
CDMTCS

Research

Report

Series

An Improved

T-Decomposition Algorithm

Jia Yang, Ulrich G�unther

Department of Computer Science

University of Auckland

Auckland, New Zealand

CDMTCS-203

December 2002

Centre for Discrete Mathematics and

Theoretical Computer Science



An Improved T-Decomposition Algorithm

Jia Yang, Ulrich G�unther

December 5, 2002

Abstract

The bijective relationship between T-Code sets and �nite strings discovered

by Nicolescu and Titchener is of interest in coding, information measurement and

pattern matching. The T-decomposition algorithm that accomplishes the mapping

from the string to the T-code set was implemented in 1996 by Wackrow and Titch-

ener. This paper introduces a new algorithm that permits faster and more eÆcient

T-decomposition. Initial experimental results are also given.

1 Introduction

T-Codes [3, 4, 11] are a family of variable-length codes. It is possible to reconstruct

any T-Code set from any one of its longest codewords, using an algorithm called T-

decomposition. This algorithm was discovered empirically by Mark Titchener and later

proved by Nicolescu [2, 8].

The algorithm has since led to the derivation of information and entropy measures [10,

7, 9, 13] that have been shown to be related to known entropies [14]. The authors'

particular interest is in the area of pattern matching and mutual information in strings,

which utilizes these results. In order to be useful in practical applications, e.g., in search

engines, we require an eÆcient T-decomposition algorithm.

In this paper, we will �rst describe the principle of the T-decomposition algorithm. We

will then discuss the only previously existing implementation, followed by a description

of our own approach and a presentation of its results. In the following, we will use the

notation from [11].

Let S be an alphabet and consider a string x 2 S+ and a letter y 2 S. Then there exists

a T-Code set S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
such that xy is one of its longest codewords and S

(k1;k2;:::;kn)

(p1;p2;:::;pn)
is

independent of y, i.e., given x, all strings xy are longest codewords in S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
.

S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
may be derived from xy as follows:

1. Let the current codeset be C = S and set the level counter n = 0.

2. Decode xy over C. This yields xy as series of codewords from C. If xy decodes as

a single codeword, stop.

3. Identify the second-to-last codeword in the decoding over C and call it pn+1.

1



4. The second-to-last codeword, pn+1, may be the last in a run of pn+1 in the decoding

of xy. Let kn+1 be the total length (in codewords) of this run.

5. T-augment C with pn+1 and kn+1 to yield C
(kn+1)

(pn+1)
= S

(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
.

6. Set n = n + 1 and C = S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
. Continue at step 2.

Example: Let xy = 0111111111010101111111011 and let S be the binary alphabet S =

f0; 1g. We can reconstruct the T-Code set from this string as follows:

� First, we decode the string over S. The direction of the decoding is left to right

(i.e., the leftmost symbols/codewords are decoded �rst) and the result is (dots are

used to indicate the boundaries between codewords):

0:1:1:1:1:1:1:1:1:1:0:1:0:1:0:1:1:1:1:1:1:1:0:1:1

We �nd that the second-to-last codeword in this decoding is 1, so p1 = 1. As there

are no copies of 1 that immediately precede the second-to-last codeword, k1 = 1.

� Now we decode the string again. This time we decode it over the T-code set

S
(k1)

(p1)
= S

(1)

(1)
. The result is:

0:11:11:11:11:10:10:10:11:11:11:10:11

Note that all codeword boundaries that followed the T-pre�x p1 in the previous

decoding have disappeared, except those after a run of k1+1 = 2 copies of p1 = 1.

The second-to-last codeword in this decoding is 10, so p2 = 10. As there are no

copies of 10 that immediately precede the second-to-last codeword, k2 = 1.

� Now we decode the string over S
(1;1)

(p1;p2)
= S

(1;1)

(1;10):

0:11:11:11:11:1010:1011:11:11:1011

Note again that all codeword boundaries following p2 = 10 have disappeared,

except the one after the run of k2 + 1 = 2 copies of p2 in the middle of the string.

The second-to-last codeword in this decoding is 11, and there is one copy of 11

that immediately precedes the second-to-last codeword. So p3 = 11 and k3 = 2.

� Decoding the string over S
(1;1;2)

(1;10;11), we get: 0:111111:111010:1011:11111011

Thus p4 = 1011. Since there are no copies of 1011 that immediately precede the

second-to-last codeword, k4 = 1.

� Decode the string over S
(1;1;2;1)

(1;10;11;1011), and the result is:

0:111111:111010:101111111011

We now know from this decoding that p5 = 111010 and k5 = 1.

� Decode the string over S
(1;1;2;1;1)

(1;10;11;1011;111010)and get the result:

0:111111:111010101111111011

So p6 = 111111 and k6 = 1.

� Decode the string over S
(1;1;2;1;1;1)

(1;10;11;1011;111010;111111) . The result is:

0:111111111010101111111011

i.e., p7 = 0 and k7 = 1.

2



� Thus decode the string over S
(1;1;2;1;1;1;1)

(1;10;11;1011;111010;111111;0) . The result is a single code-

word: 0111111111010101111111011,

which means that the T-decomposition has been completed. The T-Code set ob-

tained, S
(1;1;2;1;1;1)

(1;10;11;1011;111010;111111;0)

has the string xy = 0111111111010101111111011 as one of its longest codewords.

Simple implementations of the above algorithm are ineÆcient for long strings. The reason

for this lies in the fact that the T-decomposition algorithm described above involves the

complete decoding of the entire string at each level of T-augmentation. However, for

most long strings, many of the decoding passes are very similar. In fact, the only changes

between two subsequent decoding passes are:

� The run of pn+1 merges with the previously last codeword and decodes as a single

codeword.

� Starting from the left end of the string, any run of up to kn+1 copies of pn+1 in the

previous decoding merges with the subsequent codeword and decodes as a single

codeword.

In large strings of a suÆciently random nature, the latter item is the exception rather

than the rule. Apart from these changes, the two subsequent decodings are identical.

This represents a lot of repetitive decoding of the same data with similar codes. EÆciency

gains may thus be made if the number of duplicate decodings can be reduced.

2 Wackrow and Titchener's Implementation

The above algorithm was �rst implemented by Wackrow under Titchener's supervision as

a C program called tcalc.c [15]. It exploits the fact that when the string is decoded over

S
(k1;k2;:::;kn+1)

(p1;p2;:::;pn+1)
, the only codeword boundaries that are removed from the decoding over

S
(k1;k2;:::;kn)

(p1;p2;:::;pn)
are those that follow the T-pre�x pn+1. Even then, they are only removed if

they do not follow a run of kn+1 + 1 copies of pn+1.

Wackrow's algorithm maintains a list of codeword boundary positions. During the de-

coding, the algorithm compares each codeword with the T-pre�x pn+1. This comparison

is initially done by length only { if the codeword's length does not equal jpn+1j, no further

comparison is undertaken. If the length of the codeword matches jpn+1j, the codeword

is compared to pn+1 on a symbol-by-symbol basis. Furthermore, only codewords that

precede the substring p
kn+1
n+1 p

kn
n : : : pk11 y at the end of xy are decoded in each pass { the

substring is implicit and yields no new information.

Note that in each decoding pass, each of the codewords preceding p
kn+1
n+1 p

kn
n : : : pk11 y is

checked. For most long strings, the number of codewords that need to be checked in

each pass thus decreases only slowly.

3 Our implementation

The number of the codewords that need to be compared with the respective T-pre�x in

each pass is a key factor that a�ects the eÆciency of the algorithm.

3



In our algorithm, we also maintain a list of codeword boundary positions as a doubly

linked list, which we call the string list as it lists all codewords in the sequence in which

they appear in the string. Each item in this linked list records the starting position of

a codeword in the string, its length, and points at both the preceding and the following

codeword in the string. In this respect, the basic strategy of our algorithm is similar

to that of Wackrow and Titchener. However, their implementation stores the boundary

positions in an array rather than a linked list.

Apart from the string list, we also maintain an additional group of doubly linked lists,

which we call length lists. Each item from the aforementioned doubly linked list also

features two pointers that additionally embed the item into one of these length lists.

Each of these length lists contains the linked list items corresponding to codewords of a

common length. That is, the length list for L links all items that correspond to codewords

of length L. We thus have two means of navigating through the string: We can either

proceed from one codeword to the adjacent next or previous codeword, or we can jump

from that codeword to the next (or previous) codeword with the same length.

The advantage of using the length lists is that we need not compare each codeword in

the string with the T-pre�x pn+1. Instead, we only look at those codewords that have

the same length as pn+1. These are available in the length list for L = jpn+1j.

The length lists are dynamically created on demand { if our string never contains any

codewords of length L, then no length list is created for L.

The decoding algorithm for the T-decomposition then works as follows: In the �rst

decoding pass, we decode the string over S. Each symbol in the string is a codeword

and the length of each codeword in this pass is 1. We thus create a length list for length

L = 1 and add items for all these codewords to it. At the same time, we create the string

list. We then proceed as follows:

1. Before each subsequent decoding pass, we identify the respective T-pre�x and T-

expansion parameter by following the string list backwards, one codeword from its

end. This identi�es the T-pre�x. Subsequent probing steps in the list compare

the respective next codeword to the left with the T-pre�x. If they match, the T-

expansion parameter is incremented, if not, the last copy of the T-pre�x to the left

becomes the new end of the string and the T-expansion parameter's value becomes

�nal. Once the leftmost T-pre�x copy coincides with the start of the string, we are

�nished. If this is not the case, we need at least one more decoding pass. In this

pass, codewords with di�erent length may appear as the boundaries after copies of

T-pre�xes are removed.

2. We identify the length of the T-pre�x and select the appropriate length list. If

it does not exist, then there are no codeword boundaries to remove and we can

proceed with the next T-augmentation level. If it does exist, we follow the length

list from its �rst element to its end, checking each element as to whether the

codeword it represents matches the current T-pre�x. If it does not match, we

proceed with the next entry in the length list.

3. If a match is detected, then we must merge (concatenate) the current codeword

with the subsequent codeword in the string list. For this purpose, we retain the

4



item corresponding to the current codeword and update its length to re
ect the

merger. Furthermore, we have to:

� Remove the current and the subsequent codeword from their respective length

lists, as the length of the merged codeword is di�erent.

� Remove the subsequent codeword from the string list, as it ceases to exist as

a separate codeword.

� If the removed codeword also matches the T-pre�x, we must allow for the

merger with the codeword following it in the string (up to kn+1 merge opera-

tions are possible).

� The resulting codeword must be inserted into the string list and into its ap-

propriate length list. This length list is created if required. If the length list

already exists, a pointer to the last codeword inserted into it aids the fast

location of the insert point.

The operation then resumes by checking the next codeword in the length list for

jpn+1j until the end of the list is reached. After this, the algorithm selects the next

T-pre�x and T-expansion parameter and returns to step 1.

4 Comparison

The algorithm described in the last section was implemented as a C program tlist.c [16]

based on the user interface of tcalc.c and was tested in comparison with tcalc.c. The

testing was performed using ASCII �les with characters 0 and 1 and a calibrated average

T-entropy [12]. Perhaps the most reassuring outcome of this testing is the con�rmation

that tcalc seems to work correctly for long strings. Both programs obtain identical

results for long strings and we thus believe that both of them work correctly.

Our initial tests also show that tlist executes several times faster than tcalc for all

strings in the test. The following tables show an intial comparison of execution times for

various strings and string lengths, obtained using the UNIX time command on a Redhat

8.0 Linux PC.

The �rst table shows a comparison of the T-decomposition of 2 million symbol strings

with di�erent average T-entropy values.

The second table shows the execution times for maximum T-entropy (\random") strings

of various lengths. It should be noted here that all of these strings were generated as

the n-bit suÆxes of the same 2000000 bit string. Strings of lengths below 400000 bits

parsed to fast to produce meaningful times.

The data { while still based on a few measurements only { shows tlist outperforming

tcalc in all cases. The highest gains are obtained for strings with medium T-entropy,

but the gains are still signi�cant even for random-looking strings. It also seems as if the

behaviour of tlist under string extension is slightly more benign than that of tcalc,

i.e., tlist scales slightly better.

However, some of the gains of tlist disappear when strings with larger alphabets are

used. In this case, the codewords tend to stay short for longer as there are now many

more combinations for short codewords available. In this case, the cost of the larger data

5



Filename tlist [s] tcalc [s]

lgst3.573550 3.5 7.6

lgst3.586787 4.5 25

lgst3.611055 6.7 48

lgst3.651050 11 76

lgst3.687660 9.8 118

lgst3.766200 14 151

lgst3.907580 19.5 200

lgst3.925405 43.7 213

lgst3.971029 33 230

lgst4.000000 45 239

Table 1: Execution time comparison between tcalc and tlist

Length in ASCII bytes tlist [s] tcalc [s]

(0 or 1)

400000 3.0 10.8

500000 4.5 17

600000 6.0 23.5

700000 7.6 32

800000 9.5 41

900000 12 51

1000000 14 63

1100000 16 76

1200000 19 89

1300000 21 104

1400000 25 121

1500000 27 138

1600000 31 156

1700000 34 175

1800000 38 195

1900000 41 217

2000000 45 239

Table 2: Execution time by string length for tcalc and tlist

6



structure overhead of tlist outweighs the small bene�t that one can derive from the

length lists. A test with a pseudo-random binary �le (alphabet size 256) con�rmed this.

5 Conclusion

The new T-decomposition algorithm presented in this paper appears to con�rm the

correctness of the implementation by Wackrow and Titchener. While the basic strategy

was derived from that of Wackrow and Titchener and the user interface routines are

to a large extent borrowed from tcalc, the core T-decomposition routines required a

completely independent implementation.

As predicted by the design, the tests carried out to date show that the performance

of the T-decomposition algorithm presented here is better than that of the existing

implementation. The presently available data suggests that this improvement should

permit the analysis of much longer strings than at present.

It is conceivable that the algorithmmay be further improved. One possibility for improve-

ment may lie in the optimization of the way it compares codewords with the respective

T-pre�x. E.g., it would be conceivable to split the length lists further into lists whose

members feature, e.g., a particular suÆx or pre�x.

We would like to thank Mark Titchener for his constructive comments and for suggesting

the use of his calibrated �les for the comparative testing. tcalc and tlist are available

under the GNU GPL.

References

[1] R. S. Boyer and J. S. Moore: A Fast String Searching Algorithm, Communications

of the Association for Computing Machinery, 20(10), 1977, pp. 762-772.

[2] R. Nicolescu: Uniqueness Theorems for T-Codes. Technical Report. Tamaki Report

Series no.9, The University of Auckland, 1995.

[3] M. R. Titchener: Generalized T-Codes: an Extended Construction Algorithm for

Self-Synchronizing Variable-Length Codes, IEE Proceedings { Computers and Dig-

ital Techniques, 143(3), June 1996, pp. 122-128.

[4] U. Guenther: Data Compression and Serial Communication with Generalized T-

Codes, Journal of Universal Computer Science, V. 2, N 11, 1996, pp. 769-795.

http://www.iicm.edu/jucs 2 11

[5] U. Guenther, P. Hertling, R. Nicolescu, and M. R. Titchener: Representing

Variable-Length Codes in Fixed-Length T-Depletion Format in Encoders and

Decoders, CDMTCS Research Report no.44, Centre of Discrete Mathematics

and Theoretical Computer Science, The University of Auckland, August 1997.

http://www.cs.auckland.ac.nz/research/

CDMTCS/docs/pubs.html.

[6] U. Guenther, P. Hertling, R. Nicolescu, and M. R. Titchener: Representing Vari-

able-Length Codes in Fixed-Length T-Depletion Format in Encoders and Decoders,

7



Journal of Universal Computer Science, 3(11), November 1997, pp. 1207{1225.

http://www.iicm.edu/jucs 3 11.

[7] M. R. Titchener: A Deterministic Theory of Complexity, Information and Entropy,

IEEE Information Theory Workshop, February 1998, San Diego.

[8] R. Nicolescu and M. R. Titchener, Uniqueness Theorems for T-Codes, Romanian

Journal of Information Science and Technology, 1(3), March 1998, pp. 243{258.

[9] M. R. Titchener, A novel deterministic approach to evaluating the entropy of lan-

guage texts, Third International Conference on Information Theoretic Approaches

to Logic, Language and Computation, June 16-19, 1998, Hsi-tou, Taiwan.

[10] M. R. Titchener, Deterministic computation of string complexity, information and

entropy, International Symposium on Information Theory, August 16-21, 1998,

MIT, Boston.

[11] U. Guenther: Robust Source Coding with Generalized T-Codes. PhD Thesis, The

University of Auckland, 1998. http://www.tcs.auckland.ac.nz/~ulrich

/phd.pdf

[12] M. R. Titchener, P. M. Fenwick, and M. C. Chen: Towards a Calibrated Corpus

for Compression Testing, Data Compression Conference, DCC-99, Snowbird, Utah,

March 1999.

[13] M. R. Titchener: A measure of Information, IEEE Data Compression Conference,

Snowbird, Utah, March 2000.

[14] W. Ebeling, R. Steuer, and M. R. Titchener: Partition-Based Entropies of Deter-

ministic and Stochastic Maps, Stochastics and Dynamics, 1(1), p. 45., March 2001.

[15] S. Wackrow and M. R. Titchener (with some minor additions by U. Guenther):

tcalc.c, written in C, available from http://tcode.tcs.auckland.ac.nz/~mark/,

under the GNU GPL

[16] J. Yang and U. Guenther: tlist.c, written in C, available on request from the authors,

under the GNU GPL

8


