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Abstract

Nicolescu and Titchener showed that every �nite string could be used to gen-

erate a unique recursively constructed variable-length code set belonging to the

family of the T-codes. This paper proposes a conventional entropy function for

the string that is de�ned as the Shannon entropy of the codeset generated by the

string.

1 Introduction

Consider a set T of discrete times t, a �nite alphabet S = fa1; : : : ; ang with cardinality

#S = n, and an information source that emits a symbol a(t) 2 S at each time t. The

probability of a(t) = ai is denoted as PS(i; t). The Shannon entropy [1, 2] of the source

at time t is then given by

HS(t) = �
X

i

PS(i; t) log2 PS(i; t): (1)

More generally, the source may be seen as a system and the ai may be regarded as

discrete states, in which the system may be found at time t.

A source such as the one described above may alternatively be decoded using a pre�x-free

and complete code C � S+. It may then be described as emitting codewords x 2 C at

discrete times � 2 T 0 � T . It is then possible and common to de�ne a Shannon entropy

for the source with respect to C as

HC(�) = �
X

x 2 CPC(x; �) log2 PC(x; �): (2)

The distributions PS and PC are generally only indirectly accessible through the observed

historical output (states) of the decoded source/system. It is thus common to use this

output to obtain a best-e�ort estimate of PS or PC and hence HS orHC , respectively. The

notion of assigning an entropy to a �nite string (the historical output since observation

began) is thus practically as old as Shannon theory itself. Shannon himself proposed

an n-block entropy in this context, where the probabilities of individual symbols are

replaced by those of blocks of n symbols from S.

T-codes are variable-length codes that can be constructed recursively from S using an

algorithm called T-augmentation [5, 6, 13]. Nicolescu and Titchener[4, 10] showed that
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any �nite string � 2 S+ de�nes a unique T-code set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, in which any string

of the form �y, where y 2 S, is one of the longest codewords. The algorithm that is

used to derive the T-pre�xes p1; : : : ; pn and the T-expansion indices k1; : : : ; kn for the

construction of S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
from is called T-decomposition. A detailed explanation of

T-decomposition may also be found in [13].

Titchener [12, 9, 11, 15] further used T-decomposition to derive a T-complexity measure,

and from it a T-information and T-entropy measure, the latter of which was shown

experimentally to be closely related to the Kolmogorov-Sinai/Pesin entropy of the logistic

map [16]. This paper does not follow Titchener's route, rather, it explores a classical

entropy approach { that of Shannon.

2 Entropy

Based on the existing results, we are thus able to map an arbitrary string � uniquely to

a state machine - the decoder for the T-code set C = S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, for which �y is one of

the longest codewords. It is thus possible to compute a classical (Shannon) entropy for

the string, provided we are able to state the probability with which the state machine

may be found in any one of its states. This poses two problems:

� We need to decide whether to regard the internal nodes of the decoding tree as

valid states (i.e., whether we permit them to have a non-zero probability). This

corresponds to the question whether we permit observations to be taken in these

states, i.e., at times when the decoder is mid-way through the decoding of a code-

word. The obvious alternative is to permit leaf node (codeword) states only, and

treatment in this paper will be rectricted to this case.

� The probability of �nding the decoder in any particular state obviously depends

on the semi-in�nite string that it decodes. If we do not know the string (or at least

some of its properties), then how can we derive the probability? If we apply the

principle of maximum entropy, as seems prudent, then we need to demand that

each of the symbols in S ought to be equally probable and that the probability

of occurrence of any �nite string s 2 S? is P (s) = #S�jsj. In other words: The

semi-in�nite string should be presumed to be random. This answers the second

question.

If we only consider leaf nodes, the probability of occurrence of a symbol x in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

is PC(x; �) = #S�jxj. In this case, we may de�ne an entropy function (here called H1)

from Eqn. (2) and the lengths of the codewords of the codeset that the decomposed

string gives rise to, as:

H1(�) = �
X

x2S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

#S�jxj log2#S�jxj; (3)

where �y for any y 2 S is one of the longest codewords in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
.

The recursive construction of T-codes suggests that H1(�) may also be derived recur-

sively. For any pn+1 2 S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, we may indeed derive H1 for the T-augmented
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set/string by adding terms for the newly added codewords and by subtracting the term

for pn+1, which is no longer in the new codeset S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
. We obtain H1(p

kn+1

n+1 �) from

H1(�) as follows:

H1(p
kn+1

n+1 �) = H1(�)

�
kn+1X

k
0

n+1
=1

X

x2S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

#S�jxj�k
0

n+1jpn+1j log2#S�jxj�k
0

n+1jpn+1j

+
kn+1X

k
0

n+1
=1

#S�k
0

n+1jpn+1j log2#S�k
0

n+1jpn+1j (4)

where we have used the identity

P (p
k

0

n+1

n+1 ) = P (pn+1)
k

0

n+1 = #S�k
0

n+1jpn+1j: (5)

The �rst term on the RHS of Eqn. (4) corresponds to the entropy contribution made by

the codewords from S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, all of which (except pn+1, whose contribution we still

include in this term) are still present in the new set with unchanged probabilities of

occurrence. The second term adds the entropy contributions from the kn+1 new copies

of the original tree, the probabilities weighted by the respective distance from the root,

which is given by P (p
k

0

n+1

n+1 ), i.e., the length of the T-pre�x chain. The third term subtracts

the contributions of the T-pre�x chain p
k

0

n+1

n+1 , 1 � k0
n+1 � kn+1, which are \mistakenly"

included in the �rst two terms, i.e., leaf nodes on the original tree or its copies that are

now used to link each tree to the subsequent copy. Using Eqn. (3), Eqn. (4) may be

rewritten as:

H1(p
kn+1

n+1 �) = �
kn+1X

k
0

n+1
=0

X

x2S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

#S�jxj�k
0

n+1jpn+1j log2#S�jxj�k
0

n+1jpn+1j

+
kn+1X

k
0

n+1
=1

#S�k
0

n+1jpn+1j log2#S�k
0

n+1jpn+1j; (6)

where we have integrated the existing entropy H1(�) into the second term by extending

the range of the outer sum to include a term for k0
n+1 = 0. Rewriting the �rst term in

terms of H1(�), we get

H1(p
kn+1

n+1 �) = �
kn+1X

k
0

n+1
=0

#S�k
0

n+1jpn+1j
X

x2S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

#S�jxj log2#S�jxj�k
0

n+1jpn+1j

+
kn+1X

k
0

n+1=1

#S�k
0

n+1jpn+1j log2#S�k
0

n+1jpn+1j

= �
kn+1X

k
0

n+1=0

#S�k
0

n+1jpn+1j log2#S�k
0

n+1jpn+1j
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+
kn+1X

k
0

n+1
=0

#S�k
0

n+1jpn+1jH1(�)

+
kn+1X

k
0

n+1
=1

#S�k
0

n+1jpn+1j log2#S�k
0

n+1jpn+1j

= H1(�)
kn+1X

k
0

n+1
=0

#S�k
0

n+1jpn+1j: (7)

Here, we have made use of the fact that
P

x2S
(k1;k2;:::;kn)

(p1;p2;:::;pn)

#S�jxj = 1 and that the term for

k0
n+1 = 0 in the �rst sum after the second equal sign is zero.

3 Observations on H1

The result of the previous section permits a few observations:

� Since kn+1 � 1, the entropy function H1 increases monotonously as we T-augment

S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
, i.e., as � has additional T-pre�x strings added to it.

� As limn!1 jpn+1j =1, we can expect that for large n the terms for k0
n+1 > 1 will

either be zero (because kn+1 = 1) or very small compared to those for k0
n+1 = 1.

Hence we get:

H1(p
kn+1

n+1 �) = H1(�)
kn+1X

k
0

n+1=0

#S�k
0

n+1jpn+1j

� H1(�)(1 + #S�jpn+1j): (8)

Note that the overwhelming majority of suÆciently long strings � do not begin with

a repetition of two or more long patterns, which makes = 1 the by far most common

T-expansion parameter in the T-decomposition of long strings.

4 Conclusions

This paper proposed a Shannon-like entropy for �nite strings, based on the T-decomposition

of strings. The T-decomposition algorithm maps each �nite string � into a unique re-

cursive variable-length code of the T-code family. The proposed entropy function H1(�)

of the string is the Shannon entropy of the associated T-code under the assumption that

the code set decodes a source with maximum uncertainty, i.e., a random string. A sim-

ple recursive formula for the derivation of this entropy function H1 was derived. It was

also shown that H1(�) exhibits properties one would expect from an entropy function as

additional information is added to � by pre�xing.

As this paper reports on work in progress, it remains to be investigated in how far H1

is compatible with Titchener's measures. However, due to its conventional derivation, it

provide a useful tool in investigating links between the Titchener and Shannon entropy

concepts.
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