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Abstract

We investigate partial orders that are computable, in a precise sense, by finite
automata. Our emphasis is on trees and linear orders. We study the relationship
between automatic linear orders and trees in terms of rank functions that are
related to Cantor-Bendixson rank. We prove that automatic linear orders and
automatic trees have finite rank. As an application we provide a procedure for
deciding the isomorphism problem for automatic ordinals. We also investigate the
complexity and definability of infinite paths in automatic trees. In particular we
show that every infinite path in an automatic tree with countably many infinite
paths is a regular language.

1 Introduction

Consider a class of infinite structures, such as the class of graphs, partial orders, trees,
groups, or lattices, etc. A given structure in this class may or may not be computable. If
it is one then naturally asks whether or not the structure, or algorithmic problems of the
structure, are feasibly computable. In case that ‘feasible’ means computable by finite
automata (see Definition 2.4) one has an automatic structure. The automata in this
paper operate synchronously on finite words. Using the closure of these automata under
boolean operations and projection, one has that the first order theory of an automatic
structure is decidable, see for instance [9]. From a computer science point of view this
result suggests that automatic structures may be suitable objects that can be effectively
queried. The most developed illustration of this is in the related concept of automatic
groups in computational group theory [6]. There it is proven that a finitely generated
automatic group is finitely presentable and that its word problem is solvable in quadratic
time. The general notion of structures presentable by automata has been recently studied
in[1,2,4,7,9, 11]. Throughout this paper we will use the following more general theorem
proved in [2] without explicit mention.

Theorem 1.1 Given an automatic structure A and a relation R which is first order
definable in A (with the quantifier 3°° which stands for ‘there exist infinitely many’),
one can effectively construct an automaton recognising R.

Our work is motivated by the following general problem.



Problem 1.2 Given a class of structures C, characterise the isomorphism types of the
automatic structures in C.

The isomorphism type of a structure A is defined as the set of structures that are
isomorphic to A. A satisfactory answer to the problem above would give a non automata
theoretic description of those isomorphism types that contain an automatic structure.
We note that the isomorphism problem for automatic graphs is ¥{ complete [10] - and
so loosely is as hard as possible. Consequently we restrict the class of structures under
consideration. This paper is concerned with the class of partially ordered structures,
with an emphasis on trees and linear orderings. A partial order (partial ordering) is a
structure (A, <) such that < is a reflexive, transitive and anti-symmetric binary relation
on the domain A. A linear order L is a partial order (L, <) in which < is total, that is
VaVy(z <yVy < ).

Classically linear orderings are characterised in terms of scattered and dense linear
orderings as follows. One says that £ is dense if for all distinct ¢ and b in L with
a < b there exists an z € L with a < z < b. There are only five types of countable
dense linear orderings up to isomorphism: the order of rational numbers with or without
least and greatest elements, and the order type of the trivial linear order with exactly one
element. One says that L is scattered if it does not contain a nontrivial dense subordering.
Examples of scattered linear orders are finite sums (Definition 3.1) of cartesian products
of w (the order type of the natural numbers) and Z (the order type of the integers). The
following theorem is the classical representation of countable linear orderings and can be
found in [14, Theorem 4.9].

Theorem 3.2 Every countable linear ordering L can be represented as a dense sum of
countable scattered linear orderings.

The scattered linear orderings can be characterised inductively whereby to each linear
order L one associates a countable ordinal — called the V D-rank of £ (Definition 3.3), a
version of Cantor-Bendixson rank for topological spaces. One of our results in this paper
gives an upper bound on the FC-rank (Definition 3.8) of automatic linear orders. For
scattered linear orders the F'C'-rank coincides with the V D-rank.

Theorem 4.5 If L is an automatic linear order then its FC—rank is finite.

The proof of this theorem generalises a novel technique of Delhomme who gives a full
characterisation of automatic ordinals.

Corollary 4.6 [3] An ordinal « is automatic if and only if « < w”.

Consequently the Cantor-normal-form can be extracted from a presentation of an auto-
matic ordinal.

Theorem 5.3 The isomorphism problem for automatic ordinals is decidable.

A tree T = (T, <) is a partial order that has a minimum element and in which every
set of the form {y € T | y < x} forms a finite linear order. Elements of trees are called
nodes. A node y € T is an immediate successor of x € T if z < y and there does not
exist z € T for which © < z < y. A tree T is finitely branching if each node z € T has
only finitely many immediate successors. A path of a tree (T, <) is a subset P C T which
is linearly ordered, closed downward (that is, whenever y € P and z < y then z € P)



and maximal (with respect to set theoretic inclusion) with these properties. An infinite
path is a path P consisting of infinitely many nodes. We are interested in understanding
algebraic, model-theoretic as well as computational properties of automatic trees.

We deal with trees by associating to each tree its Kleene-Brouwer ordering. This
transformation preserves automaticity, and associates the Cantor-Bendixson rank (CB—
rank for short) of trees with the V D-ranks of the associated linear orders. Informally
the C'B-rank of the tree tells us how big the tree is in terms of ordinals, see for example
[8]. This relationship between trees and linear orders gives us the next result.

Theorem 7.9 The CB-rank of an automatic tree is finite.

It is known that every infinite finitely branching tree has an infinite path — usually
referred to as Konig’s Lemma. The proof of this fact does not produce an infinite path
constructively. In fact there are even examples of computable finitely branching trees
with ezactly one infinite path, and that path is not computable. Moreover if one omits the
assumption that the tree is finitely branching then there are examples of computable trees
in which every infinite path is not even arithmetical, see [13]. This negative phenomenon
fails dramatically when one considers automatic trees, and not only finitely branching
ones.

Theorem 8.2 Every infinite automatic finitely branching tree has a reqular infinite path.

We can significantly strengthen this theorem under the assumption that the tree has at
most countably many paths. Indeed from Theorem 7.9 we derive that if an automatic
finitely branching tree 7 has countably many infinite paths then every path of 7 is reg-
ular (Theorem 8.3). This is because the set of paths in such trees is definable. Moreover
one may even omit the assumption that the tree be finitely branching.

Theorem 8.7 If an automatic tree has countably many infinite paths then every infinite
path in it is reqular.

2 Preliminaries

All classical definitions and unproved results on linear orderings can be found in [14].
Countable means finite or countably infinite. All structures are assumed to be countable.
Definable means first order definable with the additional quantifier 3.

A thorough introduction to automatic structures can be found in [1, 9]. A recent
survey paper [12]| discusses the basic results and possible directions for future work in
the area. Familiarity with the basics of finite automata theory is assumed though for
completeness and to fix notation the necessary definitions are included here.

A finite automaton A over an alphabet ¥ is a tuple (S, ¢, A, F'), where S is a finite
set of states, ¢+ € S is the initial state, A C S x X x S is the transition table and
F C S is the set of final states. A computation of A on a word o103...0, (0; € X) is
a sequence of states, say qo,q1,- - -, qn, such that ¢go = ¢ and (g;, 0i11,¢i41) € A for all
i € {0,1,...,n — 1}. If g, € F then the computation is successful. If a word has a
successful computation then we say that automaton A accepts the word. The language
accepted by the automaton A is the set of all words accepted by A. In general, D C ¥*
is finite automaton recognisable, or reqular, if D is equal to the language accepted by A



for some finite automaton A. An automaton A is deterministic if for every ¢ € S and
o € X there is a unique ¢’ € S such that (¢,0,¢') € A.

Classically finite automata recognise sets of words. The following definition extends
recognisability to relations of arity n, by synchronous n-tape automata. Informally a
synchronous n-tape automaton can be thought of as a one-way Turing machine with n
input tapes [5]. Each tape is regarded as semi-infinite having written on it a word in
the alphabet ¥ followed by an infinite succession of blanks, ¢ symbols. The automaton
starts in the initial state, reads simultaneously the first symbol of each tape, changes
state, reads simultaneously the second symbol of each tape, changes state, etc., until it
reads a blank on each tape. The automaton then stops and accepts the n—tuple of words
if it is in a final state. The set of all n—tuples accepted by the automaton is the relation
recognised by the automaton. Here is a formalisation:

Definition 2.1 Let X, be XU{{} where ) ¢ X. The convolution of a tuple (w1, - .., wy)
€ (X*)™ is the tuple ®(wy, ..., w,) € ((Xs)™)* formed by concatenating the least number
of blank symbols, ¢, to the right ends of the w;, 1 <7 < n, so that the resulting words
have equal length. The convolution of a relation R C (X*)™ is the relation @ R C ((2,)")*
formed as the set of convolutions of all the tuples in R.

Definition 2.2 An n-tape automaton on Y is a finite automaton over the alphabet
(35)™. An n—ary relation R C ¥*" is finite automaton recognisable or reqular if its
convolution ®R is recognisable by an n—tape automaton.

For instance let <, be the prefiz relation. That is for z,y € ¥X* define x <, y if there
exists z € X* such that xz = y. If z is not the empty string € then x is a proper prefiz
of y, written x <, y. So <, is a regular binary relation over X since for example if

£ = {0,1} then ®(<,) = {(}), (0)1{(), ()1~

Proposition 2.3 [9] n-tape automata can be effectively determinised and are effectively
closed under boolean operations and projection.

We now relate n—tape automata to structures. A structure A consists of a set A called
the domain and some constants, relations and operations on A. We may assume that A
only contains relational predicates as the operations can be replaced with their graphs
and constants can be thought of as operations of arity 0. We write A = (4, R, ..., RY)
where R is an n;—ary relation on A. The signature of A is (Ry,..., Ry). A structure
is finite (countably infinite) if its domain has a finite (countably infinite) number of
elements. An isomorphism between structures A and B of the same signature is a
bijective mapping v : A — B such that for every relational symbol from the signature,
say R of arity i, (a1,...,a;) € R* if and only if (v(a1),...,v(a;)) € RE for every tuple
(0,1, ey CI,Z').

Definition 2.4 A structure A is automatic over ¥ if its domain A C ¥* and the relations
R# C ¥ are finite automaton recognisable.

An isomorphism from a structure B to a structure A that is automatic over ¥ is an
automatic presentation of B in which case B is called automatically presentable over X. A
structure is called automatic (automatically presentable) if it is automatic (automatically
presentable) over some alphabet.



So for instance the structure (X*, <,) is automatic. Examples of automatically pre-
sentable structures are Presburger arithmetic (N, S,+,0), the group of integers (Z, +),
and the Boolean algebra of finite or co-finite subsets of N.

We now mention some important examples of automatic linear orders. Fix an ordering
on X, say 01 < 09 < ...0,. Define x lexicographically less than y, written x <j., vy, if
either x is a proper prefix of y, or else in the first place where they differ the symbol
in z is < the symbol in y. Then (X*, <j;) is an automatic linear order. Also define x
length-lexicographically less than y, written = <y, v, if |z| < |y| or else |z| = |y| and
T <ieg Y- Then (X*, <je,) is an automatic linear order of type w.

The following fact will be used repeatedly in this paper and is a consequence of
the regularity of <;., and <j.;. Let A be an automatic structure over 3. Then every
presentation of A can be extended to include the regular relations <., and <je;.

Examples of automatically presentable linear orders are (N, <), (Z, <) and the order
on rationals (Q, <). Moreover, if £; = (L1, <;) and £y = (Lg, <5) are automatic linear
orders then so are their sum and product. Hence the ordinals w™ for every n € N are
automatically presentable.

Below we present two generic examples of automatic trees.

Example 2.5 Let R be a regular language and let Pref(R) be the set of prefizes of
strings in R. Let <, be the prefix relation. Then the partial orders (Pref(R),<,) and
(RU{e}, <,) are automatic trees.

Example 2.6 Let R be a reqular language. Consider the partial order T = (RU{e}, <),
where x <y iff v =y or |z| < |y| and z is lexicographically smallest among all ' € R
such that |x| = |2'|. Then T is an automatic tree.

3 Linear order preliminaries

A partial order (partial ordering) is a pair (A, <) such that < is a reflexive, transitive
and anti-symmetric binary relation on the domain A. A linear order L is a partial order
(L, <) in which < is total, that is VaVy(z < y Vy < z). If L is a linear ordering, then
unless specified we denote its domain by L and ordering by < or simply <. Similarly
if S C L then we write & = (S, <g) for the ordering with domain S and ordering <
restricted to S. In this case we say that S is a subordering of L.

Classically linear orderings are characterised in terms of scattered and dense linear
orderings. We say that £ is dense if for all distinct a and b in L with a < b there exists
an x € L with a < z < b. There are only five types of countable dense linear orderings
up to isomorphism: the order of rational numbers with or without least and greatest
elements, and the order type of the trivial linear order with exactly one element. We say
that L is scattered if it does not contain a nontrivial dense subordering.

Write w for the (order) type of the positive integers, w* for the negative integers,
¢ for the integers, n for the rationals and n for the finite order on n elements. The
empty ordering is written 0 and the ordering with exactly one element is written 1. A
subordering S of £ is an interval if for every z,y € S with x < y it is the case that
z € S for every z € L satisfying x <; z <p y. An interval is closed if it is of the form
{zeL|z<z<y}ifz<yand {z€ L |y<z<z} otherwise; either way write [z, y].
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Definition 3.1 Consider a linear order Z as an index set for a set of linear orderings
{A;}icr- The Z-sum
L=Y{A;|iel}

is the linear order with domain U;A;. For z € A;,y € A; define x <p y if (¢ <7 j) V
(1=7 Az <4 y).

We refer to the case when I is dense as a dense sum. If every A; is scattered and Z is
scattered then the sum is scattered. If A; = B for every ¢ € I, then the sum is written
as a product BZ. For instance w2 is w + w. The classical characterisation says that:

Theorem 3.2 [14, Theorem 4.9] Every countable linear ordering L can be represented
as a dense sum of countable scattered linear orderings.

In turn the scattered linear orders can be characterised inductively, where to each linear
order one associates an ordinal ranking, called the V' D-rank. V D stands for very discrete.

Definition 3.3 For each countable ordinal «, define the set V' D, of linear orders induc-
tively as

(1) VDo := {0,1}.

(2) VD, := all linear orderings formed as Z-sums where Z is of the type w,w*,{ or n
for some n < w and every A; is a linear ordering from (J{V Dy | 5 < a}.

Define the class VD as the union of the VD,’s. The VD-rank of a linear ordering
L € VD, written VD(L), is the least ordinal « such that £ € V D,.

Example 3.4 Let £; = X{(+n | n € w}, Lo = ((-¢)-¢. Then VD(Ly) = 2,
VD(Ly) = 3 and VD(Ly + L3) = 4. In general, if « = max(VD(L1),VD(Ls)), then
CVS VD(£1+£2) SO[+1

Example 3.5 Let o, 3 be countable ordinals. Then VD(B) < a iff 8 < w®. In particu-
lar, VD(w?*) = a.

Theorem 3.6 [14, Theorem 5.24] A countable linear ordering L is scattered if and only
if L isin VD.

There is an alternative definition of ranking that generalises V D-rank and includes non-
scattered linear orders. We proceed with the definitions.

Definition 3.7 A condensation map is a mapping ¢ from L to non-empty intervals of L
such that c¢(y) = c¢(x) whenever y € ¢(z). The condensation of L is the linear order ¢[L]
whose domain consists of the collection of non-empty intervals ¢(z) for = € L ordered by
c(z) < c(y) if Vo' € c(z)Vy' € c(y)(a’ < y).

(1) P(z) = {z} for all z € L.

(2) P z) ={y € L | (P (2)) = c(c’(y))},



(3) AMz) = U{c(z) | B < A} for limit ordinal \.

Note that in the second item the condensation c is being applied to elements of the form
c?(z); in other words c is a mapping with domain ¢?[£] to non-empty intervals of ¢?[L].

As an illustration we prove that every countable linear ordering can be represented
as a dense sum of scattered linear orderings (Theorem 3.2).

Proof The mapping {y € L | [z,y] is scattered}, written cs(z), is a condensation since
if y € cg(x) then for all a, [y, a] does not contain a dense subordering if and only if [z, a]
does not contain a dense subordering. Now £ = Y {a | a € ¢[£]}. and note that each
a = cs(x) € ¢[L] is scattered. Finally cg[L] is dense since for cg(x) < cg(y), if there is
no z with cs(z) < cs(z) < cs(y) then [z,y]| is scattered, contrary to assumption. O

Definition 3.8 Define cpc(x) as {y € L | [z,y] is a finite interval of L}.

Here F'C stands for finite condensation and indeed cg¢ is a condensation. The idea here
is that k() is the set of elements of £ that are only finitely far away from z; ¢%(z)
is the set of elements of £ that are in intervals of cpc[L] which themselves are only
finitely far away in cpg[L] from the interval cj(x), etc. The least ordinal a such that
& o(@) = () for all z € L and B > a is called the FC-rank of £, written FC(L).
From now on we write ¢ for cpc.

Example 3.9 A linear order L is dense if and only if its FC-rank is 0. Moreover L is
scattered if and only if ¢*[L] ~ 1 for some ordinal .

The following theorem connects F'C-ranks and V D-ranks of scattered linear orderings.

Theorem 3.10 [14, Theorem 5.24] If L is scattered then its V D-rank equals its FC—
rank.

If A C L then write ¢ to mean that the condensation takes place within the set L and
c4 to mean that the condensation takes place relative to A. That is, ¢4 is just ¢ with A
replacing £ in the definition. In this case we write c4(z) for x € A, ca[A] and < 4. Here
are some useful properties that will be used without reference.

Lemma 3.11 (1) [14, Lemma 5.14] If L is scattered and M C L then FC(M) <
FC(L).

(2) [14, Lemma 5.13 (2)] FC(c*(z)) < a and c*(x) is a scattered interval of L for every
ordinal o and x € L.

(3) [14, Exercise 5.12 (1)] If I is an interval of L then c§(x) = c*(x) NI for every
ordinal o and x € 1.

(4) For every z,y € L, if [z,y| is scaltered then cf‘x’y](x) = cﬁfc’y}(y) if and only if
FC([z,y]) < a.



Proof We prove item (4). Let z,y € L and « be an ordinal. Then by definition
FC([z,y]) < o means that () for every z € [z,y], cf; 1(2) = cf;ryl] (z), which necessarily
equals [z, y] since [z, y] is scattered. Denote the condition cf, ,\(z) = cf, ,(y) by (1)
Then (t) clearly implies (1T) by considering z € {z,y}. For the converse suppose
(t1). We first claim that cf, ,\(z) = [z, y]. Indeed (1t) implies that y € ¢f; ,(z) since cf} ,
is a condensation, which means that [z, y] is a subset of the interval cf; (). But also
¢fr.y1(@) C [z, y] by item (3). Hence cf; ,(z) = [z, y] as claimed. Soif z € [z,y] = [, ,;(z)

then cf, () = cf, ,1(2) by the property of being a condensation. Hence z € [z,y] im-
a-+1

[y
plies that ¢f (z) = [z,y]. In particular then also ¢’ \(z) = [z, y] which implies () as

required. ]

4 Ranks of automatic linear orders

We now prove the central technical result, Theorem 4.5, via three propositions that
generalise the ideas in [3]. As a matter of convenience we introduce the following variation
of rank.

Definition 4.1 If £ is scattered define its V D,-rank as being the least ordinal « such
that £ can be written as a finite sum of orderings of V D-rank < a.

For example it is not hard to check that VD(w) = VD,(w) = 1 and that w2 + 1 has
V D—rank 2 but V D,—rank 1. We list two basic properties.

(1) In general VD, (L) < VD(L) < VD,(L)+ 1.

(2) ¢*[L£] is a finite linear order if and only if VD,(£) < a.

Proposition 4.2 Let L = (L, <) be a scattered linear ordering. Consider a finite par-
tition of the domain L = A1 U Ay U ... U Ag. Then there exists some 1 < i < k with
VD,(A;)) =VD,(L).

Proof It is sufficient to prove the proposition for k£ = 2; the proposition clearly reduces
to this case. Thus assume that Ay C L and A; = L\ Ay. We need to show, by induction
on VD,(L), that VD,(L) = VD,(A) for some € € {0,1}. The case when VD,(L) =0
or VD,(L) =1 is checked easily. Assume that the proposition is true for all £ such that
VD,.(L) < a.

Suppose VD, (L) = «, that is £ is a finite sum of orders of V D-rank at most . In
particular at least one of these, call it M, must have V D-rank exactly . Then M is
an I-sum of linear orders {£;} of V D-rank < a, where [ is of the type w,w*, { or n for
some n < w. We may assume that M is chosen so that I is not finite, for if every such
M were a finite sum of orders of V D-rank < «, then £ would have V D,—rank < a. So
assume that [ is infinite, say of type w (the other infinite cases are similar).

For the first case suppose that « = §+ 1. Furthermore we can assume that there are
infinitely many i such that VD, (L;) = , for otherwise we could write M as a finite sum
of orders of V' D-rank 3, contrary to assumption. For each such ¢ let A.; = L;NA,, where
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e € {0,1}. Applying the induction hypothesis to £; we see that there is an € € {0,1} and
infinitely many j’s such that VD,(A.;) = VD,.(L;) = B. Hence A, contains a subset
which is an w-sum of linear orders of V D,—rank §. Therefore, VD,(A.) > , and so
VD,(A.) = « as required.

For the second case, suppose that « is a limit ordinal. So M is an w—sum of linear orders
{L;} such the V D-rank of each L; is less than «, and the supremum of the V D-ranks
of L£; is a. Using the notation of the case above, and applying induction, we see that
there is an € € {0,1} and infinitely may j’s such that VD,(A.;) = VD,.(L,), and the
supremum of the V D,-ranks of these A ;’s is . Then VD,(A.) = « as required. O

Proposition 4.3 Let L have FC-rank . Then for every B < « there exists a closed
scattered interval of L of FC-rank B+ 1.

Proof Fix 8 < a. Since £ has F'C—rank > 3, by definition there is some x € L such that
A (x) # PHi(x). Pick y € P (z) \ P (x). Then ?(z) # P (y) and PHi(x) = PHi(y).

Recall that c[’; 4] is the condensation mapping ¢® within the interval [z,y]. Hence

Cﬁv,y] (x) # c[ﬂx’y] (y) and cﬁjyl] (z) = cf;“Lyl] (y). The first fact implies that V. D([z,y]) >  and

the second fact implies that V D([z,y]) < 8+1. Hence VD([z,y]) = 8+1 as required. [

Proposition 4.4 The V D—-rank of every automatic scattered linear ordering is finite.

Proof Suppose L is automatic scattered linear over ¥*. Let (Q<, 1<, A<, F<) be a deter-
ministic 2-tape automaton recognising the ordering of £. Similarly let (Q 4,4, A4, Fa)
be a deterministic 3-tape automaton recognising the definable relation {(z,z,y) | z <
z < y}. We assume the state sets Q4 and Q< are disjoint.

For z,y € L and v € ¥*, define [z, y], as the set of all z € L such that x < z <y and z
has prefix v. For |v| > |z], |y| define I(z,v,y) € Q4 and J(z) € Q< as follows. I(z,v,y)
is the state in ()4 reachable from the initial state ¢4 after reading the convolution of
(z,v,y), namely (z0", v,y0™) where n,m > 0 are chosen so that the length of each
component is exactly |v|. That is define I(z,v,y) := Aa(ta, ®(z,v,y)). Similarly define
J(v) = A< (1<, ®(v,v)). Write K(x,v,y) for the ordered pair (I(z,v,y), J(v)).

Now if K(z,v,y) = K(z',v",y') then [z, y], is isomorphic to [z', '],y via the map vw —
v'w for w € ¥*. Indeed the domains are isomorphic since
vw € [z, Yl
if and only if
Ax(Aalea, ®(x,v,y)), ®(€6, w,€)) N Fa # 0

if and only if
AA(AA(LAa ®(xl, UI: y,))a ®(€’ w, 6)) N FA 7& (Z)

if and only if
v'w € [z, Y]y



The map preserves the ordering since for wy,wy € X* such that vwy,vwy € [z,y], and
v'wy, v'wy € [2', Y],y we have
vy < VWo

if and only if
Ac(A<(i<; ®(v,0)), ®(wi, wo)) N Fe # 0

if and only if
Ac(Ac(te, ®(V, V), ®(wi, wp)) NFe #0

if and only if
v'w, < v'ws.

Hence then number of isomorphism types of the form [z, y], for |v| > |z|, |y| is bounded
by the number of distinct sets K (z,v,y) which is at most |Q4| X |Q<|, denoted by d.
In particular (T) there are at most d many V D,-ranks among such intervals of the form
[z, Ylo-

Now let [z,y] be a closed interval of £. Set n = max{|z|,|y|} and partition [z, y]
into the set [z,y] N 3<" and the finitely many sets of the form [z,y], where |v| = n.
By Proposition 4.2 one of these intervals has the same V D,-rank as the interval [z, y].
Suppose now that the V D-rank of [z,y] is at least 2(d + 1). By Proposition 4.3, for
every 1 <7 < 2(d+ 1), [z,y] contains a closed interval of V D-rank i. So by property
(1) of VD,—ranks there are at least d + 1 many V D,-ranks amongst these intervals;
call them [z;,y;] for 1 < j < d+ 1. But as was done for [z,y| one has that for every
such interval [z}, y;], there is a v; € ¥* such that V D,([z;,y;]) = VD.(|z},y;]v), and so
contradicting (). We conclude that the V D-rank of [z,y] is at most e = 2(d + 1). So
for every z,y € L, ¢*(z) = ¢“(y) and so VD(L) < e as required. O

As a corollary of the proposition just proved we derive the following result for all auto-
matic linear orderings:

Theorem 4.5 The FFC-rank of every automatic linear order is finite.

Proof Let £ be a linear order and write it as Y {£; | ¢ € D} where D is dense and each
L; is scattered. We will show that for every ¢ € D and every a,b € L;, the V D—rank of
[a, b] is uniformly bounded. Let (Q<,t<, A<, F<) be a deterministic 2-tape automaton
recognising the ordering of £. Let (Q4,t4, A4, F4) be a deterministic 3-tape automaton
recognising the definable relation {(z, z,y) | z < z < y}. Now consider an interval [a, b]
of L; for some ¢ € D. The proof of the previous theorem ensures that the V D-rank of
the scattered interval [a, b] is at most e, where the constant e does not depend on [a, b]
but only on |Q4| and |Q<|. Therefore the V D-rank of [a, b] interval is at most e. Hence
VD(L;) < e forevery i € D and so FC(L) <e. O

Corollary 4.6 [3] An ordinal o is automatically presentable if and only if o < w¥.

Proof Suppose « is an automatically presentable ordinal. Then by Theorem 4.5 it has
finite F'C—rank and so by Example 3.5 o < w” as required.

Given a < w* there exists (a least) n < w such that a < w™. But w" is automati-
cally presentable. Say (W, <) is an automatic presentation, and let p € W be the string
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corresponding to . Then the ordinal « is definable as the induced order on the domain
{r € W |z <p+1}. So « is automatically presentable as required. O

Proposition 4.7 It is decidable whether or not an automatic linear order L is scattered.
If it is not scattered then a reqular dense subordering is effectively computable from a
presentation for L.

Proof Let £ be an automatic order. The proof of Theorem 4.5 says that a bound e on
the FC-rank of £ is computable given automata for the order and the interval relation.
The condensation binary relation cp¢ is definable in £ since cpe () = cpe(y) if and only
if [z, y| is finite. Since the ordering on cp¢|[L] is also definable from £ (see Definition 3.7)
the linear orders c%[£] are definable for every 7 € N, and hence automatic. So consider
¢c|L]. By Example 3.9 it is isomorphic to 1 if and only if £ is scattered. So using the
decidability of the theory of ¢5[L], check this with the sentence Jz,yx < y. In case
¢ L] is not the singleton it must be a countably infinite dense ordering. One may view
¢%c as an automatic equivalence relation on £ (the ¢%(z)’s partition £), and so the
<yer-sSmallest representatives from every equivalence class forms a dense subordering of
L that is a regular subset of L. U

5 Decidability results for automatic ordinals
Theorem 4.5 can now be applied to prove decidability results for automatic ordinals.

Proposition 5.1 Let L = (L, <) be an automatic structure. It is decidable whether L
s 1somorphic to an ordinal.

Proof First check that < linearly orders L, by testing whether L is reflexive, transitive
and anti-symmetric — all first order axioms. Although the axiom for being a well-order is
not first order expressible, see for instance [14, Theorem 13.13], the following algorithm
can be used.

1. Input the presentation (L, <) of L.

2. Let D= L.

3. While (D, <) is not dense and Vz € D w* does not embed in the interval c(z)
Do Replace (D, <) by a presentation for ¢[D].

4. End While

5. If D is isomorphic to 1 then Output £ is an ordinal,
else Output £ is not an ordinal.
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Every step in the algorithm is computable. Indeed the equivalence relation on pairs
(z,y) satisfying c(xz) = c(y) is definable as (—3%°z) [z < z < y]. So a presentation for
¢[D] is computed by factoring D by c. The while test is expressible as

(Vo # y) (32) [z < 2z < y]

and
(V) (=3%y) (c(z) = c(y) Ay < x).
The final test is expressible by (3z) (Vy) [z = y].

Since the F'C-rank of L is finite, say k, the algorithm terminates after at most k£ + 1
many while-loop tests. If £ is an ordinal then using the properties of ¢, ¢[£] is an ordinal
and for every x € L, c¢(x) is either finite or isomorphic to w. By induction on k, for
every 0 < i < k, ¢![£] passes the (i + 1)’th while-test. The resulting order D = c¥[£] is
isomorphic to 1 as required.

If £ is not an ordinal then there exists an infinite decreasing sequence of elements.
Suppose there exists such a sequence x; > z9 > x3... and an ny € N such that for all
i > ng, c(z;) = ¢(xp,). Then the while-test fails the first time it is executed and the
resulting order D = L is not isomorphic to the ordinal 1. If there is no such sequence (z;)
and ng then there exists a sequence, say y; > yo > y3 > ... such that c¢(y;11) < ¢(y;) for
all 7 € N; this is an infinite decreasing sequence of elements in ¢[£]. Continue inductively
in this way with ¢[£] in place of £. Suppose the while-test fails the m’th time where
1 < m < k. If it fails because there is some z € ¢™ ![L] for which w* embeds in c(z)
then D = ¢™~![L] is infinite and so not isomorphic to 1. If this does not occur, then the
while-test fails the k + 1’st time because D = c*[L] is dense. But then there is a sequence
21 > 29 > 23 > ... with F(2;41) < ¥(%) for every i € N, and so D not isomorphic
to 1. (]

We now show that the isomorphism problem for automatic ordinals is decidable. Contrast
this with the fact that the isomorphism problem for computable ordinals is IT}-complete.
Recall that by Cantor’s Normal Form Theorem if o is an ordinal then it can be uniquely
decomposed as w*'n; +w*ng + ...+ w*ny, where ay, oy, .. ., oy are ordinals satisfying
oy > ag > ... > o and k,ny,ng,...,ng are natural numbers. The proof of deciding
the isomorphism problem for automatic ordinals is based on the fact that the Cantor’s
normal form can be extracted from automatic presentations of ordinals.

Theorem 5.2 If a is an automatic ordinal then its normal form is computable from an
automatic presentation of a.

Proof Let (R,<,4) be an automatic presentation over ¥ of a. Recall that the un-
known ordinal is of the form o = w™n,, + W™ Nyt + ... + w?ny + wn; + ny where
m, N, Ny—1, - - - , N1, Ny are natural numbers. Now one can compute the values of the
numbers m, ng, N1, ... by the following algorithm.

1. Input the presentation (R, <,.4).
2. Let D=R, m=0, n, =0.
3. While D # () Do
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4. If D has a maximum u

Then Let n, = n, + 1, let D =D — {u}.

Else Let L C D be the set of limit ordinals in D; that is L is the set of all z € D
with no immediate predecessor in D. Replace D by L, let m = m + 1, let
Ny = 0.

5. End While

6. Output the formula
W™y + W™ 1+ .+ wPng + wng + g
using the current values of m, ng, ..., ny,.

Since the first order theory of an automatic structure is decidable, each step in the algo-
rithm is computable. Removing the maximal element from D reduces the ordinal repre-
sented of D by 1 while the corresponding n,, is increased by 1. Replacing D by the set of
its limit ordinals is like dividing the ordinal represented by D by w; the set of limit ordi-
nals (including 0) strictly below w™a,,+. . .+w'a; has order type w™ La,,+...+wlas+a;.
So the next coefficient can start to be computed. Based on this it is easy to verify that
the algorithm computes the coefficients ng, ny,... in this order. The algorithm eventu-
ally terminates since m is bounded by the finite bound on the V D-rank of the ordinal. [

The following is an immediate corollary.
Theorem 5.3 The isomorphism problem for automatic ordinals is decidable.

Compare this with the fact that the isomorphism problem for automatic structures and
even permutation structures [1, 7] is not decidable.

Problem 5.4 Is the isomorphism problem for automatic linear orders decidable ?

6 Automatic tree preliminaries

The remaining sections deal with trees viewed as partial orders. Theorems 7.6 and 7.9
give a necessary condition for certain trees to be automatic. The condition is similar to
that for linear orders and says that the Cantor-Bendixson rank (Definition 7.1) of the
tree be finite.

A tree T = (T, =) is a partial order that has a least element 7, called the root, and
in which {y € T | y < z} is a finite linear order for each x € T. So we think of trees
as growing upwards. Write z||y if z A y and y A 2. A partial order (T, <) is a forest if
there is a partition of the domain 7' = UT; such that every (7}, <) is a tree. The subtree
rooted at z, written 7 (z), has domain T'(z) = {y € T | = < y} with order < restricted
to this domain. The set S(z) of immediate successors of z is defined as

S)={yeT |z <yAV2)z<2z<y—>(z=zVz=y)]}
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A tree T is finitely branching if S(z) is finite for each x € T. A path of a tree (T, <) is
a subset P C T which is linearly ordered (by =), closed downward (that is, whenever
y € P and z < y then z € P), and maximal (under set-theoretic inclusion) with these
properties. A path with finitely many elements is called a finite path; otherwise it is
called an infinite path.

Recall that <y, is the length lexicographic order on ¥* defined as =z <y, ¥ if either
|z| < |y| or |z| = |y| but x lexicographic before y. For example, € <yer 0 <yex 1 <yrex
00 <grez 01 <jyjep --- in the case that ¥ = {0,1}. Thus if 7 is an automatic tree with
T C X* then the length-lexicographic order on ¥* is inherited by each set S(x). This
permits one to talk about the first, second, third, ... successor of x.

7 Ranks of automatic trees

Our approach to proving facts about trees is to associate a linear order with a tree, in
such a way that the tree is automatic if and only if the linear order is automatic. Then
by Theorem 4.5 the linear order has finite rank which it turns out implies that the rank
of the tree is finite. More precisely, in this section it is shown that every automatic tree
has finite Cantor-Bendixson Rank.

Given a tree 7T, define a subset of 7" as consisting of those nodes x € T with the
property that there exist at least two distinct infinite paths in the subtree of T rooted
at z. It follows from the definitions that this sub-partial order, d(7), is in fact a subtree
of T.

For each ordinal a define the iterated operation d*(7) inductively as follows.
(1) d(T)=T.
(2) d**H(T) is d(d*(T))-
(3) If « is a limit ordinal, then d*(T) is Ng<ad®(T).

Definition 7.1 [8] The Cantor-Bendizson Rank of a tree T, written CB(T), is the least
ordinal « such that d*(7) = d**(T).

Remark 7.2 The Cantor-Bendixson Rank of an arbitrary topological space X is defined
as above, using D given as D X = {P € X | p is not isolated} instead of d. Recall that
P is isolated if {P} is an open set. So given a tree T = (7, <), consider the following
topological space. The set of elements are the infinite paths in 7, written [7]. For
P e [T]and z € T write x < P if x € P and say that z is on P. The basic open sets
are of the form {P € [T] | x < P} for every x € T. Then the Cantor-Bendixson Rank
of this topological space, CB[T], is just the least ordinal a such that D*™[T| = D*[T].
Given an infinite path P of 7, the following statements are equivalent:

e There is a node x < P such that P is the only infinite path of T going through z;
o P ¢ D(T);
e There is a z < P with = ¢ d(T).
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It follows that D[T] consists of exactly the infinite paths of d(7). It can be proven by
transfinite induction that also
D[T] = [d*(T)]-

Assume now that « = CB[T]. Then d*(T) and d?(T) contain the same infinite paths
for all 8 > «, but d*(7) might contain some nodes which are not on any infinite paths
and therefore not contained in d**!(7"). Thus the two CB-ranks might differ, but they
differ at most by 1:

CB[T|<CB(T) <CB[T]+ 1.

A witness 7 with CB[T| # CB(T) is the tree where the domain consists of the root
0 and, for every n > 0, the strings 01°101%20...1%0 with a; > ay > ... > a,; the
ordering is the prefix-relation < restricted to this domain. One has for every node
01%101%20...1%0 € T that 01*01%20...1%0 € d™(T) < a, > m. So d* = {0}. It
follows that CB[T| = w by D“(T) = ) while CB(T) =w + 1 by d“*(T) =0 # d“(T).
This witness is also robust to small changes in the definition of d. If one, for example,
takes d(7) to contain exactly those nodes which are on infinitely many infinite paths of
T, then the resulting trees d*(7) and derived CB-ranks are the same.

Here are some basic properties of C'B-rank that will be used without reference.

Property 7.3 If T is a tree with CB(T) = « then
(1) « is a countable ordinal.
(2) If d*(T) # 0 then d*(T) and T contain uncountably many infinite paths.

(3) If d*(T) = 0 then T contains only countably many infinite paths. Furthermore, o
15 either 0 or a successor ordinal.

Proof For each 3 let z5 € d?(T) \ d?*'(T). Since T is countable, and o # 3 implies
that z, # xg, the set of ordinals B such that d?(T) \ d?*'(T) # 0 is also countable.
Hence its least upper bound, a countable ordinal, say «, is CB(T). This proves (1).

If d*(T) is not the empty tree, then for every z € d*(7T) there exist y,z € d*(T)
with £ < y, z and y||z. In particular the full binary tree ({0,1}*, <,) embeds in d*(7).
Since d*(7) is a subset of 7T, the full binary tree also embeds in 7. This proves (2).

If d*(T) is the empty tree, then one shows that 7 has only countably many infinite
paths as follows: For every infinite path P of 7 there is a minimum ordinal 8, < « such
that P ¢ dP?(T). Furthermore, there is a node xp in P such that zp ¢ d°?(T). Since
xp € d'(T) for all v < Bp, it holds that Sp is a successor ordinal § + 1. Furthermore, P
is the only infinite path of d°(7) which contains xp. Thus the mapping P — (zp, Bp) of
the infinite paths of 7 to pairs of nodes and successor ordinals up to « is one-one. Since
the range of this mapping is countable, so is its domain. Suppose a > 0 is a limit ordinal.
Furthermore, d*(7) is non-empty since the root of T is in d”(7) for every v < a.. So «
is also a successor ordinal. This proves (3). d

The following lemma will be used in the next theorem. Recall that 7 (z) is the subtree
of T rooted at x.
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Lemma 7.4 Suppose that CB(T) > f+ 1 and T has countably many infinite paths.
(1) There is an ' € T such that CB(T (z')) = 8+ 1.

(2) If B > 1 then at least one of the following holds:

e there erists ' € T, ' # x, CB(T (2')) = 8+ 1,

o there exist y,y' € T with y||y', both on an infinite path of T and CB(T (y))
=B and CB(T (y')) = B

(3) If P is an infinite path of T and the CB-rank of T (z) is §+ 1 for almost all  on
P, then for every node x on P and every v < B there is a node y, 5 = x such that
Yye € T and T (y) has CB-rank v+ 1. None of the nodes y., 5 is on P.

Proof First note that if 7 has countably many infinite paths and CB(7) = « then
d*(T) = 0 and so for every y € T there is some v < « such that y & d"(7). The least
such v is equal to the C'B-rank of T (y).

Assume that the C B-rank of 7 is at least 8+ 1. Then d?(7) is non-empty, since it
contains x. Furthermore d?*(T) # d?(T). So pick a y in d?(T) and not in d°(T).
Then B+ 1 is the least ordinal such that y & d?*!(7 (x)); hence CB(T (y)) = 8+ 1. This
proves (1).

Let y1,...,yr be the immediate successors of x. There are two different cases.

Case 1. Suppose some successor, say ¥, is in d°(7T). Then the CB-rank of T (y')
is at least 8 + 1 and so by item (1) there is an ' = y; such that z’ in T'(3') and the
CB-rank of 7 (') is equal to 5 + 1.

Case 2. It holds for yi, . ..,y that none of them is in d?(T). For each [ let 3; be the
CB-rank of 7 (y;) and let v be the maximum of all 3. The ordinal ~y is the successor of
some other ordinal, say v = 6 +1. Note that v = /3 since otherwise z ¢ d°(7T). There are
at least two infinite paths P, P’ of d°(T) since 8 > 1 by hypothesis. There are i, j such
that P goes through y; and P’ through y;. The ¢, 7 must be different since otherwise
y; € d°(T) in contrary to the assumption of Case 2. It holds that both y;, y; are in d°(T)
and not in d°™'(7) and the CB-ranks of T (y;) and T (y;) are 8. This completes the
proof of (2).

Item (3) follows from the observation that CB(7 (z)) = 8 + 1 implies that for every
v < B there exists y € T'(x) such that CB(T (y)) = v+ 1. For otherwise if v < § were
a counterexample then by item (1) it holds that CB(7 (y)) < v+ 1 for every y € T (),
contradicting the case y = x. That none of the nodes are on p follows from the fact that
if x is on p then CB(T (z)) = B + 1. O

For the first result one associates the Kleene-Brouwer ordering with a tree.

Definition 7.5 [13] Let (7, <) be a tree and <y, be the length lexicographic order
induced by the presentation of 7" as a subset of ¥*. Let z,y be nodes on 7. Then
x <yp y iff either y < x or there are u, v, w such that v,w € S(u), v < z, w < y and
v <jlex w. Write Ly for the structure (7', <gp).

In words, x < y if and only if either = is above y in the tree or x is to the left of y
(with respect to <y, restricted to immediate successors). Note that <y, linear orders 7'
and (7, <gp) is first order definable from (7, <, <jjez)-
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Theorem 7.6 The CB-rank of an automatic finitely branching tree with countably many
infinite paths is finite.

Proof Suppose T is finitely branching with countably many infinite paths and CB(T) =
«. Then « is either 0 or 8+ 1 for some ordinal 5. We now prove by induction on « that
L is scattered and

VD,(Ly) <« and if @ > 0 then 8 < VD, (Ly).

Consequently if 7 is automatic then so is L7, which by Theorem 4.5 has finite V D-rank
and hence finite V D,—rank. Then CB(7) must also be finite as required.

We deal with the bases cases first. If & = 0 then 7 is the empty tree so L7 is 0 which
has VD(Lr) = VD,(Lr) = 0. If @ = 1 then 7 is non-empty and contains at most one
infinite path. By the definition of <3, L1 has order type n, w*, n+ w* or w + w*, where
n € N. In these cases the V D,—rank of L+ is either 0 or 1 and so the result holds.

Now consider o > 1. For z € T recall that 7 (x) is the subtree of 7 rooted at x, that
is{yeT |z =y} Define X ={zeT|CB(T(z)) =a}. Then X # ) since the root
of T is in X. Further X = d?(T). Indeed if x € X then in particular z € d?(7(x)) and
so z € d°(T). Conversely if z ¢ X then d"(T (z)) = 0 for some v < 3. Hence x & d7(T)
and in particular x & d°(T). So X is a tree and CB(X) < 1. But since X is non-empty
CB(X) =1 and so by definition of d and using the fact that d(X) = @), X contains at
most one infinite path, and so Lx has one of the forms listed in the case oo = 1.

For z € X define a possibly empty set M, as the union of the 7 (y)’s where y is
<-minimal with the property

T <pyA V' e X) [z <ppy— 2" <ppx].

For a given z € X these y’s are pairwise incomparable by minimality. In other words
M, consists of all those z € T such that the half open interval {2’ : 2 <y 2’ <y 2} in
L contains no node of X. And conversely if z € T\ X and {2/ € T | 2/ < 2} N X has
a maximum element, say z, then z € M,. Now note that each such T (y) has C B-rank
at most 3 since y ¢ X.

Case 1. Suppose X is finite. Then X has a maximal element, say x. Then by
Lemma 7.4 part 2(b), CB(T(z)) = 8 + 1 implies that there are 7 (y) and 7 (y') in M,
with CB(T (y)) = CB(T (")) = 8. So M, is a forest with finitely many trees 7 (y),
of which at least two have C B-rank exactly 5. So by the inductive hypothesis L, is
a finite sum of scattered linear orders Ly, of V D,-rank at most 3, of which at least
two have V D,-rank exactly 5. Hence Ly, , being a finite sum of these 7 (y)’s since T is
finitely branching, has V D,-rank exactly 3. Now

Lr=> {z+Lu, |z€X},

and so L is scattered and has V D,-rank 3 as required.

Case 2. Suppose X is infinite. Let P = (z;);en be the infinite path in X. For z;
define L;, respectively R;, as the possibly empty forest consisting of trees 7 (y) where
y € S(x;) and y <gp w;11, respectively ;11 <gp y. Since T is finitely branching each L;
and R; contains finitely many trees T (y), each of which has C' B-rank exactly 8 + 1 if
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y € X and at most 3 otherwise. For the former, Ly, is scattered and has V D,-rank
by case 1. For the latter, L7y is scattered and has V D,—rank at most 3 by the inductive
hypothesis. Now by Lemma 7.4 part 3, since CB(7T (z;)) = f + 1 for every i € N, it
must be the case that the supremum of CB(7T (y)) where the 7 (y)’s are from L; and R;,
i € N, is at least 5. Applying the inductive hypothesis to the latter 7 (y)’s and possible
use of the former case, the supremum of the V D,-ranks of the Lr(,’s is at least and
hence exactly 8. So the supremum of the V D,—ranks of the £;,’s and Lg,’s, each being
a finite sum of Lr(,’s, is 3. Furthermore,

LT:»CL0+LL1+EL2+---+$2+»CR1+$1+£RO+$O

Note that L7 being a scattered sum of scattered linear orders is scattered itself. Also by
definition of V D, and using that 5 > 0 each term L, and (Lg, + ;) is a finite sum of
orders of V D-rank equal to 5. Hence the V D-rank of Lt is at least § 4+ 1. Moreover
since infinitely many of the linear orders amongst the £;,’s and Lg,’s are finite sums of
linear orders of V D-rank exactly [, it holds that £ has V D-rank exactly 8+ 1. So Lr
also has V D,—rank § + 1 as required. O

Define the extendible part E(7) of T as those z € T that are on some infinite path of 7.
Say that 7 is pruned if T = E(T). Then d(7) is the subtree of T restricted to domain
{r € E(T) | 32,2 € E(T), 2,2 > z and z||z'}. Note that if T is finitely branching then
d(T) is definable in 7 since E(7) is then equivalent to {z € T' | 3%y, z < y}. A tree P
is perfect if P = d(P). In other words it satisfies the condition

Ve € P,3z,2' € E(P)z < 2,2 A z||7.

In particular a perfect tree is pruned and is either empty or contains uncountably many
infinite paths. Given 7 define Pr as the set of all x € T such that 7 (z) contains a
perfect subtree. This immediately implies that Pr is downward closed and so Pr is a
(possibly empty) tree. In fact P is perfect since if 7 (z) contains a perfect subtree then
there are z, 2’ € E(T (z)) with z]|2".

Theorem 7.7 The CB-rank of every finitely branching automatic tree is finite.

Proof Suppose 7 is a finitely branching automatic tree. Then Pr, being definable in T,
is a regular subset of 7. Let C' = T \ Pr and note that, in general, C is a forest. For
every € C that is <-minimal, let o, = CB(7 (z)). Note that 7(z) is a subtree of C
and so has countably many infinite paths. Let o be the supremum of the «,’s. Then
d*(T (z)) = 0 for every x € C, and so C Nd*(T) = (. That is d*(7) C Pr. Conversely
if + € Pr then z € d?(T (x)) for every ordinal 3. So Pr C d*(T). Hence Py = d*(T).
Now since d(Pr) = Pr, one has that CB(T) < a. But CB(7) can be no smaller than o
and so CB(T) = «. It is sufficient to prove that « is finite. First note that by the proof
of the Theorem 7.6, it holds that L¢ is scattered (since it has countably many infinite
paths) and o, < VD, (Lr(;)) + 1; the latter being finite by Theorem 4.5. O

Next we remove the condition that the tree be finitely branching.
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Definition 7.8 Given a tree (7, <), define a partial order <’ y on T by
z=yVIv,weT (z,we SW) AT <ygeg w Aw < y);

where <, the length lexicographic order and S(v) the set of immediate successors of v
with respect to <.

Then (T, <') is indeed a tree which we denote by 7.
Theorem 7.9 The CB-rank of an automatic tree is finite.

Proof Let T = (T, <) be given and S(x) be the set of immediate successors of an x € T.
Furthermore, let s(z) be the length-lexicographically least element of S(x) for the case
S(x) # 0 and let s(z) = u for a default value u ¢ T if S(z) = 0.

Now let 7" = (T, <') as in Definition 7.8. Note that <’ extends <. For z € T let S'(z)
be the set of successors with respect to <'. S’(z) contains s(z) whenever s(z) # u and
the length-lexicographically next sibling y of x with respect to < whenever this y exists.
Recall that y is a sibling of z with respect to < if there is a node z with z,y € S(z).
Hence 7' = (T, =') is a finitely branching tree.

Let U and U’ be the sets of infinite paths of (T, <) and (T, ='), respectively. Since
every infinite path of 7 generates an infinite path of 77, there is a one-one continuous
mapping ¢ from U to U’. This mapping satisfies for all P € U and all x € T: z € P
iff s(z) € q(P). Furthermore, U’ contains besides the paths of the form ¢(P) for some
P € U also the paths generated by those sets S(x) where S(x) is infinite. Since the
quantity of these additional paths is countable one has the following equivalence for all
xz: {P €U :x € P} is uncountable iff { P’ € U’ : s(z) € P'} is uncountable.

Now one shows by induction over n that the following implication holds for all z € T
with s(z) #u and n € N z € d*(T) = s(z) € d"(T'). The property clearly holds for
n = 0. Now assume the inductive hypothesis for n and consider any z € d"*1(7T). There
are two distinct infinite paths P,Q) € U such that € PNQ and PUQ C d"(7). It
follows that s(z) € ¢(P)Ng(Q). By induction hypothesis and by ¢ being one-one, s(z) is
member of the two distinct infinite paths ¢(P), ¢(Q) of d*(7") and thus s(z) € d" (7).
This completes the proof of this property.

By Theorem 7.7, there is a natural number n such that d"(7") contains exactly
those nodes of the form s(x) which are in uncountably many members of U’. Then all
x € d"(T) satisfy that x is in uncountably members of U. On the other hand, every x
being in uncountably members of U is in d"(7). So d™(7T) contains exactly the nodes x
which are in uncountably many members of U and d"™'(7) = d"(T). The CB-rank of
T is at most n. O

8 Automatic versions of Konig’s Lemma

Konig’s Lemma says that every infinite finitely branching tree has at least one infinite
path. This section consists of automatic versions of this result. If one considers Turing
machines instead of finite automata there are trees which have infinite paths, but no
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hyperarithmetic one, and in particular no computable infinite path. Furthermore even
finitely branching trees might have infinite paths but none of them be computable. In
contrast to this the following results state that every automatic tree, not necessarily
finitely branching, either has a regular infinite path or does not have an infinite path at
all.

Proposition 8.1 It is decidable whether an automatic tree has an infinite path.

Proof Let (T, <) be an automatic tree and recall that (7, <g) is an automatic linear
order. By Proposition 5.1 it is decidable whether this order is isomorphic to an ordinal.
And this is the case if and only if (7', <) has no infinite path. To prove this last statement
recall that a linear order is isomorphic to an ordinal if and only if it has no infinite
decreasing chain. So suppose (7, <) has an infinite path z; < zy < x3.... Then
X1 >kp To >kp T3 ... is an infinite decreasing chain in (7', <g), and so (7T, <, b) is not
isomorphic to an ordinal. Conversely, suppose (7', <gp) is not isomorphic to an ordinal
and let 7 >gp 9 >pp T3 ... be an infinite decreasing chain. We define an infinite path
(ps) of (T, <) as follows.

1. Let :=1and j = 1.
2. Repeat

(a) Define p; = z;.

(b) Replace j with the smallest k£ > j for which there is a u € S(p;) with u <
for every [ > k.

(c) Replace ¢ with i + 1.
3. End Repeat

If such a k exists in step 2(b) of every stage of the repeat loop, then the resulting se-
quence (p;) is an infinite path in (7, <). So suppose that the algorithm has computed
P1,P2y---yPn With p1 < po < ... < p,. Sot =n and j € N. For every m > j de-
fine u(x,,) as the immediate successor of p; that is < x,,. Then this sequence satisfies
u(xm) Zllex u(xm—kl) Zllex U(Il?m_|_2) Zllex - - - since Tm <kb Tm+1 <kb Tm42 <kb - - - But
since <y, is isomorphic to an ordinal (of type w) it can not have an infinite decreasing
sequence. Thus the sequence is eventually constant; that is, there is a (smallest) k& > j
such that for every [ > k one has u(zy) = u(x;) < x; as required. O

8.1 Finitely branching automatic trees

Recall that an infinite tree is pruned if every element is on some infinite path. Note that
if T is finitely branching then the set of elements E(7) above which there are infinitely
many elements is definable as {z € T' | (3*°y) x < y}. Hence we can restrict attention to
the subtree on domain E(7). Indeed, if x € E(T) then by Konig’s Lemma it is on an
infinite path. Conversely if z ¢ E(T) then there are only finitely many elements above
it (in 7) and so it is not on an infinite path. Hence the subtree (E(7), <) is pruned
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and has an infinite path iff and only if 7 has an infinite path. Further if 7 is automatic
then so is E(7T). This allows one to assume without loss of generality that a finitely
branching automatic tree is already pruned.

Theorem 8.2 (Automatic Ko6nig’s Lemma, Version 1) If T = (T, =X) is an infi-
nite finitely branching automatic tree then it has a reqular infinite path. That is, there
exists a reqular set P C T so that P is an infinite path of T .

Proof By the previous remark suppose that 7 is pruned. Recall that the length-lexico-
graphic order <j, on X* is automatic and therefore one can extend the presentation of
T to include <y, Now define the leftmost infinite path P with respect to the length-
lexicographic order of the successors of any node. P contains those nodes x for which
every y < z satisfies that Vz, 2’ € S(y) [z 2 £ = 2 <jjer #']. This means, that the unique
node z € S(y) which is below z is just the length-lexicographically least element of S(y).
Since the length-lexicographic ordering of ¥* is a well-ordering (of type w), this minimum
always exists.

We briefly check that P is an infinite path. Firstly P is closed downward. Indeed,
given x € P, let a < x. Then for every y < a, if 2,2/ € S(y) and z < y < z so by
hypothesis then z <y, z’, as required. Secondly P is linearly ordered. For otherwise
if z,a € P with z||a, then let z be their <-maximal common ancestor. Consider two
successors of z say v and w with v < x and w < a. Without loss of generality suppose
that v <je; w. Then z, v and w form a counterexample to a’s membership in P. Finally
P is infinite (and hence maximal with these properties). Indeed if x € P, then the
<yeg-smallest element in S(z) is also in P. Hence P is an infinite regular path in 7, as
required. O

If in the hypothesis above 7 contains finitely many infinite paths, then every infinite
path is regular since after defining P, one considers the tree on domain 7"\ P to find
the next infinite path. The next theorem generalises this to the case when 7 contains
countably many infinite paths.

Theorem 8.3 (Automatic Ko6nig’s Lemma, Version 2) If T = (T, X) is a finitely
branching automatic tree with countably many infinite paths, then every infinite path is
reqular.

Proof Assume that 7 is pruned. Then the derivate d(7) is definable and so the elements
of the tree 7 \ d(7") form a regular subset of 7', call it R. Then R consists of countably
many disjoint infinite paths, each definable as follows. For every <-minimal a € R define
the infinite path P, as {r € T |z <aV(a <z Az € R)}.

Now replace T by d(7) and repeat the steps in the previous paragraph. Since CB(T)
is finite, these steps can be iterated at most CB(7) times; after which time the resulting
tree will be empty and every infinite path in the original 7 will have been generated at
some stage. O

Remark 8.4 The assumption that T have countably many infinite paths can not be
dropped, since otherwise T necessarily has non-reqular (indeed, uncountably many non-
computable) infinite paths.
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8.2 The general case

It turns out that automaticity allows one to remove the condition that 7 be finitely
branching, under the assumption of course that 7 has at least one infinite path. This
can be done if given an automatic tree 7, one can effectively construct an automatic
copy of the pruned tree E(7), the set of elements of 7 that are on an infinite path in
T. Then as in the finitely branching case, Theorem 8.2, the <j.,-least path is definable
and hence regular.

Theorem 8.5 (Automatic K6nig’s Lemma, Version 3) If an automatic tree has
an infinite path, then it has a reqular infinite path.

This follows immediately from the following construction.
Lemma 8.6 If T is an automatic tree then E(T) C T is a regular language.

Proof Let 7 = (7, <) be an automatic tree. Writing 7" for E(T), it is required that
the set 7' C ¥* of all nodes in T that are on an infinite path is a regular language.

Recall that a (non-deterministic) Biichi automaton (S,:,A, F') over ¥ accepts an
infinite string o € X¢ if it has a run (¢;);en such that there is some state f € F with
f = g; for infinitely many j € N. The idea now is to construct a Biichi recognisable B
over the alphabet A = 3, x ¥ so that its projection (on the first co-ordinate) is of the
form 7" - {0} - W for some regular W C X%. Then 7" is regular since Biichi automata
are closed under projection and an automaton for 7" can be extracted from one for B.

Say that a word z is on cycy ..., where each ¢; is (a;, b;) € Xy x X, iff there exist
m,n € N such that

e either m =0,z =apa;...a, and a1 =©
eorn>m>0,x=>0b;...0n_10mAms1 -0y, Ap_1 = ¢ and ay11 = ©.

In the first case we say that x is the first word on coc; . ... Consider the set of all sequences
(ag, bo)(a1,b1) ... € A such that there are infinitely many words on the sequence and the
words on the sequence generate an infinite path of 7. More formally,

e I®n(a, = ©);
e if y, z are on (ag,bg) (a1,b1) ... and |y| < |z| then y <z and y,z € T.

There is a Biichi automaton B accepting such sequences because the orderings < and
length-comparison are automatic and 7 is regular. Further using that 7 is transitive,
one need only check that adjacent words ¥, z on the sequence satisfy y < z.

To complete the proof we prove that x € T" if and only if = is the first word on some
sequence cyc; . . . satisfying the two conditions. The reverse implication is clear. For the
forward implication let € T be given and P be an infinite path witnessing that x € 7.
Define the sequences aga; ... and byb; ... described below.

1. Choose n,agy,ay,.-..,a, such that = apa; . ..a,. Let a,1 = ¢.

2. Let m =0. Let y = x.
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3. Find b,,b,,41 . .. b,y1 such that infinitely many nodes in P extend bgb; ...b, 11 as
strings.

4. Update m =n + 2.

5. Find a new value for n and a,,a,,41 - - . a, such that n > m, the path P contains
the node z = byb; . ..by—10m0ms1 .- .0, and y < z. Let a,4 = 0.

6. Let y = 2. Go to 3.

Note that it is an invariant of the construction that whenever the algorithm comes to
Step 3, either m = 0 or infinitely many nodes in P extend the string bgb; ...b,, 1. As
there are only finitely many choices for the new part b,,b,,11 . . . by 41, one can choose this
part such that still infinitely many nodes in P extend bgb; ...b,11 as a string. In Step
4, m is chosen such that the precondition of Step 3 holds again and b,, is the first of
the b-symbols not yet defined. For every y € P it holds that all but finitely many nodes
z in P satisfy y < z. Furthermore, for every finite length [/, almost all nodes in P are
represented by strings longer than /. Thus one can find a node z as specified in Step
5 and the algorithm runs forever defining the infinite sequence (ag,bg)(a1,b;) ... in the
limit. In particular, such a sequence exists. It is not required that the sequence can be
constructed effectively since the path P might not even be computable. U

From Theorem 8.5, we see that if an automatic tree has finitely many infinite paths, then
each is regular. The next theorem generalises this to trees with countably many infinite
paths.

Theorem 8.7 (Automatic Ko6nig’s Lemma, Version 4) If an automatic tree has
countably many infinite paths then every infinite path in it is reqular.

Proof Let 7 = (T, <) be an automatic tree with countably many infinite paths. Then
the extendible part of 7, E(T) C T, is regular by Lemma 8.6. So the derivative d(7)
is automatic. Write F*(7T) for the domain of d*(7) and E*(T) C T for the extendible
part of the domain of d*(7). Then since 7 is automatic CB(T) is finite, say n. And
since 7 has countably many infinite paths, d"(7) is the empty tree. So the structure
(T, FY(T),FA(T),..., F™(T), X) is automatic.

Now for every z € T there exists an m < n such that x € E™(T)\ E™(T).
In particular if P is an infinite path of 7 then there is a smallest m < n such that
P N F™(T) is infinite. In this case define zp to be the least, with respect to <, ele-
ment of x € F™(T) \ F™"(T) with zp € P. Then P can be defined as the set of all
be F™(T)\ F™(T) such that either zp < b or b < xp. Hence P is regular. O

Define a formula
¢(a,b)=\/(a € F(T)Na¢ F*(T)Abe F(T)A(b=XaVa=b)).
i=0
The formula tells for every infinite path P and almost every a € P which nodes b are on
P. So {b| ¢(a,b)} is either an infinite path of 7 or empty (in case that @ is not on an
infinite path of 7). Thus one has the following result.
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Theorem 8.8 If T = (T,=) is an automatic tree with countably many infinite paths,
then there is a formula ¢ such that the sets P, = {b € T | ®(a,b)} satisfy the following
conditions:

e If P, is not empty then P, is an infinite path of (T, =) containing a;

e FEwvery infinite path of (T, <) is equal to some P,.
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