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Abstract. Using a previously developed algebraic representation sys-
tem for graphs of bounded pathwidth and treewidth, efficient membership
algorithms are built for subgraph, minor and topological- minor partial or-
ders. Semi-automatic procedures for these problems are presented through
numerous explanatory figures and source code. An enumeration scheme for
building membership automata for fixed graph substructures of graphs of
bounded width will also be introduced.

1 Introduction

Graphs have found many uses throughout computer science, but many graph algorithms
are impractical due to their complexity being NP-complete [8, 14]. Examples of this
type will be covered later; however, we want to focus on methods of dealing with such
complexities and making restricted versions of these problems with algorithms that run
in linear time. This solution lies in dealing with “bounded width” graphs. The goal of
this paper is to provide practical solutions to the NP-complete problems of determin-
ing subgraph, minor and topological minor family membership by restricting input to
graphs of fixed width. From origins in basic graph theory, we will use the ideas of path-
width and treewidth along with enumeration techniques to describe the problems [4, 5].
(The set of partial k-trees is equivalent to the set of graphs with treewidth at most &
[1].) Starting with treewidth and pathwidth, we move into enumeration schemes and
operations that are key to our algorithmic results given in Section 4. Here we will show
how to generate, for input graphs of fixed width, in a semi-automatic way, linear-time
algorithms (automata) for the subgraph problem and, in a specific case, the minor and
topological order problems (see [12, 13, 16, 11]).

The focus of our studies is only on simple undirected graphs and the following con-
ventions will be used. A graph G = (V, E) consists of a finite number of vertices V and
a finite set of edges F, where each edge is an unordered pair of vertices. The variable n
(and sometimes |G|) is used to describe the order (the number of vertices) of the graph,
while m is used to denote size (number of edges).
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2 Treewidth and Pathwidth

The formal definitions and proofs in this section come from previous research given in
[4, 5] and form the basis from which new studies stem. Treewidth and pathwidth play
extremely important roles in keeping the complexity of the problems we deal with under
control. A formal definition of treewidth (and pathwidth) follows, however an informal
definition may be equally useful. A graph has width at most k if the vertices can be
grouped into cliques of at most k£ + 1 while creating a tree or path structure that follows
certain rules.

1. Every vertex is in some clique.
2. If two vertices form an edge, they are members of a common clique.

3. For treewidth, the cliques of vertices (and edges) form a tree structure (i.e. no
cycles).

The first definition of a tree decomposition is easily specialized for a path-structured case,
therefore showing the link between treewidth and pathwidth. The formal definition for
pathwidth follows theorems dealing with properties of treewidth.

Definition 1 A tree decomposition of a graph G = (V, E) is a tree T together with a
collection of subsets T, of V indexed by the vertices x of T that satisfies:

1, UTsz.

2. For every edge (u,v) of G there is some x such that u € T, include and v € T.

3. If y is a vertex on the unique path in T from x to z then T, NT, C T,.

The width of a tree decomposition is the mazimum value of |Ty| — 1 over all vertices x
of the tree T. A graph G has treewidth at most k if there is a tree decomposition of G
of width at most k. Path decompositions and pathwidth are defined by restricting the
tree T to be simply a path.

Definition 2 A graph G is a k-tree if G is a k-clique (complete graph) Kj or G is
obtained recursively from a k-tree G' by attaching a new verter w to an induced k-clique
C of G, such that the open neighborhood N (w) = V(C). A partial k-tree is any subgraph
of a k-tree.

Theorem 3 (see [3]) The set of partial k-trees is equivalent to the set of graphs with
treewidth at most k.



The following paragraphs explain the idea of pathwidth and include several defini-
tions and theorems that allow the building of graphs of fixed pathwidth and form the
basis of an enumeration scheme vital to solving some complexity issues. To begin build-
ing graphs of fixed width, we must define a set of special vertices that the graph is built
from.

Definition 4 For a positive integer k, a k-simplex S of a graph G = (V, E) is an
injective map 0s : {1,2,...,k} — V. A k-boundaried graph B = (G, S) is a graph
G together with a k-simplex S for G. Vertices in the image of Os are called boundary
vertices (often denoted by 0). The graph G is called the underlying graph of B.

Definition 5 A graph G is a (k—1)-path if there exists a k-boundaried graph B = (G, S)
in the following family F of recursively generated k-boundaried graphs.

1. (K, S) € F where S is any k-simplez of the complete graph K.

2. If B=((V,E),S) € F then B' = (V',E'),S") € F
where V' =V U{v} forv &V, and for some j € {1,2,...k}:

(a) E' = EU{(0s(i),v) | 1<i<kandi#j}, and

(b) S is defined by dg (i) = { v ifi=

Os(i)  otherwise

A partial k-path is subgraph of a k-path.

Now that a family of k-boundaried graph has been defined, it can be proved that a graph
has pathwidth at most £ — 1 if and only if it is a subgraph of an underlying graph of
boundary size k. The formal definition of pathwidth now follows.

Definition 6 A path decomposition of a graph G = (V, E) is a sequence X1, Xo, ..., X,
of subsets of V' that satisfy the following conditions:

1. |Jxi=v.
1<i<r

2. For every edge (u,v) € E, there exists an X;, 1 < i < r, such that u € X; and
v E Xz

3. For1<i<j<k<r, X;nX;CXj.

The pathwidth of a path decomposition X1, Xo, ..., X, is maxi<;<, | X;| —1. The path-
width of a graph G, denoted pw(G), is the minimum pathwidth over all path decompo-
sitions of G.



A Graph of Pathwidth = 2, shown Here, it is shown that the cliques induce

with cliques of size 3 a path where each point off the main path
does not lead to another clique off the path
(thusinducing atree)

Figure 1: An example of a graph of fixed pathwidth.

The following definition (see [3]) defines a property of pathwidth that, when imple-
mented, allows algorithmic results to be handled more easily.

Definition 7 A path decomposition X1, Xs, ..., X, of pathwidth k is smooth, if for all
1<i<r |X;|=k+1, and foralll <i<r, |X;NX;u1] =k.

From this, we see that a graph with a path decomposition of width k£ can be transformed
into a smooth path decomposition of width k. The following lemma can also be generated
from the definition.

Lemma 8 If a graph G has components C1, Cs, . .., C, then pw(G) = maxi<i<, {pw(C;)}

One final lemma is necessary to qualify the use of pathwidth in defining family member-
ship. It shows pathwidth is a lower ideal in the minor order, where H <,, GG if H can be
obtained from G by a sequence of edge deletions, vertex deletions and edge contractions
(see [1, 13, 16, 17]).

Lemma 9 (e.g. [12]) If a graph H is a minor of G, H <,, G, then pw(H) < k.

These are the basic theorems and definitions that explain the ideas of fixed pathwidth
and treewidth. From here, an algebraic system of dealing with fixed boundary graphs
will be necessary to explore other properties of graphs and graph families.
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3 Graph Representation and Simple Graph Families

In dealing with graphs of fixed pathwidth, we use a finite number of boundary vertices.
For all graphs of pathwidth k, the theorems in the last section tell us that we can generate
any of those graphs from operators on a set of £ 4+ 1 boundary vertices. In general, the
boundary vertices are labeled from 0 to £ in a k+1 boundaried graph. Defined below
are several important operators that will allow us to construct the graphs within a fixed
pathwidth family [4, 5]. (Note other representations are possible.)

3.1 Operators

For a fixed boundary size, there are essentially three types of operators that can generate
any graph in a “bounded-width” family. There are vertex operators, edge operators and,
for the case of treewidth, a special operator called circle plus. The vertex operator is used
to replace an existing boundary vertex with a new unconnected one. If the boundary
vertex being replaced was connected to any other boundary vertices, it now becomes an
interior vertex connected to the same boundary vertices as before. The edge operators
are used to create a new edge between two boundary vertices. It is not necessary to
create an edge between an internal vertex and a boundary vertex as this is possible with
a combination of edge and vertex operators on the boundary.

Definition 10 The edge operator, @, places a new boundary vertex at position v in
the boundary, forcing the old boundary vertex into the interior of the graph while keeping
any connectivity to existing boundary vertices.

The vertex operator, , places a new edge between two boundary vertices © and j.
If the edge already exists, the edge operator does nothing.

Two graphs with treewidth k — 1, of boundary size k, can be “glued together” with
the @ operator, called circle plus, that simply identifies vertices with the same boundary
label.

Example 1 The edge operator and vertex operator is seen below on the same 3-boundaried
graph. Vertex operators are used to create new, unconnected boundary vertices pushing
the previous vertex into the interior of the graph. Edge operators add new connectivity
on the boundary.
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The binary operator & on two 3-boundaried graphs A and B is illustrated below. Note

that common boundary edges (in this case, the edges between boundary vertices 1 and 2)
are replaced with a single edge in G = A @ B.

: ZN ﬁ”ﬁ;\i

A B G=A®B

ﬁ [.]
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3.2 Paths and Cycles in Graphs

To begin exploring graph membership in families of fixed width, we start with small,
simple cases before attempting complex membership algorithms for graph families of
bounded width. These simple cases are necessary in that subgraphs, minors and topo-
logical minors are based on the simple cases like paths.

Definition 11 Given a graph G, define maxpath(G) as the length of the mazimum path
over all paths in G.



Using the idea of maxpath, the idea of a pathcover can be established.

Definition 12 Defined below is pathcover(p). A specific case, 0-pathcover is followed
by the general definition.

1. 0-pathcover(p) = {G | mazpath(G)< p}
2. k-pathcover(p) = {G | mazpath(G\ V')< p for some V' CV, where |V'| <k }

A less formal explanation of a graph with k-pathcover(p) would be a graph that is within
k vertices from having a maximum path of length p. By removing those k vertices, the
longest of all paths left is still going to be less than p vertices. If we try to use k-
pathcover(p) to define a family, we run across an item of interest.

Theorem 13 (see [4]) k-pathcover(p) is lower ideal in the minor order, that is:
For two graphs H and G such that H <,,, G and G € k-pathcover(p),
then H € k-pathcover(p).

Proof. Let G be a graph € k-pathcover(p), G = (V, E) and V' C V. In taking the
minor of a graph, there are only three operations: vertex deletion, edge deletion and
edge contraction. The first two operators, by definition, can not increase a path since
both operators inherently make paths shorter by decreasing order or size of a graph.
The last operator may be less clear, thus a brief definition of edge contraction follows.
Given two connected vertices: e,, = (u,v) where vertices v and v may be connected

to other vertices. Let u have edges e, q,,€y44,,... and e,,. Let vertex v have edges
€y bys Eupys--- and €,,. If an edge contraction on e,, is done, vertices u and v are
deleted and replaced by a new vertex, w such that: e, q,,€uq4s; .- = €w,a1)Cw,as,--- and
€v,b1y Cvbyy - - - = Ewbyy Cuwibyy - - -

For an edge contraction on G € k-pathcover(p), let G' = G \ e,, represent the edge
contraction of edge e, ,. Because k-pathcover(p) removes a set of vertices V', the edge
contraction may fall into this group of vertices being deleted. If both vertices of the
contraction, v and v, fall into the set of vertices V' being deleted, the edge contraction
will not occur. If one vertex, say u, is in V' then it does not matter the order of operations
as the vertex u will be deleted on either operation. If u is deleted as part of V', no edge
contraction will occur as the edge e, , is deleted in the deletion of vertex u. Similarly,
if the edge contraction removes v and v and replaces them with w that is connected to
all previous connections of u and v, the connections of u would be lost in the removal
of V' in such a way that G’ \ V' C G\ V' and maxpath(p)< k. If both vertices u and
v ¢ V', then either operation can be done first with the same effect. Again, after edge
contraction, G’ will have lost at least one vertex in addition to those removed with V.
Since no new edges or paths were created in this deletion, maxpath(G’ \ V)< p. O
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An interesting property of graphs in k-pathcover(p) families is that there is a bound
on their pathwidth.

Theorem 14 (see [4]) For any graph G € k-pathcover(p), pw(G) < k + p.

Proof. We use a depth-first-search (DFS) tree to argue our case in this theorem. First
look at a DF'S spanning tree with root r of a graph G. Make a set of vertices for paths
in the tree from root to leaf, that is for leaf v;, the set V; = {vertices between r and
v;}. By definition, the set Ui,:l V; = V. Since this is a DFS spanning tree, there are no
cycles within the tree and therefore any edge on a path from r to v; is fully in at least
one V;. All leaves are in specifically one V;. To get pathwidth, we must show for any
vertex, v and ¢ < k < j, if v € V; and v € V}, then v € V}, where V; N'V; C V. If there
is a vertex v that exists in both V; and Vj, then it must be on the path from r to v,
where v; ; is the closest vertex to v; in the intersection of V; and Vj. Since v, is visited
after v; ; in the visit order of the tree, the path from the root to v;; must be a subpath
to the path from the root to v; . Therefore v € Vj, and V; NV, C Vj. Therefore, this
is a valid method for tree decomposition. If the graph G € k-pathcover(p), then it is
within & vertices of having maxpath(p). Let W be a witness set of vertices such that
maxpath(G\ W)< p where |IW| = k. Deleting W leaves you with a new graph, G’ whose
maxpath is < p. Therefore, the maximum height of the DFS tree (the maximum path
decomposition) is p. Therefore the pathwidth of G is at most p + k. O

Just as we defined maxpath(G) and k-pathcover(p), we can define the equivalent
functions for cycles: maxcycle(G) and k-cyclecover(l).

Definition 15 Let mazcycle(G) denote the length of the longest cycle in a graph G

Definition 16 k-cyclecover(l)= {G | | mazcycle(G \ V') < I for some V' C 'V where
V' < k}

The idea of k-cyclecover(l) has specific graphical representations for values of | rang-
ing from 0 to 2. These representations are described below.

k-cyclecover(0): graphs with at most k vertices.
k-cyclecover(1) (i.e. k-vertex cover): up to k vertices needed to remove
all edges from a graph.
k-cyclecover(2) (i.e. k-feedback vertex set): up to k vertices needed to remove
all cycles from a graph.
Similar to the concept of k-pathcover(p), there exists a bound on the treewidth of
those members of a family of k-cyclecover(l). Again, one can use DFS spanning trees to
argue the point (see [4]).



Theorem 17 The mazimum treewidth of any G € k-cyclecover(l)= k+1 — 1.

Proof. If a graph has maxcycle(G)= k, then in a DFS spanning tree, a cycle in the tree
can only span k — 1 levels. If the same procedure of placing paths from the root r to the
leaves v, is used, all vertices may be covered, but all cycle edges may not be included. For
this reason, if each back cycle is placed into a unique V;, a tree decomposition is formed
that holds to all three tenants of treewidth. The first two properties are easily justified
as all vertices and edges are included in some V;. The final property of intersection
of sets is forced to hold true due to the tree-nature of the DF'S spanning tree. That
is, for any two vertex paths V; and Vj, there are no edges from V; to V; when i # j.
Therefore, similar to our result with k-pathcover(p), we see that defining the sets gives
a tree decomposition of treewidth at most [ — 1. Since there is a witness W such that
W C V' where |V'| < k, and G € k-cyclecover(l), maxcycle(G \ W)< k, treewidth is at
most [ +k — 1. O

The concepts of maxpath and maxcycle were used in our study of graph membership,
mainly as basic cases to build on. The further notions of pathcover and cyclecover,
however, were not used. These last two functions, as we have seen are closely connected
to pathwidth and treewidth and are lower ideals in the minor order as seen in the proofs.
This theoretically allows the use of the algorithms introduced in the next section to be
applied to obtain automata that will specify membership in families defined by these
two operations.

One last item needs to be mentioned with respect to the complexity issues of checking
for substructures of graphs that was earlier hinted at in the introduction. Two classic
examples of N'P-complete problems is deciding membership in k-vertex cover and k-
feedback vertex set for a graph GG. The complexity arises when both G and k are part
of the input. If the value of k is fixed, it can be shown that all “yes” instances have
pathwidth or treewidth at most k. The complex problem has therefore been changed
such that it is now tractable in the bounded width cases (see [6]).

4 Test Sets and Automata Generation

Introduced here is the idea of the finite congruence test set, a finite set of graphs that is
representative of all graphs for a specific problem [7, 11, §]

4.1 Test Sets

To begin to define test sets, we must first define a relation that puts the test set in
perspective. Once the relation has been defined, an algorithm for generating the test set



will be introduced and proven.

Definition 18 Define the congruence relation ~y on the set of all graphs such that for
graphs X andY and a specific family of graphs, F':
X ~Y if for all each boundaried graph Z, X ® Z € F <— Y & Z c F.

Furthermore, if X andY are not congruent (X ~; Y ) a boundaried graph Z is called
a distinguisher if ( X @ Z € F andY S Z ¢ F) or ( XS Z ¢ F andY ®Z € F).

A test set is the set of graphs, {Z}, that can distinguish membership into families
and defines a congruence of classes of graphs. By generating a finite test set (i.e. a finite
set T of tests such that if X and Y are not congruent then there exists a distinguisher
Z € T), we can start building graphs from the boundary and use the test set to see if
operators on the graph lead to new states (equivalence classes). The only useful test
sets are those that are finite.

The major work done for this paper was done on what we call a “kite family”, based
on the graph of a 3-cycle with a leaf, as seen in Figure 3. The test set algorithm about
to be defined, however, is independent of the family of graphs being used, as long as
they are of fixed pathwidth, and we have a function used to decide membership in the
family. For explicit clarification, the functions used in this paper follow.

1. maxpath(QG)
2. H a subgraph of G
3. H a minor of G

4. H a topological order of GG

Definition 19 Given a graph family F', and the equivalence relation ~¢, a test set Trp
15 a set of boundaried graphs such that for fized boundaried graphs X and Y:
X~ Y <= {(MTeYr,YOTeF <= Xo@TecF}

The actual definition of the test set requires that the graph that your family is based
on be subdivided into specific parts. An example of this is given in Figure 2.

Definition 20 Define Y1 by the following properties for a family based on a specific
graph H (as in subgraph <;, minor <, or topological minor <;):

1. Label all vertices in H with i, b, or e denoting interior, boundary and exterior
vertices.

2. Label all edges as 1 or e.
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exterior vertices

boundary vertices

Figure 2: Boundaried graph split into interior, boundary and exterior parts.

Tests are derived from all permutations of the labeling when vertices and edges labeled
1 are removed from H leaving only b and e vertices and e edges.
If (u,v) € E(H), then vertexlabel(u )=vertexlabel(v) or vertexlabel(u )= b or vertexlabel(v )=
b.
edge label (u,v) =i if vertezlabel(u)= i or vertezlabel(v )= i
edge label (u,v) = e if vertezlabel(u)= e or vertezlabel(v)= e
edge label (u,v) = e or i if vertezlabel(u)=vertexlabel(v )= b
furthermore, there must be at least one vertex or edge labeled 1.

Using this algorithm for creating test sets, we can generate a finite test set as we will
NOW prove.

Proof. It suffices to show that if X 7, Y, there exists a T € Ty (H) such that:
XeTeHandY ®T ¢ H or

XeT¢HandY dT € H.

Since X Y, there exists a graph Z such that, without loss of generality, X & Z € H
and Y& Z ¢ H. Furthermore, let Z be minimal. That is, let Z be such that no 7' <, Z
has the same properties of Z.

Consider all subgraphs S of X & Z = {S},Ss,...Sk}. If there exists an S; containing
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all of Z, then Z € Yp(H). Otherwise, Z \ S; is nonempty for all i. Consider then
Z'=Z\{Z\ S} which is a proper subgraph. Clearly, X & Z' € H since it contains S;.
However, Y& Z' ¢ HsinceY® Z' <, Y@® Zand Y ®& Z ¢ H. But Z' € Yr(H) by the
definition of Yr(H). O

With a well defined test set algorithm, the test sets generated are actually equivalence
classes. This is easily seen in that if two states pass all the tests in a test set, they can
be seen as equivalent. With a set of equivalence classes that define a family, the Myhill-
Nerode theorem states that a deterministic finite automata is equivalent to the set of
equivalence classes. Using this, we define a program that inputs the equivalence classes
and creates the automata. The details of the Myhill-Nerode theorem can be found in
the text by Hopcroft and Ullman [9]; the procedure to to generate automata for input
graphs of bounded width was introduced in [7] and first implemented later in [4]. We
can extend this notion to tree automata for graphs of bounded treewidth [15, 7].

4.2 Automata

Our first automata built was by hand, building a graph of maxpath(G)=2 with pw(G)=2.
The resulting automata can be seen in Figure 4. After this case, the complexity of the
automata increases dramatically, offering little hope to be seen in such a representation.
With more states, there is also the issue of checking for congruent states, which, by
hand, can take a great deal of time, when you are dealing with 57 test sets. There are
methods, however, for having automata built through programming the test set!

To build automata for membership in a family defined by an operation and a graph,
the program required a fixed pathwidth as input, along with a membership function
and the test set. The test sets, as mentioned are the essential part that set up the
equivalence classes. The membership function is defined per case. For example, the
two large automata that we ran were the families that contained the “kite graph” as
a subgraph and then as a minor or topological minor. To describe the membership to
the program, the kite was described in terms of a cycle of length three with at least one
vertex with degree greater than 2. Using defined functions for looking up cycles and
degree of vertices, the program was able to tell when the automata had built the desired
graphs. See Example 2 for the membership function of the minor problem, a little bit
more difficult to describe than the subgraph problem. In this case, not only do we need
to find the subgraph, but if there is a cycle greater than 3 that has a chord or vertex in
the cycle with degree greater than 3, it is now a member. The solution that was arrived

'We used adjacency matrices to store the boundaried graph tests, with the first ¢ vertices denoting
the boundary.
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For maxpath(G)= 2 Problem Label all vertices in all possible permutations.

Vertex possibilities: {0,1,2}, i, e
Edge possibilities: i, e 0 1 1le e
O—6——0
21 1e e
O————=0
) ] ii 1le e
Relabhng these Perm}ltatlol}s by O—6O6—0 O-O—)
deleting all interior “i” vertices and
“i” edges gives the Tests.

For the Kite Subgraph, Minor and Topological Minor Problem
Tests were clearly able to be divided into three groups, those with tails in the interior,
the exterior or the boundary.

e

Kite Graph

tale internal tale external boundary tale

Following this scheme, we generate the following test set for kite subgraph where 7 n
is the number of permutations of that type of graph over the boundary.

DODODE
DO

DY
pe=oxe @

Figure 3: Test set example.
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Generated with the following test set per the algorithm presented:

3 3
Figure 4: Automata for maxpath(G)=2 and pathwidth(G)=2.

14



at was a depth first search tree that would allow the traversing of graph to look for those
specific properties.

Example 2 Bool has_kite(const Graph *G)
{
int n=G->vertices();
if (n<4) return false;
Bool answer = false;
graph_int* deg = G->deg_vec(0);
for (int i=0; i<n-2; i++)
for (int j=i+1l; j<n-1; j++)
for (int k=j+1; k<n; k++)
if (G->is_edge(i,j) && G->is_edge(i,k) &% G->is_edge(j,k))
if (deglil > 2 || degljl > 2 || deglk]l > 2)
{
answer=true; break;
}
delete deg;
return answer;

void doDFS(const Graph *G, int root, int* parent)
{
int n=G->vertices();
for (int i=0; i<n; i++)
{
if (G->is_edge(root,i)==true && parent[i]==-1)
{
parent[i]l=root;
doDFS(G,i,parent) ;

return;

Bool has_minor_kite(const Graph *G)

{
int n=G->vertices();
if (n<4) return false;

15



Bool answer = false;
graph_int* deg = G->deg_vec(0);

int* parent = new int[n];
for (int i=0; i<n-2; i++) // start dfs at vertex i;
{

for (int j=0; j<n; j++) parent[jl=-1;

parent[i]=i;

doDFS(G, i, parent);

for (int u=0; u<n-1; u++) // check all edges in graph as DFS chords

for (int v=u+l; v<n; v++)

{
if (G->is_edge(u,v) == false) continue;
if (parent[ul>-1 && parent[v]>-1 &&
parent[ul != v && parent[v] != u)
{
if (deglul>2 || deglvl>2) { answer=true; goto stoplab;}
int z = u;
while (parent[z] != z)
{
z = parent[z];
if (deglz]>2) { answer=true; goto stoplab;}
}
zZ = v,
while (parent[z] != z)
{
z = parent[z];
if (deglz]>2) { answer=true; goto stoplab;}
}
}
}
}
stoplab:

delete deg; delete parent;
return answer;

With membership defined and equivalence classes processed, the output is a matrix
form automata. The states are defined in terms of the edge and vertex operators,
starting from the empty boundary and continuing until no new states exist. The states

16



Minor and Topological Order Membership

Degree 2 vertices are removed through edge contraction
in the minor case and through homomorphic mapping in
the topological order case.

chord or vertex of degree 3 or greater

Subgraph Membership

\ 1

T - -Q I

cycle of length 3

vertex, in the cycle, of degree at least 3

and operator matrix for the kite subgraph, Figure 5 and 6 and the kite minor and
topological order, Figure 5 and 5, can be found at the end, but one last interesting fact
was noticed in preparing the test set for the 3 graphs. The test set for all three cases
was identical. We look at the kite subgraph as the base case for this discussion. The
kite minor would be defined as any graph with the kite as a subgraph or, after edge
contraction and taking the subgraph, the kite was obtainable. Because the minor can
undergo edge contraction, if any additional states were added to the subgraph test set,
they would be equivalent after edge contraction to another member of the test set. The
case was similar for the topological order in that any additional test sets could be reduced
through the degree two contraction unique to that operation. One final interesting note
is that the automata for the minor is identical to that of the topological order. The
reason behind this is that their membership functions are identical. Figure 4.2 shows
this concept clearly.

Through the proper graph enumerations leading to test sets, the Myhill-Nerode the-
orem can lead to computer-generated automata. The reason that these automata are
so important is the fact that with an automata, the most complex problem becomes
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solvable in linear time. There still exists research in this area in classifying the minor
obstructions to the families that were addressed along the way and any others that can
be generated through novel test sets.

5 Conclusion

In this paper we have shown, by example, how to build membership automata for various
graphs families of bounded width. Our emphasis was on how to check if an input graph
of bounded pathwidth (or treewidth) contains another fixed graph as a subgraph, minor
or topological minor. We believe that our technique of using test sets for building
membership automata for the illustrative simple “kite graph” can be easily extended
for membership alogirithms for other small graphs. In the future, we hope to have a
practical automated procedure for generating tree automata for checking for these types
of embedded subtructures in graphs of bounded treewidth.
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Figure 5: Subgraph membership equivalence classes for Kite graph.

20



0: o o o 1 2 3
1 4 5 1 1 6 7 29: 42 29 44 36 29 36
5 8 2 5 6 92 9 30: 43 44 30 30 36 36
3 3 8 4 7 9 3 31: 22 37 10 31 36 21
32: 12 37 23 21 36 32

4: 4 0 4 10 11 12
33: 22 13 41 36 33 24

5: 0 5 5 10 13 14
34: 12 25 41 36 24 34

6: 15 13 10 6 6 16
35: 35 8 4 26 27 36

7: 12 17 10 7 16 7
*36: 36 36 36 36 36 36

8: 8 8 0 18 13 12
37: 8 37 5 31 36 32

9: 12 13 19 16 9 9
38: 22 25 10 38 20 21

10: 4 5 10 10 20 21
39: 22 13 23 20 39 24

11: 22 2 23 20 11 24
40: 12 256 23 21 24 40

12: 12 8 4 21 24 12
41: 4 5 41 36 33 34

13: 8 13 5 20 13 24
14 3 95 923 21 24 14 42: 42 42 0 45 36 36
43: 43 0 43 36 46 36

15: 15 8 4 26 27 28
44: 0 44 44 36 36 47

16: 28 29 30 16 16 16
45: 48 49 1 45 36 36

17: 8 17 5 31 29 32
46: 50 2 51 36 46 36

18: 22 25 1 18 20 21
47: 3 52 53 36 36 47

19: 4 5 19 30 33 34
48: 48 42 4 54 36 36

20: 35 13 10 20 20 36
49: 42 49 b5 54 36 36

21: 12 37 10 21 36 21
50: 50 8 43 36 55 36

22: 22 8 4 38 39 12
51: 43 5 51 36 b5 36

23: 4 5 23 10 39 40
52: 8 52 44 36 36 56

24: 12 13 41 36 24 24
53: 4 44 53 36 36 56

25: 8 256 5 38 13 40
54: 48 49 10 54 36 36

26: 35 256 10 26 20 36
97 - 35 13 23 20 27 36 55: 50 13 51 36 55 36
56: 12 52 53 36 36 56

28: 28 42 43 36 36 28

Figure 6: The matrix columns, from left to right, are the three vertex operators, 0,1,2
followed by the three edge operators (0,1),(0,2) and (1,2). The values on the right are
the states and correspond to Figure 5.
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Figure 7: Minor-order membership equivalence classes for Kite graph.
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Figure 8: Minor-order membership automata for Kite graph.
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