in R larger than z is at least x + z. So R is
not eventually periodic and so by Lemma 32, R is not definable in (w,+). O

Corollary 34 Every automatic presentation of (w,+) has a regular set that is
not intrinsically reqular.

Proof. Consider the presentation (D, E) and the regular but not definable rela-
tion R above. By Theorem 14, R can not be intrinsically regular. O



We end this section with some basic properties of intrinsically regular relations:

Proposition 35 The intrinsically reqular relations in an automatic structure
A are closed under union, complementation and projection. Moreover, a non
intrinsically reqular relation R in A is not intrinsically in every reduct B of A.

Proof. For the first suppose Ry, R; are n—ary intrinsically regular relations in
A. Then for every automatic presentation B of A, the structure (B, Ry, R;) is
automatic. Since regular relations are closed under finite union, complementation
and projection, we have Ry U Ry, A" \ R and the projection w(R) are regular
in B. This proves the first part. For the second part it suffices note that every
automatic presentation of A is also an automatic presentation of B. O

4 Intrinsic regularity in (w, <)

In this section we consider the linearly ordered structure (w, <). We will show
that (w, <) has non definable but intrinsically regular relations. The following
lemma describes the definable unary relations in (w, <).

Lemma 41 [5, Theorem 32A] A unary relation U is first-order definable in
(w, <) if and only if it is either finite or co-finite.

Proof. Since 3%°z®(x) is equivalent in (w, <) to Vz3z(z > 2AP(x)), consider the
usual first order theory of (w, <). It admits quantifier elimination. Hence every
definable set U in (w, <) is either finite or co-finite. The converse is straightfor-
ward. O

It turns out that the structure (w, <) is not intrinsically regular. Recall that
M C w for i € w is the set of all numbers n € w that are multiples of 7. These
sets are not definable in (w, <).

Theorem 42 The unary predicate M? is intrinsically reqular for (w, <).

Proof. Let (D, E) be an automatic copy of (w, <) over alphabet X' and let C C D
be the words corresponding to the even natural numbers. Then z € C if and
only if {y € D | E(y,z)} has odd cardinality. We will define an automaton
over X accepting such z’s. Let A = (Qa,t, A4, F4) be the automaton over X
recognising E. The idea is that the new automaton calculates the parity of the
number of paths in A with first component x and accepts x when the parity of
the number of successful paths is odd.

Alter A so that instead of accepting only (z,y)® for z < y, it also accepts
(z,y)° (°) for all n € w and every z < y. In other words, if x = zoz1...2, € D

<

and y = yoy1...y; € D with say k£ < [, then z < y if and only if A accepts
exactly the words of the form (zo) (“) . (m’“)< ° ) . (°) (°)S for all s € w.

Yo/ \y1 Yk / \Yk+1 Y/ \®
As a first step define an automaton B as (@, tg, Ap, Fig) over X, as follows.

— @p is the set of all subsets of Q4.



— Apg(V,0) = W where W consists of all states ¢ € @ 4 such that the cardinality
of {(v,0") | g = Aa(v, (;’,)),v eV Ao € X} is odd.
— g = {1}

— Fp consists of those states V such that [V N Fy| is odd.

In words, ¢ € Ag(V, o) means that there are an odd number of edges in A from
states of V' to the state ¢ labeled with first component o.

Now define P, as the set of all paths in A starting at ¢ and labeled with y in the
first component. Note that y € X*{o}* and B only runs on words of this form.

Claim. For |y| # 0, |P,| is odd if and only if Ag(ip,y) # 0.

Let y € X*{o}* and let Vo, Vi, ..., Vi, Vi1, - - -, Vaik be arun in B on y. Proceed
by induction on |y|. If |y| = 1 then by definition ¢ € V; if and only if there are
an odd number of edges in A from ¢ to ¢ if and only if |P,| is odd, as required.
Suppose that |y| = n and that the hypothesis holds for y. Consider y extended
by o. Then by definition, ¢ € Ag(V, o) if and only if there are an odd number
of edges from states of V' to ¢ with first component labeled o.

Note that every path in P, extends a path in P, by an edge. Now if |P,| were
even then no matter how many extensions there are from a path in P, to one in
Pys, |Pys| is also even. So assume that | Py, | is odd. Then so is |P,| which implies
that V # () and for every ¢ € V that there are an odd (and in particular at
least 1) number of edges in A leaving ¢ labeled with first component o. Hence
A(V,0) # 0. Conversely, suppose that A(V, o) = 0. That is, for every ¢ € Q4
there are an even number of edges in A from states of V' to the state ¢ labeled
with first component o. Hence |P,,| is even if V' # (). Alternatively if V = ()
then by induction |P,| is even and so |P,,| must also be even. This completes
the proof of the claim.

Hence we immediately have that B accepts exactly those words y € X*{o}*
where the number of paths in A from ¢ labeled with first component y and
ending in an accept state of A is odd. Now there exists a constant x € w such
that if ¢ is the length of the longest word in {z € D : E(z,y)} then t — |y| < k.
For otherwise by the pumping lemma on A there would exists infinitely many
words < y, contradicting that {z € D : E(z,y)} is finite. So write y' as y followed
by k many ¢’s. Then z < y if and only if A accepts (z,y')°. So v is accepted
by B if and only if there are an odd number of strings z € X*{o}* of length
ly'| where (z,y') is accepted by A. So finally construct an automaton B’ that
accepts y if and only if B accepts 3. Then B’ accepts € D if and only if the
set {z € D : E(z,z)} has odd cardinality. This completes the proof. O

So combining the fact the M? is intrinsically regular for (w, <) and is not defin-
able in (w, <) one has the following theorem as a corollary:

Theorem 43 The structure (w, <) is not intrinsically regular. O

The next corollary describes all the intrinsically regular unary relations of
(w, <):



Corollary 44 A unary relation R is intrinsically regular for (w, <) if and only
if R is a reqular subset of w.

Proof. Adapting the proof above, yields that for each i the unary relation M?*
is intrinsically regular. So suppose that R C w is intrinsically regular for (w, <).
Then in particular (A;, <i, R;) is an automatic structure and so R; is a regular
subset of {0}*. Conversely, if R is a regular subset of w then it is a finite union
of arithmetic progressions. So R is a boolean combination of sets of the form M?*
for i € w. Each M" is intrinsically regular for (w, <) by Theorem 42, so is R. O

Proposition 45 The ternary relation + is not intrinsically regular for (w, <).

Proof. Define D = {0}* and E(z,y) iff |z| < |y|. Then the relation U(z,y) <
x4+ x =y just says for x,y € {0}* that y has the double length of z. A pumping
lemma argument shows that this relation is not regular. O

5 Intrinsic Regularity in (w, S)

Consider the structure (w, S) where S is the successor function. Our goal is to
show that in this structure, the intrinsically regular unary relations are those
that are either finite or co—finite. For this we first not that as a consequence of
Proposition 41, one has:

Corollary 51 A definable unary relations in (w, S) is finite or co-finite. O

The following theorem is the main result of this section.
Theorem 52 The relations M? and < are not intrinsically reqular for (w, S).

Proof. We construct an automatic structure ({0,1}*, f) that is isomorphic to
(w, S). For constructing f, the following auxiliary notions are required: Given
a string = € {0,1}*, let ev(x) be the binary number represented by the bits in
the even positions of x and od(z) be the binary number represented by the bits
in the odd positions. Let n (m respectively) be the number of bits in the even
(odd) positions of z; note that m < n < m + 1 and |z| = m + n. For example,
if = 10101 then ev(z) = 111, od(x) = 00,n = 3 and m = 2. The successor of z
is computed according to the first case that applies in the following list:

1. If n < 2 then f(x) is the successor of z with respect to length-lexicographic
ordering.

2. If ev(z) = 2"" and od(z) = 2™ — 1 then f(z) = 0"+l

3. If ev(z) = 2" and od(x) < 2™ — 1 then f(x) =y for the y with |y| = |z|,

ev(y) = 0 and od(y) = od(z) + 1

4. If ev(r) = 2" —20d(y) — 1 modulo 2" then f(z) = y for the y with |y| = |z|,

ev(y) = ev(z) + 4od(y) + 2 and od(y) = od(z).

5. If ev(z) = 2" — 20d(y) — 1 modulo 2" then f(z) =y for the y with |y| = |z,
ev(y) = 2" — 1 and od(y) = od(z).

6. Otherwise f(y) =y for the y with |y| = |z|, ev(y) = ev(z) + 20d(y) + 1 and
od(y) = od(z).



The operations given here are automatic since the addition is automatic, the
i’th bit of ev(z) and of od(z) are adjacent in z, and all constants are easily
recognizable: 2" ! is represented by a 1 and n—1 0’s following it, 2" is represented
by n 0’s and 2™ — 1 is represented by m 1’s.

Note that for every natural number £ and odd number A there is a number
u € {0,1,...,2"—1} such that £ = h-u modulo 2". Let w be an isomorphism from
({0,1}*, f) to (w, S). One can inductively verify the existence of the isomorphism
and in particular show the following for the case that n > 3.

— There is a unique string 2’ such that |z'| = |z|, ev(z’) = 0 and od(2") = od(z).

— There is a unique number u € {0,1,...,2"—1} such that ev(z) = u-(20d(x)+
1) modulo 2™.

— If u < 27! then 7(x) = 7(z') + u.

— If u = 2! then 7(x) = 7(z')

— If u > 2"! then 7(x) = w(z') + u — 1.

— If ev(y) = 0 and od(y) = od(z') + 1 < 2™ — 1 then 7(y) = 7(z) + 2".

. From this one can conclude that the successor always goes through all elements
of length n and then goes to length n 4+ 1. Thus ({0,1}*, f) is an automatic
representation of (w, S).

Recall that M? = {z | w(z) is odd}. Note that m(z') is odd for all non-empty
strings z. Thus one has that z € M? iff either v < 2! and ev(z) is even or
u > 2" ! and ev(z) is odd. So knowing whether z € M? and ev(z) is even
permits to decide whether u > 2"~1. The goal of the construction was to make
this impossible.

To show that the goal is reached, assume the following special case: The number
n is odd, x has n 1’s in the even positions and m — r 0’s followed by r 1’s in
the odd position. Furthermore, assume that n < 2r + 3 and r + 1 < n. Now it
is shown that under these premises the membership of z in M? is equivalent to
n # 2r + 3 — a condition that cannot be checked by a finite automaton.
Ifn=2r+3then 2" —1=(2""! 4+ 2" + 1) - (2"*! — 1) modulo 2". Tt follows
that 7(z) = w(z') + 27" + 2" and = ¢ M2

If n < 2r +3 then 2" — 1 = (2! + 1) - (2! — 1) modulo 2™. Tt follows that
m(z) =7(z') + 2" + 1 and z € M2. So M? is not regular.

Theorem 42 showed that every automatic presentation of (w, <) satisfies that
M? is regular. Thus < is not regular in the structure ({0,1}*, f). O

The next result shows that there are also automatic presentations of (w, S) where
M? is regular but < is not.

Theorem 53 The ordering < is not intrinsically regqular for (w, S, M2, M3, ...).

Proof. We construct a presentation (D, g) over X' = {0,1} of (w, S) in which all
sets M* are regular, but < is not. Let D = 0*1*. Now define

0"1 if m + 2n is even and m = 0;
g(0m1™) = 0"*+11m=2 if m + 2n is even and m > 0;
1m+t if m + 2n is odd and n = 0;

0" 11™*+2  if m + 2n is odd and n > 0.



It is easy to see that g is automatic. Furthermore, g corresponds to an ordering
where 0"1™ < 0" 1™ whenever m+2n < m/+2n’. The mapping 0"1™ — m+2n
might be viewed as a norm of the strings in D compatible with g. This table
with the first strings ordered by ¢ and with the corresponding norm given

norm values of this norm ordered by g
A

1

11, 0

01, 111

1111, 011, 00

001, 0111, 11111

6 111111, 01111, 0011, 000

shows how the ordering works. Let < be the ordering induced by g. Then 1™ < 0"
iff m < 2n. Such a condition is not regular and thus < is not automatic.

Let 7 be the isomorphism from (D, g) to (w, S). The lengths of z and g(z) differ
by 1. Thus, m(0"1™) is odd iff the length n + m of the string is odd. So, M? is
represented by a regular set. For general M*, note that the value of 7(0"1™) is
determined by the value of the norm 2n + m modulo 2k and n + m modulo k.
This follows from the following facts: there are exactly h(h + 1) many strings of
norm strictly below h; if the norm is even then g decreases the length in every
step; if the norm is odd then g increases the length in every step. So a finite
automaton can compute whether 0"1™ is in M* by determining the values of
2n + m modulo 2k, n + m modulo k£ and then looking up the result in a table
with 2k - k£ many entries. O

Tt W N+~ O

6 Intrinsic regularity in structures between (w, S) and
(w, <)

Given a partial ordering (7, <), let S be the successor relation in (7, <) where
S(z,y) iff z < y and there is no z with z < z < y. In particular, in the structure
(w, <) the notion S(z,y) is equivalent to y = z+ 1. Furthermore, define P* C N
as the set of powers of k. Write P? for the structure (w, f, P?) where f is the
successor function. In the proof of Theorem 53 the set P? is regular in the
constructed presentation (D, g). So we strengthen this to:

Proposition 61 1. The ordering < is not intrinsically regular for P2,
2. The set M is not intrinsically reqular for P2, for every i > 1.

The next example shows that (7', <) is a partial ordered structure such that
(T, S) has an automatic copy but (7, <) does not. The example will be a tree
where each node has one or two successors, so it will be sufficiently natural. The
proof of the result uses the notion of the Cantor-Bendixson rank for trees that
is defined as follows.

Definition 62 [6] Given a tree T, for every countable ordinal o the o’s deriva-
tive d*(T) is defined by transfinite induction as follows.



— d°(T) is the set of all nodes on some infinite path of T ;
— d*(T) is the set of all nodes x of T such that for all B < « there are infinite
paths P,Q on T withx € PNQ and PUQ C d*(T).

The Cantor-Bendixson rank of T is the first ordinal o such that d*(T) =
d*tH(T).

Theorem 63 There is a binary tree (T, <,S) such that (T,S) has an automatic
copy but (T, =) does not.

Proof. Let the tree (T, <) be generated by the following successor structure.

— If £ does not contain a 0 then the successors are obtained by appending one
digit: S(1™,1"0), S(1™,1"1).

— If  contains a 0 and starts with a 1, that is, if x = 1vOw, then the suc-
cessors of x are obtained by either appending a 0 or rotating to the left:
S (1v0w, 1v0w0), S(1v0w, v0wl).

— If x starts with a 0, that is, if x = Oy, then x has only the successor obtained
by appending a 0: S(0y, 0y0).

The Cantor-Bendixson rank of 7 is w + 1: The n-th derivative d"(7T) is the
set containing all strings of the form 1" and 1"*™0y where y contains arbitrary
many 0’s but at most m 1’s. The nodes 1""™0y where y contains exactly m
1’s are exactly the nodes on isolated paths of the tree (d"(7), <) and therefore
omitted from d"™1(T). It follows that d¥ = {1}* and d“*! = ). Thus T has only
countably many infinite paths and Cantor-Bendixson rank w + 1.

Khoussainov, Rubin and Stephan [9] have shown that every automatic tree (7, <
) in the signature of partial orders has finite Cantor-Bendixson rank. Since the
Cantor-Bendixson rank does not depend on the presentation, it is impossible to
find a presentation of the considered tree where 7' is regular and the ordering <
is automatic. O

7 Conclusion

In this paper we studied the relationship between regularity and definability of
relations in automatic structures. On the one hand, we have shown that defin-
able relations do not always capture intrinsic regularity. On the other, we have
provided some examples and results in which intrinsic regularity and definability
coincide. We have concentrated our study on fragments of arithmetic. Naturally,
there are many examples of other fundamental structures, such as binary trees,
the group of integers, and the orderings of the rational numbers, in which the
interplay between definability and regularity can be studied. It seems that the
formal language that we use to define relations (namely first order logic with the
added quantifier 3°°) is not powerful enough to capture the concept of intrin-
sic regularity. It would be interesting to investigate questions related to finding
formal systems in which definability and intrinsic regularity coincide.
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