
CDMTCS
Research
Report
Series

Lowness Properties of Reals
and Randomness

André Nies
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1 Introduction

We investigate three properties of sets of natural numbers which have been
discovered independently by different researchers, and show they are all the
same. Sets of natural numbers are identified with infinite strings over {0, 1},
and will be called reals.

• Chaitin [5] and Solovay [19] introduced the class K of K-trivial reals (using
different notation). The real A is K-trivial if the prefix complexity of each
initial segment of A is minimal.

• Van Lambalgen [21] and Zambella studied the class LR of low for random
reals, a property which says the real is computationally weak when used
as an oracle, since each random real is already A-random.

• Andrei Muchnik (1998) worked on the class SK of strongly K-trivial reals,
reals which are of no use as an oracle for compressing a string. By an easy
argument, SK is included in both K and LR, and all reals in SK are low1.

We investigate properties of those classes, in particular showing that K is closed
downward under Turing reducibility. This eventually leads to a proof that all
three classes coincide. At the same time, they represent very different aspects
of the same notion. The class LR expresses that the real is computationally
weak, while K states that the real is far from random. The part K = SK is
joint with D. Hirschfeldt, and can be proved by modifying the argument that
K is closed downward.
Our results contribute to a recent line of research joining two areas of com-
putability theory which had previously been pursued separately: the complex-
ity of reals, and their randomness properties. To classify reals by their absolute
complexity, one introduces a hierarchy of classes: computable, recursively enu-
merable, ∆0

2 etc. K lies in between computable and ∆0
2. The complexity of

reals is compared via reducibilities, for example Turing reducibility ≤T . To
study the classes in this hierarchy and the degree structures arising from these
reducibilities, increasingly difficult forcing arguments and priority constructions
are needed.

1



The most commonly accepted notion of algorithmic randomness is the one in-
troduced by Martin-Löf [10]. A Martin-Löf test is a uniformly r.e. sequence
(Un) of open sets in Cantor Space 2ω such that µ(Un) ≤ 2−n, where µ is the
usual Lebesgue measure on 2ω. A real X is Martin-Löf random if it passes
each test in the sense that X �∈ ⋂

n Un. Schnorr [15] proved that a real X is
random in this sense if and only if the algorithmic prefix complexity K of all
its initial segments is large, namely ∀n K(X � n) ≥ n − O(1). The methods
used to study algorithmic randomness have been quite different from the ones
mentioned above - they were effective measure theoretic or, when dealing with
K-complexity, combinatorial.
The class K induces a Σ0

3 ideal in the r.e. Turing degrees, which generates the
whole of K under Turing downward closure. As in computational complex-
ity theory, such closure properties can be taken as further evidence that this
common class K is a very natural one. K is the first known example of an
intermediate Σ0

3-ideal defined by a property not directly related to Turing re-
ducibility. K also is the first Σ0

3-ideal not obtained by a direct construction.
Moreover, K is degree invariant, namely, for Turing equivalent reals X, Y , the
relativized classes KX and KY coincide. This relates to Sacks’ question whether
there is a degree invariant solution to Post’s Problem [14]. A degree invariant
ideal which is also principal would give such a solution (at least as a Borel op-
erator). However, we also prove that KX is never a principal ideal in the r.e.
degrees relative to X.
In the following we discuss the relevant classes and concepts in an informal
way, deferring the formal definitions to Section 2. A lowness property of a real
A says that, in some sense, A has low computational power when used as an
oracle. We require that such a property be downward closed under ≤T . An
example of a (rather weak) lowness property is the usual lowness, A′ ≡T ∅′.
The lowness property LR is itself based on relative randomness: A is low for
random if each random real X is already random relative to A, i.e. X passes all
A-r.e. tests. Terwijn and Kucera [9, submitted 1997] proved the existence of a
non-computable r.e. low for random real.
The class K of K-trivial reals embodies being far from random. While random
reals have high initial segment complexity, for K-trivial reals this complexity
is as low as possible, namely ∀n K(X � n) ≤ K(n) + O(1). Clearly each com-
putable real is K–trivial. Chaitin [4] proved that K ⊆ ∆0

2. Solovay (1975), in an
unpublished but widely circulated manuscript [19], gave the first, rather com-
plicated construction of a non-computable real in K. Kummer (unpublished)
and Downey (see [7]) independently built an r.e. non-computable real in K via
similar, very short and elegant constructions. (See [7] for more on the history
of this.)
Let KA(y) be the prefix complexity of y relative to the oracle A. We call a
real A strongly K-trivial if ∀y K(y) ≤ KA(y) + O(1). In other words, the
oracle A cannot be used to further compress the string y. The class of such
reals is denoted SK. Andrei Muchnik (unpublished, 1998) constructed a non-
computable r.e. real in this class.
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The constructions of an r.e. set in those apparently very different classes are
quite similar (this was a first indicator that the classes might in fact be the
same). We describe a common framework for those constructions, called the cost
function method. A cost function is a computable function c : N × N 	→ Q+

0

such that limx limsc(x, s) = 0. Suppose we are building a ∆0
2-set A, via a

∆0
2–approximation (Ar). At stage s, if x is least such that As(x) changes (for

instance to meet a requirement in a list of requirements ensuring that A is non-
computable), the cost of this change is c(x, s). There is a global restraining
requirement that the sum of the costs over all stages be finite.
It remains to define a cost function which is appropriate for constructing a real
in the relevant class. For K, one uses c(x, s) = O(1)

∑
x<y≤s 2−Ks(y), where

Ks(y) denote the prefix complexity of y by stage s (the particular choice of the
constant is irrelevant). This method is interesting because it has no injury to
requirements, thereby giving a new injury free solution to Post’s problem.
The method seemed to be the only way to construct K-trivial reals. We will
see that this uniqueness of the construction was unavoidable: If A ∈ K, then
this ∆0

2 set can be viewed as being built via the cost function method for K.
This characterization can be used to derive further information about K, for
instance, each real A ∈ K is truth-table below an r.e. set in K.
We sketch the recent history of these results. Kucera and Terwijn asked for
a low for random real not in ∆0

2. (This is also Problem 4.4. in Ambos-Spies
and Kucera [2]). The work of Terwijn and Zambella on Schnorr low sets [20]
suggested the existence of such a set, since there are continuum many Schnorr
low sets, and they are necessarily outside ∆0

2. Stephan and Nies showed that
{e : We ∈ LR} is Σ0

3. To do so they gave a characterization of LR [13]. Using
a modified form of this characterization, the author proved LR = SK, which
implies LR ⊆ ∆0

2. Hirschfeldt made an important step towards showing K is
a lowness property, showing each A ∈ K is Turing incomplete (see [7, Thm
4.1]). The author showed the stronger result that K is closed downwards under
≤T , and gave the characterization of K. Hirschfeldt conjectured that K = SK,
and together they developped the modification of the proof that K is closed
downwards which suffices.
Few examples of natural ideals are known in the r.e. degrees: the non-cuppable
degrees, the non-promptly simple degrees (which coincide with the cappable
degrees by [1]) and the almost deep degrees (a is almost deep if a∨b is low for
each low r.e. degree b [6]). The latter two classes are interesting since, as is the
case for K, their defining property is not directly related to Turing reducibility.
However, unlike for K, this defining property is not Σ0

3. It is known that to be
of promptly simple degree is Σ0

4–complete.
An example of a lowness property from the theory of inductive inference which
is analogous to LR is the class of reals of trivial EX-degree, i.e. the reals A such
that EX[A] = EX, where EX[A] is the class of sets of computable functions
which can be learned with an oracle A. Slaman and Solovay [17] proved that
the nonrecursive reals in this class coincide with the reals Turing equivalent to
a 1-generic set in ∆0

2. Thus, none of them is r.e.
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The plan of the paper is as follows. In Section 2 we define the classes and
discuss their basic properties. In Section 3 we discuss an important tool, the
Kraft-Chaitin Theorem, and we review a construction of a non-computable r.e.
set in K, based on [4]. In Section 4 we prove that low for random equals
strongly K-trivial. Section 5 contains the Theorems that K is downward closed,
that K = SK and that the construction from Section 3 actually provides a
characterization of K. In a final Section, we discuss relativizations of K and
reducibilities related to LR and SK.
Notation. We identify a string σ in 2<ω with the natural number n such that
the binary representation of n + 1 is 1σ.
For each real A, we want to define KA(y), the length of a shortest prefix de-
scription of y using oracle A. An oracle machine is a partial recursive functional
M : 2ω × 2<ω 	→ 2<ω. We write MA(x) for M(A, x). M is an oracle prefix ma-
chine if the domain of MA is an antichain under inclusion of strings, for each A.
Let (Md)d∈N+ be an effective listing of all oracle prefix machines. The universal
oracle prefix machine U is given by

UA(0d1σ) = MA
d (σ).

If UA(σ) = y, we say that σ is a UA-description of y. Let ΩA = µ(dom UA),
and

KA(y) = min{|σ| : UA(σ) = y}.
When fixing the oracle to ∅, we obtain the notions of prefix machine and univer-
sal prefix machine. We simply write Ω and K(y). Note that K(y) = limsKs(y),
where Ks(y) = min{|σ| : Us(σ) = y}. For a string y, K(y) is not far greater
than |y|, since a prefix code ŷ for y can serve as a description of y. Since there is
such a code of length |y|+2 log |y| [3, Example 2.4], a computable upper bound
is K(y) ≤ |y|+2 log |y|+c∗ for a certain constant c∗ (which will be used below).
A ∆0

2–approximation (Ar)r∈N of a real A is an effective sequence of finite sets
such that A(x) = limrAr(x). Note that A ≤tt ∅′ iff A ≤wtt ∅′ iff the number
of changes in such an approximation is recursively bounded. Reals with that
property are called ω-r.e.

2 The classes and their basic properties

2.1 Far from random: the class K.

Note that K(|y|) ≤ K(y) + O(1), since one can compute |y| from y. Thus,
the following expresses that the K-complexity of initial segments is as small as
possible.

Definition 2.1 (Chaitin, [4]) A real A is K–trivial via a constant b if

∀n K(A � n) ≤ K(n) + b.
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Let K denote the class of K–trivial reals.

The intuitive meaning is “far from random”, since, by Schnorr [15], A is Martin-
Löf-random if, for some c, ∀n K(A � n) ≥ n − c. Thus, A is random if for each
n, K(A � n) is close to its upper bound, and A is K–trivial if K(A � n) is within
O(1) of its lower bound K(n). We discuss properties of K-trivial reals.

Theorem 2.2 (Chaitin, [4]) K ⊆ ∆0
2.

The proof in [7] uses trees of bounded width. The ∆0
2 tree Tb = {σ : ∀ρ ⊆

σ K(ρ) ≤ K(|ρ|) + b} has width at most O(2b). If A is K–trivial via the
constant b, then A is a path on Tb. All paths on Tb are isolated, so A ∈ ∆0

2.
For reals A,B, let A ⊕ B = {2x : x ∈ A} ∪ {2x + 1 : x ∈ B}.

Theorem 2.3 ([7], Thm 6.2) If A,B ∈ K, then A ⊕ B ∈ K.

Let (Θe)e∈N be an effective listing of all tt-reduction procedures. The following
is easily checked.

Fact 2.4 {e : Θe total & Θe(∅′) ∈ K} ∈ Σ0
3.

As a consequence, there is a u.r.e. listing of all the r.e. K-trivial reals, and this
class has a Σ0

3 index set. Then, in fact, the index set is Σ0
3-complete, since it is

easy to show that any nontrivial Σ0
3 class of r.e. sets which is closed under finite

differences and contains the computable sets has a Σ0
3-complete index set.

2.2 Low computational power: the class LR.

Note that if B ≤T A, then KA(y) ≤ KB(y) + O(1). In particular, KA(y) ≤
K(y) + O(1). A real X is A-random if, for some c, ∀n KA(X � n) ≥ n − c. Let
RAND(A) denote this class of reals, and let RAND denote RAND(∅). Then
RAND(A) ⊆ RAND.

Definition 2.5 (Kucera and Terwijn,[9]) A real A is low for random if RAND(A) =
RAND. In other words, RAND(A) is as large as possible. Let LR denote the
class of low for random reals.

Note that this is a Π1
1 definition, and that LR is closed downward under ≤T .

Recall that A is generalized low1 (in brief, GL1) if A′ ≤T A ⊕ ∅′. A result of
Kucera [8, Thm. 2] implies that each low for random A is GL1.

2.3 Both: the class SK.

We next consider the reals which, when used as an oracle, do not decrease K.

Definition 2.6 A is strongly K–trivial if ∀y K(y) ≤ KA(y) + O(1).
Let SK denote this class of reals.
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Note that SK ⊆ LR, since RAND(X) is defined in terms of KX . Moreover,
SK ⊆ K, since ∀n KA(A � n) ≤ KA(n) +O(1), and we can replace KA by K if
A ∈ SK. Trivially, SK is closed downward under ≤T .
We show that the reals A in SK satisfy a lowness property saying that UA(σ)
has few possible values. A related property, being recursively traceable, was
used in [20] to characterize the Schnorr low sets. Given T ⊆ N, let T [x] = {y :
〈y, x〉 ∈ T}.

Definition 2.7 (i) A r.e. set T ⊆ N is a trace if for some computable h,
∀x |T [x]| ≤ h(x). We say that h is a bound for the trace T .

(ii) The real A is U -traceable if there is a r.e. trace T such that

∀σ (UA(σ) ↓⇒ UA(σ) ∈ T [|σ|]).

Equivalently, one can require that there is a trace S such that {e}A(e) is in S[e]

in case {e}A(e) defined. It is not hard to show that U -traceable sets are in GL1

(see [12]).

Proposition 2.8 Each strongly K-trivial real is U -traceable, and low.

Proof. For U -traceablity, suppose A ∈ SK via a constant b. Clearly, if UA(σ)
is defined then KA(UA(σ)) ≤ KA(σ) + O(1). Since A ∈ SK, this implies
∀σ K(UA(σ)) ≤ K(σ) + O(1). Now K(σ) ≤ |σ| + 2 log2(|σ|) + O(1), so it
is sufficient to let T [n] = {y : K(y) ≤ n + 2 log2(n) + d}, for an appropriate
constant d (which can in fact be determined effectively from b). T is a trace
because |T [n]| = O(2nn2).
Since A is ∆0

2 and GL1, A is low. ♦

We summarize the properties of our classes we have seen so far.

K LR SK
Closed under ⊕ yes ? ?
≤T - downward closure ? yes yes
Index set of r.e. members Σ0

3-complete ? ?
Superclasses ∆0

2 GL1 Low, U–traceable

3 Constructing a K-trivial real

An important tool will be the Kraft-Chaitin Theorem.

Definition 3.1 An r.e. set W ⊆ N × 2<ω is a Kraft-Chaitin set (KC set) if
∑

〈r,y〉∈W 2−r ≤ 1.

Given W , for any E ⊆ W , let the weight of E be wt(E) =
∑{2−r : 〈r, n〉 ∈ E}.

If X ⊆ N, the weight (in the context of W ) is
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wt(X) =
∑

n∈X

∑{2−r : 〈r, n〉 ∈ W}.

The pairs enumerated into such a set W are called axioms.

Theorem 3.2 (Chaitin, [4], Thm 3.2) From a Kraft-Chaitin set W one can
effectively obtain a prefix machine M such that

∀〈r, y〉 ∈ W∃w (|w| = r & M(w) = y)

We say that M is a prefix machine for W .

For later reference, we give a quick review of the proof (based on [4, Thm 3.2]).
Proof. Let 〈rn, yn〉n∈N be an effective enumeration of W . At stage n, we will
find a string wn of length rn, and we set M(wn) = yn. At each stage we have a
finite set Dn−1 of unused strings. We let D−1 = {λ}.
It is useful to think of a string x as the half-open subinterval I(x) ⊆ [0, 1) of real
numbers whose binary representation extends x. Let zn be the longest string
in Dn of length ≤ rn. Choose wn so that I(wn) is the leftmost subinterval of
I(zn) of length 2−rn , i.e., let wn = zn0rn−|zn|. To obtain Dn, first remove zn

from Dn−1. If wn �= zn then also add the strings zn0i1, 0 ≤ i < rn − |zn|.
One checks inductively that for each n ≥ 0 the following hold:

(a) zn exists

(b) all the strings in Dn have different lengths

(c) {I(z) : z ∈ Dn} ∪ {I(wi) : i ≤ n} is a partition of [0, 1)

We prove (a) for n ≥ 0, assuming (b) and (c) for n − 1 (these are trivial
statements for n = 0). If zn fails to exist, then rn is less than the length of each
string in Dn−1, so that 2−rn >

∑{2−|x| : x ∈ Dn−1} by (b) for n − 1. Then∑n
i=0 2−ri > 1 by (c) for n − 1. This contradicts the assumption that W is a

KC-set.
Next, (b) for n holds if wn = zn. Otherwise |zn| < |wn| but also |wn| is less
than the next shortest string in Dn−1, so (b) holds by the definition of Dn. (c)
is satisfied by the definition of Dn. ♦

Suppose A(x) = limrAr(x) for a ∆0
2–approximation (Ar). We will give a suffi-

cient condition on (Ar) for the K–triviality of A (based on [7]). Then we meet
this condition in order to construct an non-computable K-trivial r.e. set.
To show A is K-trivial, we wish to enumerate a KC set W such that, for each
y ∈ N, 〈K(y) + 1, A � y〉 ∈ W . Since neither K(y) nor A � y are known,
we have to work with approximations at stages r. Firstly, if y = r, or y < r
and Kr(y) < Kr−1(y), then we put an axiom 〈Kr(y), Ar � y〉 into W . This
contributes at most weight 1/2. Secondly, when x < r is minimal such that
Ar−1(x) �= Ar(x), then we put an axiom 〈Kr(y) + 1, A � y〉 into W for each y,
x < y ≤ r. In this case, the axioms for descriptions of Ar−1 � y we enumerated
previously are “wasted”. Thus, each A-change carries a cost, the weight wasted
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on descriptions of previous strings Ar−1 � y. When we enumerated the axiom
〈Ks(y) + 1, As � y〉 ∈ W at stage s < r, we spent 2−(Ks(y)+1). Since 2−Ks(y) ≤
2−Kr(y), an upper bound for the cost of changing A(x) is

c(x, r) = 1/2
∑

x<y≤r 2−Kr(y).

Note that c(x, r) is nondecreasing in r, limrc(x, r) ≤ 1/2 for each x, and
limx limrc(x, r) = 0. Our sufficient condition for K-triviality implies that the
sum of the costs of all changes is at most 1/2.

Proposition 3.3 Suppose that A(x) = limrAr(x) for a ∆0
2–approximation (Ar)

such that

S =
∑

{c(x, r) : r > 0 & x is minimal s.t. Ar−1(x) �= Ar(x)} ≤ 1/2. (1)

Then A is K-trivial.

Proof. We enumerate a KC set W in stages s:
Put the axiom 〈Ks(w) + 1, As � w〉 into W in case

(a) s = w, or

(b) s > w and Ks(w) < Ks−1(w), or

(c) As−1 � w �= As � w.

To show W is a KC set, suppose an axiom 〈Ks(w) + 1, As � w〉 is put into W
at stage s.
Stable case. ∀r > s As � w = Ar � w. The contribution of such axioms is at
most Ω/2.
Change case. ∃r > s As � w �= Ar � w, where r is chosen minimal. Since
2−Ks(w) ≤ 2−Kr(w), the contribution of such axioms for a single r is at most
c(x, r), where x is minimal such that Ar−1(x) �= Ar(x) (so that x < w). Since
S ≤ 1/2, the total contribution is at most 1/2.
Let Me be the prefix machine for W . Then, for each w, K(A � w) ≤ K(w)+e+1.
For, given w, let s > 0 be greatest such that As−1 � w �= As � w. If s does not
exist or s ≤ w then the axioms in (a) at stage w cause this inequality. Other-
wise, (c) causes Ks(As � w) ≤ Ks(w) + e + 1. If Kt(w) < Kt−1(w) for some
t > s, then we maintain the inequality via (b). ♦

Recall that an r.e. set A is promptly simple if A is co-infinite and, for each e,

|We| = ∞ ⇒ ∃s∃x [x ∈ We,s − We,s−1 & x ∈ As − As−1].

Theorem 3.4 ([7]) There is a promptly simple K-trivial set A.
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Proof. Define an enumeration (Ar) as follows. Let A0 = ∅. At stage s > 0, for
each e < s, if As−1 ∩ We,s = ∅ and there is x ≥ 2e such that x ∈ We,s and
c(x, s) ≤ 2−(e+2), then put x into As.
The condition (1) is satisfied since we need to make at most one change for each
e. We verify that A is promptly simple. If We is infinite, there is an x ≥ 2e in
We such that c(x, s) ≤ 2−(e+2) for all s > x. Thus there is a unique x in A∩We.
Since c(x, s) is nondecreasing in s, we enumerate x into A at the stage where x
appears in We. Thus A is promptly simple. ♦

One can combine this technique with the Robinson guessing method for low sets
(see [18]) to obtain the following.

Theorem 3.5 ([12]) For each low r.e. set B, there is an r.e. A ∈ K such that
A �≤T B.

The condition (1) is very restrictive. For instance,

Fact 3.6 A ∆0
2–approximation Ar(y) satisfying (1) changes at most O(y2) many

times.

For, given y < r, when Ar−1(y) �= Ar(y), then S increases by at least 2−Kr(y).
Since Kr(y) ≤ 2 log2(y)+O(1), 2−Kr(y) ≥ O(1)y−2. Since S ≤ 1/2, the required
bound on the number of changes follows.
A modification of the proof of Theorem 3.4 yields the existence of a promptly
simple set in SK: we work with the cost function

c(x, r) = 1/2
∑{2−|σ| : UA(σ) ↓ [r − 1] & x < the use of this computation}.

Running the construction in the proof of Theorem 3.4 with this new cost func-
tion, we obtain an r.e. set A in SK, via the KC set W defined as follows: when
a new computation UA(σ) = y appears, then enumerate 〈|σ| + 1, y〉 into W .
To see that W is a KC set, note that the computations with a stable A con-
tribute a weight of at most ΩA/2, while the others contribute at most 1/2. Our
enumeration into W causes K(y) ≤ KA(y) + O(1) for each y.
The cost function method in itself does not provide an injury free construction.
For instance, one can define a cost function encoding the restraint of the usual
lowness requirements ∃∞s {e}A(e) ↓ [s-1] ⇒ {e}A(e) ↓ in the canonical con-
struction of a low simple set [18, Thm. VII.1.1]. If {e}A(e) converges at stage
s − 1, then one defines c(x, s) = max{c(x, s − 1), 2−(e+2)} for each x below the
use of {e}A(e). Then this computation can only be destroyed by the finitely
many simplicity requirements which are allowed to spend 2−(e+2).
The construction in the proof of Theorem 3.4 can be considered injury free
because c(x, s) is defined in advance, not depending on As−1.
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4 Low for random reals are strongly K–trivial

Our first main result is LR ⊆ SK. We apply the usual topological notions for
Cantor space 2ω. For a string y, [y] denotes the clopen set {X : y ⊆ X} (so
that µ[y] = 2−|y|). An open set V is identified with the set of strings y such
that [y] ⊆ V . A set R ⊆ 2ω is Σ0

1 if R =
⋃

y∈W [y] for some r.e. set of strings W
(in particular, R is open).
We first provide two preliminary results: an oracle version of the Kraft-Chaitin
Theorem, and a characterization of the low for random sets.

Definition 4.1 Consider an r.e. set L ⊆ N×2<ω ×2<ω. The elements 〈r, z, γ〉
of L (also called axioms) will be written in the form 〈r, z〉γ . L is called an oracle
Kraft–Chaitin (oracle KC) set if, for all ρ ∈ 2<ω,

Lρ = {〈r, y〉 : ∃γ ⊆ ρ 〈r, z〉γ ∈ L} (2)

is a Kraft–Chaitin set.

Proposition 4.2 From an index for an oracle KC set L, one can effectively
obtain an index d for an oracle prefix machine MX

d such that

∀X ⊆ N ∀〈r, z〉γ ∈ L [γ ⊆ X ⇒ ∃w(|w| = r & MX
d (w) = z)].

Proof. For each real X, LX = {〈r, y〉 : ∃γ ⊆ X 〈r, z〉γ ∈ L} is a KC set relative
to X. Applying the construction in the proof of Theorem 3.2, we obtain an
index d (which only depends on an r.e. index for L) such that MX

d is an oracle
prefix machine as desired. ♦

Theorem 4.3 (with F. Stephan, also see [13]) A is low for random ⇔
∃b ∈ N ∃R ⊆ 2ω ( R ∈ Σ0

1 & µR < 1 &

∀z ∈ 2<ω[KA(z) ≤ |z| − b ⇒ [z] ⊆ R]). (3)

Proof. To gain insight we reformulate the condition in Proposition 4.3. For each
X ⊆ N and b ∈ N, let RX

b = {z : ∃w ⊆ z KX(w) ≤ |w| − b}, so that (RX
b )b∈N is

a universal Martin-Löf test relative to X (namely,
⋂

b RX
b = 2ω − RAND(X)).

Then A is low for random iff
⋂

b RA
b ⊆ ⋂

n Sn for some (unrelativized) Martin
Löf test (Sn). By a method of Kucera (see e.g. [9, Lemma 1.5]), this is equivalent
to

⋂
b RA

b ⊆ R for some Σ0
1 set R ⊆ 2<ω such that µR < 1 (to obtain (Sn), one

“iterates” R). The condition in Proposition 4.3 states that already for some b,
RA

b is contained in such a set R. The direction from right to left follows.
To prove the converse direction, suppose A ∈ LR, and fix a Σ0

1 set R0 ⊂ 2ω

of measure less that 1 containing all the nonrandom sets (say R0 is the first
component of a universal Martin Löf test). We claim that, for some string x
such that [x] �⊂ R0 and some m ∈ N,

∀y ⊇ x (KA(y) ≤ |y| − m ⇒ [y] ⊆ R0). (4)
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Suppose otherwise. Define a sequence of strings (ym) as follows: let y0 be the
empty string, and let ym+1 be some proper extension of ym such that KA(y) ≤
|y| −m but [ym+1] �⊆ R0. Then Y =

⋃
m ym is not A–random, but Y is random

since Y �∈ R0.
Now fix x, m such that (4) holds, and let R = {z : xz ∈ R0}. Then R �= 2ω.
Since the Π0

1 set Rc is contained in the random sets and no random set can be
in a Π0

1 set of measure 0, µR < 1.
Since KA(xz) ≤ KA(x) + KA(z) + O(1), letting b = KA(x) + m + O(1), we
obtain, for each y,

KA(z) ≤ |z| − b ⇒ KA(xz) ≤ |xz| − m ⇒ [xz] ⊆ R0 ⇒ [z] ⊆ R.

♦

Theorem 4.4 Any low for random real is strongly K-trivial.

Proof. Suppose A is low for random. The proof will be uniform: a constant for
the strong K–triviality of A is obtained effectively in b, R, q, where b, R are as in
(3) and q > 0 is a rational such that µR ≤ 1−q. We define an effective sequence
(Ts)s∈N of finite subtrees of 2<ω (viewed as characteristic functions) such that
the limit tree T given by T (γ) = limsTs(γ) exists. The real A is a path of T , and
each path of T is K-trivial, via a constant which can be determined effectively
from b, R and q. To ensure this, we enumerate a KC set W such that, for some
constant c determined below, if γ ∈ T and Kγ(y) = p, then 〈p + c, y〉 ∈ W (so
that Kγ(y) ≤ p+O(1) by the Kraft-Chaitin Theorem). Of course, the condition
“γ ∈ T and Kγ(y) = p” is only ∆0

2, so we need to work with approximations.
At stage t, if γ ∈ Tt, Kγ

t (y) = p and some further conditions hold, then we plan
to enumerate 〈p + c, y〉 into W . While defining (Ts) we enumerate an auxiliary
oracle KC set L, which ensures that we do not make too many errors in this
enumeration of W (putting axioms for strings γ �∈ T ), so that W is indeed a
KC set. Our enumeration of L at stage t exploits (3) in a way which makes it
harder for a string γ ∈ Tt to reappear on Ts at a later stage s.
Preliminaries and the general framework. We may assume that an index d for
the oracle prefix machine Md corresponding to L is given (d can even be obtained
effectively in the parameters b, q and a Σ0

1–index for R). The reason is that, for
any index of an r.e. set Q ⊆ N × 2<ω × 2<ω, we can effectively obtain an index
for an oracle KC set Q̃ such that Q̃ = Q in case Q already is an oracle KC set.
Let d be an index for the oracle prefix machine effectively obtained from Q̃ via
Proposition 4.2. Our construction will effectively produce an oracle KC set L
from d (for any d ∈ N). By the Recursion Theorem with parameters, we can
assume that Q = L. Thus Q is an oracle KC set, and Md is a machine for L.
Let c ∈ N be least such that c ≥ b + d and 2−c ≤ q/2. We define Tt and Lt

by recursion on t. For strings γ ∈ Tt we will enumerate finitely many axioms
〈r, z〉γ , r = |z| − c, into L at stages t. Such an enumeration will cause z ∈ Rs in
case γ ∈ Ts at a later stage s.
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Let T0 contain only the empty string and let L0 = ∅. Suppose t > 0 and Ts

and Ls have been determined for s < t. We define Tt by a subrecursion on
the length of strings. We begin by putting the empty string into Tt. Suppose
currently the string γ, |γ| < t, is a leaf of Tt. For i = 0, 1, let si < t be the
greatest s such that γ î ∈ Ts or si = 0 if there is no such stage. For i = 0 or
i = 1, if

∀z[〈|z| − c, z〉γ̂i ∈ Lsi
⇒ [z] ⊆ Rt]],

then put γ î into Tt.
It remains to define Lt, by enumerating finitely many axioms at stage t. We
first show that, no matter how we do this, as long as L =

⋃
t Lt is an oracle

KC set (and Q = L), A will be a path of T . In variants of the construction
(Theorem 6.3, (i) below), the limit tree may fail to exists, but we can as well
work with the Π0

2-tree T = {γ : ∃∞t γ ∈ Tt}.

Lemma 4.5 Suppose L is an oracle KC set and Md is an oracle machine for
L in the sense of 4.2. Then each real A satisfying (3) is a path of T .

Proof. If 〈|z| − c, z〉γ ∈ L then, since Md is a machine for L, for each set X
extending γ, MX

d (w) = z for some w of length |z| − c. Hence UX(0d−11w) = z
and KX(z) ≤ |z| − b (recall that c = b + d).
Suppose A satisfies (3). We show by induction on m that A � m is on T for each
m. We may suppose that m > 0. By inductive hypothesis, there are infinitely
many s such that A � m− 1 ∈ Ts. Suppose for a contradiction that t is greatest
such that γ = A � m ∈ Tt. Then, by the above remarks (for γ = A � m and
X = A), there is v > t such that [z] ⊆ Rv for each of the finitely many z such
that 〈|z| − c, z〉γ ∈ Lt. Then at a stage s ≥ v such that A � m − 1 ∈ Ts, we put
γ into Ts, contrary to the choice of t. ♦

For each γ, if g =
∑{2−r : 〈r, z〉γ enters L at s}, then we say we put measure

g on γ at s. We view this as a cost, as it conflicts with our goal to make L
an oracle KC set, which requires that, for each ρ, the total measure put on
substrings of ρ be at most 1.
Some more intuition. Recall that if γ ∈ Tt and Kγ

t (y) = p, then we want to
enumerate 〈p+c, y〉 into W . A strategy α is a triple 〈σ, y, γ〉, where σ, y, γ ∈ 2<ω,
|y| < |γ| and |σ| ≤ |y|+2 log |y|+ c∗ (σ will be a Uγ-description of y). We start
α at a stage t which is least such that γ ∈ Tt & Uγ

t (σ) = y, and γ is the shortest
among such strings at t.
Let p = |σ|. Simplifying, the idea is to choose a clopen set C = C(α), µC =
2−(p+c), which is disjoint from R and the sets chosen by other strategies. The
strategy α puts an axiom 〈|z| − c, z〉γ into L for each string z ∈ C of minimal
length. If at a stage s > t, once again γ ∈ Ts, then C ⊆ Rs. At this stage, we
put 〈p+c, y〉 into W . Using that µR ≤ 1 and that the sets belonging to different
strategies are disjoint, we want to argue that W is a KC set. Moreover, L is an
oracle KC set, since the measure put on any substring γ of a string ρ is a sum
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of quantities 2−|σ|, where Uγ(σ) = y for some y. Then each set Lρ in (2) is a
KC-set.
The problem is to make the sets C chosen by strategies at different stages
disjoint. Suppose β �= α is a strategy which chose its set C(β) at a stage before
stage t. If β, or rather, its last component, has reappeared on the tree, then
C(β) ⊆ Rt, so there is no problem since α chooses its set disjoint from R.
However, if β has not reappeared (and it possibly never will), then β keeps
away its set from assignment to other strategies. The solution is to build up
the set C(α) in small pieces Dα, whose measure is a fixed fraction of 2−(p+c).
Recall α = 〈σ, y, γ〉 and p = |σ|. If α always reappears after assigning such a
set, then eventually C(α) reaches the required measure 2−(p+c), in which case
we are allowed to enumerate the axiom 〈p + c, y〉 into W . Otherwise, α only
keeps away one single set Dα, whose measure is so small that the union (over
all strategies) of sets kept away is at most q/2. Thus there is always a clopen
set of measure ≥ 1 − µR − q/2 ≥ q/2 available for other strategies.
For a strategy α = 〈σ, y, γ〉, let nα ≥ |σ| be a natural number assigned to α in
some effective one-one way.
Inductive definition of Lt and of the sets Ct(α).
Let L0 = ∅ and C0(α) = ∅ for each strategy α. Suppose t > 0, and Ts (s ≤ t)
and Ls (s < t) have been defined.
1. For each γ ∈ Tt, if α = 〈σ, y, γ〉 is a strategy, V γ

t (σ) = y, V γ
t−1(σ) is undefined

and, for σ, y, the string γ is the shortest such string, then start the strategy
〈σ, y, γ〉.
2. For each strategy α = 〈σ, y, γ〉 which is now running, if γ ∈ Tt, then do
the following. If µCt−1(α) = 2−(|σ|+c), then let α end. For the remaining such
strategies α, pick pairwise disjoint clopen sets Dα such that µDα = 2−(nα+c),
and

Dα ∩ Rt = ∅ & ∀β �= α [Dα ∩ Ct−1(β) = ∅]

(we will verify that this is possible). Put Dα into C(α) and, for each string z ∈
Dα which is minimal under inclusion of strings, enumerate an axiom 〈|z|−c, z〉γ
into L (this puts measure 2−nα on γ). We say α acts via Dα. This completes
the definition of Lt.
Verification. Note that, by definition of Tt, for each α = 〈σ, y, γ〉, if γ ∈ Tt, then
Ct−1(α) ⊆ Rt. Thus for each strategy β, µ(Ct−1(β) − Rt) ≤ 2−(nβ+c). Then
the union S of all such sets, which represents the strings outside R being kept
away for assignment for other strategies, has measure at most q/2 (recall that
2−c ≤ q/2). Thus we always have a clopen set of measure at least q/2 at our
disposal at a stage t, which suffices for the strategies α which want to choose
sets Dα at stage t.
Let C(α) =

⋃
t Ct(α). Clearly α �= β implies C(α) ∩ C(β) = ∅.

To see that L is an oracle KC set, fix ρ. We need to show that, for each
ρ,

∑
〈r,z〉∈Lρ 2−r ≤ 1, where Lρ is defined in (2). For each γ ⊆ ρ, a strategy

α = 〈σ, y, γ〉 puts measure at most 2−|σ| on γ, since the maximum measure C(α)
can reach is 2−(|σ|+c). Then, the total put on all substrings of ρ is bounded by
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µ(dom(Uρ)) ≤ 1. (Note that we did not assume Md is an oracle machine for L,
as required. Such an assumption is only needed in the proof of Fact 4.5.)
Defining a KC set W which shows that each path of T is K-trivial. We first
verify that limsTs(γ) exists. There are only finitely many strategies α = 〈σ, y, γ〉.
Each time such a strategy acts and then γ reappears on the tree, we increased
µC(α) by at least 2−(nα+c). So eventually the strategy ends, and the limit
exists.
Define W as follows. For each α = 〈σ, y, γ〉, if α ends at t, then put 〈|σ| + c, y〉
into W . To verify that W is a KC set, we note that

∑
t

∑{2−(|σ|+c) : 〈|σ| + c, y〉 is put into W via 〈σ, y, γ〉 at stage t} ≤ µR.

For, when α ends at t then µCt−1(α) = 2−(|σ|+c) and Ct−1(α) ⊆ R. Since the
sets C(α) are pairwise disjoint, the required inequality holds.
Let Me be a prefix machine for W according to the Kraft-Chaitin Theorem 3.2.
We claim that, for each path X of T and each string y, K(y) ≤ KX(y) + c + e.
For choose a shortest UX -description σ of y, and choose γ ⊆ X shortest such
that |γ| > y and Uγ(σ) = y. Then at some stage t, we start the strategy
〈σ, y, γ〉. Since γ ∈ T , the strategy ends and we put 〈|σ|+ c, y〉 into W , causing
K(y) ≤ KX(y) + c + e.
We obtained the constant c+ e effectively from the parameters b, R and q, since
we used the Recursion Theorem with parameters in the proof. ♦

Theorem 2.2 also answers [2, Problem 4.4], first asked in [9, p.1400].

Corollary 4.6 Any low for random set is low, and hence ∆0
2.

5 K-trivial reals

We prove that the class K is closed downward under Turing reducibility, and
give the modifications needed to prove that actually K = SK. The first version
of the proof also shows that Proposition 3.3 in fact provides a characterization
of the K-trivial sets. This yields some corollaries which further restrict our
common lowness property.

Theorem 5.1 If A is K-trivial and B ≤T A, then B is K-trivial.

As noted in [7], the corresponding fact is easily verified for weak truth table
reducibility: Suppose B ≤T A via a Turing reduction Γ such that the use of Γ
is bounded by a recursive function g. Then, up to constants,

K(B � n) ≤ K(A � g(n)) ≤ K(g(n)) = K(n).

Hirschfeldt and Nies modified the proof of Theorem 5.1 and obtained a stronger
result. However, the first version of the proof is also needed for the characteri-
zation of K.
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Theorem 5.2 (with Hirschfeldt) Each K-trivial real A is strongly K-trivial.

We note the modifications needed to obtain a proof of Theorem 5.2 in brackets
[...].
Proof. Suppose A is K-trivial via a constant b. For Theorem 5.1, let B = ΓA,
where Γ is a Turing functional whose use is nondecreasing in the input. Let
(Ar)r∈N be a ∆0

2-approximation of A. For each s, one can effectively determine
an f(s) > s such that ∀n < s K(A � n) ≤ K(n) + b [f(s)], i.e., the inequality
holds at stage f(s). Let s0 = 0 and si+1 = f(si). The construction is restricted
to stages in {si : i ∈ N}. We use italics to emphazise this. In the following,
s, t, u always will denote such stages. We may modify the approximation (Ar)
so that that Ar(x) = Asi

(x) for all r, si ≤ r ≤ si+1 − 1. We say that A(x)
changes at s if As−1(x) �= As(x).
We will determine a KC set W in order to show that B is K-trivial [A is strongly
K-trivial]. We also enumerate an auxiliary KC set L to exploit the hypothesis
that A is K-trivial. For each n, at most one axiom 〈rn, n〉 will be enumerated
into L. Recall that, for E ⊆ N, wt(E) =

∑
n∈E 2−rn .

As in the proof of Theorem 4.4, we may assume that an index d for a machine
Md is given, and we can think of Md as being a prefix machine for L: For any
index for an r.e. set Q ⊆ N × 2<ω, we can effectively obtain an index for a KC
set Q̃ such that Q̃ = Q in case Q already is a KC set. Let Md be the machine
effectively obtained from Q̃ via the Kraft-Chaitin Theorem. Our construction
effectively produces a KC set L from d. Thus, if Q = L, then Q is a KC set and
Md is a machine for L. Of course, first we have to show that L is a KC-set, in
the absence of any assumption on d.
Let c = b + d and k = 2c+1. (Then, putting 〈r, n〉 into L causes K(n) ≤ r + d
and hence K(A � n ≤ r + c, assuming Md is a machine for L.)
To gain some intuition, we first give a direct proof that no K–trivial set A is
satisfies ∅′ ≤wtt A (which also follows from the downward closure of K under
≤wtt and the fact that the wtt-complete set Ω is not K–trivial). Suppose ∅′ ≤wtt

A. Now we build an r.e. set B, and by the Recursion Theorem we can assume
we are given a total wtt-reduction Γ such that B = ΓA, whose use is bounded
by a computable function g. We wait till ΓA(k) converges, let n = g(k) and put
the single axiom 〈r, n〉 into L, where r = 1. Our total investment is 1/2. Each
time the opponent has a U -description of A � n of length ≤ r + c we force A � n
to change, by putting into B the largest number ≤ k which is not yet in B. If
we reach k + 1 such changes, then his total investment is (k + 1)2−(r+c) > 1,
contradiction.
In the proof of Hirschfeldt’s more general result that K-trivial reals are T-
incomplete (see [7, Thm 4.1]), there is no recursive bound on the use of ΓA(k).
The problem now is that the opponent might, before giving a description of
As � n, move this use beyond n, thereby depriving us of the possibility to
cause further changes of A � n. The solution is to carry out many attempts in
parallel, based on different computations ΓA(m). Each time the use of such a
computation changes, the attempt is cancelled. What we placed in L for this
attempt now becomes “garbage”. We have to ensure that the weight of the
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garbage does not build up too much, otherwise L is not a KC set.
Ingredients. Our proof builds on three main ideas. The essence of the first
one, and some elements of the third, first appeared in the proof of Hirschfeldt’s
result. Roughly speaking, for an axiom 〈r, n〉 ∈ L, either n reaches a k–set (as
defined below) or n is garbage. The weight of numbers of either type is at most
1/2. The first idea is present even in the proof of wtt–incompleteness above.
The third is a way to deal with the garbage. Both together ensure that L is a
KC set.
The second idea is needed to identify W . We use a tree of runs of procedures,
where the branchings are determined by U–descriptions [UA-descriptions]. Each
branching nodes emulates the construction of a [strongly] K–trivial real. That
is, B ∈ K [A ∈ SK] for the same reason as in the proof of Theorem 3.4 [in the
construction near the end of Section 3]. We discuss the ideas in detail.
1. The concept of a j–set. For 1 ≤ j ≤ k, we say that a finite set E ⊆ N is a
j-set at stage t if, for all n ∈ E, at some stage u < t an axiom 〈rn, n〉 went into
L and now there are j distinct strings z of length n such that Kt(z) ≤ rn + c.
(Intuitively speaking, the opponent provides j times as many descriptions as
we, though his ones may be by up to c longer.) A r.e. set with an enumeration
E =

⋃
Et is a j-set if Et is a j-set at each stage t. In our construction, the

strings z will have the form As � n at certain stages s, u ≤ s ≤ t.

Fact 5.3 If the r.e. set E is a k–set, then wt(E) ≤ 1/2.

Proof. For all n ∈ E, there is an axiom 〈rn, n〉 in L and there are k distinct
strings z of length n such that K(z) ≤ rn + c. Since for each n ∈ E, we have
descriptions of k distinct strings of length n,

1 ≥ µ(dom(V )) ≥ k
∑

n∈E 2−(rn+c) = k2−cwt(E).

Because k = 2c+1, this implies wt(E) ≤ 1/2. Note that we did not assume here
that Md is a machine for L. ♦
2. The golden run and indexing procedures by descriptions
As in the proof of wtt-incompleteness, we attempt to enumerate a k-set Ck of
weight 1. Now we use a tree of runs of procedures. The successor relation is
given by recursive calls. Each run of a procedure enumerates a set and has
a goal, the weight this set has to reach so that the run can end. Runs may
also be cancelled by runs of procedures which are above this run on the tree.
The root procedure is Pk, which has goal 1. It calls several procedures of type
Qk−1. These call a single procedure Pk−1 and so on till we reach the bottom
level, consisting of procedures of type Q1. All procedures have further indices
or parameters, discussed below. The failure of Pk to reach wt(Ck) = 1 implies
that there is a level i and a run of a procedure of type Pi which does not return,
though all its subprocedures (of type Qi−1) return unless they are cancelled.
Using this “golden run” we are able to define a KC set W as desired. However,
to be “golden” is merely a Π0

2 property of runs.
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To reach Ck, a number has to pass through j-sets Cj (1 ≤ j < k) and j-sets
Dj (1 ≤ j < k), C1 ⊇ D1 ⊇ · · · ⊇ Dk−1 ⊇ Ck. The procedures of type Pi

(1 < i ≤ k) enumerate numbers n from Di−1 into Ci (thereby adding a further
string z of length n as in the definition of j-sets), and the procedures of type Qj

(1 ≤ j < k) enumerate C1 for j = 1, and move numbers from Cj to Dj . Thus
C1 is just the right domain of L.
A main idea is to index the procedures of type Qj by descriptions σ, and also
by the object y being described and a certain A–use w. Each procedure Pi may
call procedures Qi−1,σ,y,w for all σ such that U(σ) = y [UA(σ) = y]. Ultimately
we want to show K(B � y) ≤ |σ|+O(1) [K(y) ≤ |σ|+O(1)], provided the run of
Pi is a golden one, since this would make B K-trivial [it would make A strongly
K-trivial]. We prove the K–triviality of B by emulating the construction of
a K–trivial set. The failure of Pi to reach its goal means that there are few
A-changes, hence the weight of axioms placed in W for which the change case
in Proposition 3.3 applies is small.
To give an outline of the procedures, let us pretend that k = 2. Now the single
run of the root procedure P2 attempts to enumerate a 2-set C2 of weight 1, but
never completes this task. It proceeds as follows. Each string σ is available in the
beginning. At a stage s, for each available σ, if U(σ) = y and ΓA(y′) converges
for each y′ < y [if UA(σ) = y], then declare σ unavailable. Let w = γA(y − 1).
Start a procedure Q1,σ,y,w attempting to obtain a 1–set D, w ≤ min(D), of
weight 2−r, where r = |σ|. In this simplified outline, D is a singleton. The
procedure Q1,σ,y,w picks a large number n > w and puts the axiom 〈r, n〉 into
L. Then at some later stage s, D = {n} is a 1-set (i.e., we see a description of
As � n of length ≤ r + c). If A � w has not changed by stage s, then Q1,σ,y,w

returns the set D. Now P2 waits for an A � w change, since this would make D
a 2-set. If it obtains the change, then it puts D into C2 and declares σ available
again. If A � w changes before we see such a description, we cancel the run of
Q1,σ,y,w and declare σ available.
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The KC set W is defines as follows. When a run Q1,σ,y,w returns at stage s,
then put the axiom 〈|σ|+ 1, Bs � y〉 into W [put 〈|σ|+ 1, y〉 into W ]. Note that
ΓA � y did not change, hence still w = γA(y − 1). We have the same two cases
as in the construction of a K-trivial set in Proposition 3.3.
Stable case. A � w is stable from s on. Then B � y is stable [the computa-
tion UA(σ) = y is stable]. So the axiom is as desired, assuming that σ is a
shortest description. For each σ, this case can occur at most once, so the total
contribution to W in this case is ≤ Ω/2 [≤ ΩA/2].
Change case. A � w changes after s. Then B � y may change [UA(σ) = y may
be destroyed], in which case the axiom we placed into W is wasted. However, its
weight is added to C2, so that in the construction, P2 makes progress towards
reaching its goal. Assuming that wt(C2) never exceeds 1/2, the contribution of
those axioms is bounded by 1/2.
We now discuss the general case where k = 2c+1. At each stage we have a finite
tree with 2k levels of runs of procedures. The leaves are the runs of procedures
of type Q1, which act in the way indicated above. Each n enumerated by such
a procedure into C1 at stage t corresponds to a unique run of a procedure at
each level at stage t (we say n belongs to that run). Since n is chosen large, it
is bigger than the parameter w of any run of a Q-type procedure n belongs to.
Thus A � w-changes contribute to the aim that n reaches the k–set Ck.
A procedure Pi has a parameter p, its goal, which is the weight it wants to move
from Di−1 to Ci. Similarly, a procedure Qj has goal q, the weight it wants to
move from Cj to Dj . Pi calls several procedures Qi−1,σ,y,w which enumerate
i− 1–sets D ⊆ Di−1 where minD ≥ w. Eventually such a procedure may reach
its goal and return its set D. In this case Pi waits for an A � w change, and
then puts D into Ci. Note that D is now an i-set. If A � w changes before
Qi−1,σ,y,w returns, then this very change turns the current set D into an i-set,
so Pi is entitled to put D into Ci. However, Pi also has to cancel the run of
Qi−1,σ,y,w.
Identifying strings with numbers, we may view the tree at stage s as a subtree
of {γ ∈ ω<ω : |γ| ≤ 2k − 1 & ∀i < k γ(2i + 1) = 0}.
3. Waste management. A number n ∈ Cj may not be promoted to Dj if the
run Qj,σ,y,w during which it was placed into Cj is cancelled. Similarly, a number
from Di−1 may fail to go into Ci if the required A � w–change does not occur.
These ‘garbage numbers’ jeopardize the requirement that L be a KC set. To
avert this, each run of a procedure is equipped with a garbage quota, assigned in
an effective (if somewhat arbitrary) way during the construction. A procedure
Pi has as a further parameter a garbage quota α, the amount it is allowed to
waste by leaving it in Di−1 − Ci. Similarly, Qj,σ,y,w has garbage quota β, the
amount it may leave in Cj − Dj . All goals and garbage quotas are of the form
2−l, l ∈ N. We denote runs of Pi-procedures with such parameters by Pi(p, α),
and runs of Qj-procedures by Qj,σ,y,w(q, β). The goal parameter of a run must
be chosen small in order to meet the garbage quota of the run immediately
above on the tree which called it.
The strategies proceed as follows, making sure not to exceed their garbage
quotas.
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Qj,σ,y,w(q, β): If j = 1, the procedure chooses n large, puts an axiom 〈r, n〉 into
L, where 2−r = β, and waits for Kt(n) ≤ r +d at a later stage t, at which point
n is put into D1. This is repeated till the goal has been reached. If j > 1, while
the goal q has not been reached, the run Qj,σ,y,w(q, β) continues to call a single
procedure Pj(β, α) for varying values of α, and waits till it returns a set C ′, at
which time C ′ is put into Dj . Thus the amount of garbage left in Cj − Dj is
produced during a single run of a procedure Pj , which does not reach its goal
β. So it is bounded by β.
Pi(p, α): this procedure calls procedures Qj,σ,y,w(2−|σ|α, β) for an appropriate
value of β. Then the weight left in Di−1 −Ci by all the returned runs of Qi−1-
procedures which never receive an A-change adds up to at most Ωα [ΩAα],
since this is a one-time event for each σ. The runs of procedures Qi−1 which
are cancelled and have enumerated D so far do not contribute to the garbage
of Pi, since D goes into Ci upon cancellation.
To assign the garbage quotas, at any substage of stage s, let

α∗
i = 2−(2i+3+nP,i),

where nP,i is the number of runs of Pi-procedures started so far. Let

β∗
j = 2−(2j+2+nQ,j),

where nQ,j is the number of runs of Qj-procedures started prior to this substage
of stage s. When Pi is called at a substage of stage s, its parameter α will be
at most α∗

i . Similarly, Qj ’s parameter β will be at most β∗
j . This ensures

wt(C1 − Ck) ≤ 1/2. Since wt(Ck) ≤ 1/2 by Fact 5.3, L is a KC set.
It is instructive to compare the proofs of Theorem 4.4 and of Theorem 5.2. In
both cases we prove that a real A is strongly K-trivial. In the first case we do
not have levels of procedures, which is why the proof is uniform. The strategy
α = 〈σ, y, γ〉 closely corresponds to a strategy Qj,σ,y,w at a fixed level j. Both
are based on a description of y, Uγ(σ) = y in the first case, and UA

s (σ) = y
in the second. Both are stopped when their guess about A turns out wrong.
Both carry out their actions in small bits to avert too much damage in case
this happens. Reserving only a small set Dα of measure 2−(nα+c) at a time
corresponds to calling a procedure Pj with a small goal β. A strategy waiting
to reappear on a tree Ts corresponds to Pj+1’s waiting for an A � w change after
Qj,σ,y,w returned.
We give the formal description of the procedures and the construction.

The procedure Pi(p, α) (1 < i ≤ k, p = 2−l, α = 2−r for some r ≥ l).
It enumerates a set C. Begin with C = ∅.
At stage s, declare each σ, |σ| = s, available (availability is a local notion for
each run of a procedure). For each σ, |σ| ≤ s, do the following.

(P1σ) If σ is available, and U(σ) = y for some y, y < s, ΓA(y′) ↓ for each
y′ < y [UA(σ) = y for some y < s] let w = γA(y − 1) [let w be use
of this computation] and call the procedure Qi−1,σ,y,w(2−|σ|α, β), where
β = min(2−|σ|α, β∗

i ). Declare σ unavailable.
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(P2σ) If σ is unavailable due to a run Qi−1,σ,y,w(q, β), and As � w �= As−1 � w,
declare σ available.

(a) Say the run is released. If wt(C ∪ Di−1,σ) < p, then put Di−1,σ into
C and go on to (b). Otherwise, choose a subset D̃ of Di−1,σ such
that wt(C ∪ D̃) = p, and put D̃ into C. Return the set C, cancel all
runs of subprocedures and end this run of Pi. (D̃ exists since p = 2−l

for some l, and rn > l for each n ∈ D – now order the numbers rn

in a nondecreasing way.) Also, if we inductively assume that Di−1,σ

was an i − 1-set already at the last stage, then C is an i-set, since
min(Di−1,σ) > w.

(b) If the run Qi−1,σ has not returned yet, cancel this run and all the
runs of subprocedures it has called.

The procedure Qj,σ,y,w(q, β) (0 < j < k, β = 2−r, q = 2−l for some r ≥ l).
It enumerates a set D = Dj,σ. Begin with D = ∅.

(Q1)

Case j = 1. Pick a large number n. Put n into C1, and put 〈rn, n〉 into L, where
2−rn = β. Wait for a stage t such that Kt(n) ≤ rn + d, and go to
(Q2). (If Md is a machine for L, then t exists.)

Case j > 1. Call Pj(β, α), where α = min(β, α∗
j ), and goto (Q2).

(Q2)

Case j = 1. Put n into D (D remains a 1-set).

Case j > 1. Wait till Pj(β, α) returns a set C ′. Put C ′ into D.

In any case, if wt(D) < q then goto (Q1). Else return the set D. (Note
that in this case, necessarily wt(D) = q. Also, D is a j-set, assuming
inductively that the sets C ′ are j–sets if j > 1.)

At stage 0, we begin the construction by calling Pk,0(1, α∗
k). At each stage, we

descend through the levels of procedures of type Pk, Qk−1 . . . P2, Q1. At each
level we start or continue finitely many runs of procedures. This is done in
some effective order, say from left to right on that level of the tree of runs of
procedures, so that the values α∗

i and β∗
j are defined at each substage. Since we

descend through the levels, a possible termination of a procedure in (P2σ) (b)
occurs before the procedure can act.
Verification. In the beginning, we do not assume that Md is a machine for L.
C1, the right domain of L, is enumerated in (Q1). For 1 ≤ j < k, let Dj,t be
the union of sets Dj,σ enumerated by runs of a procedure Qj,σ up to the end of
stage t. Let Ci,t be the union of sets Ct enumerated by runs of a procedure Pi

(1 < i ≤ k) by the end of stage t.
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Lemma 5.4 The r.e. sets Ci are i–sets

Proof. By the comments in (P2σ) and (Q2) above, D1 is a 1-set. For 2 ≤ i ≤ k,
assume inductively that Di−1 is an i− 1-set. Then Ci (and hence Di for i < k)
is an i-set. ♦

We next verify that L is a KC set. First we show that no procedure exceeds its
garbage quota.

Lemma 5.5 (a) Let 1 ≤ j < k. The weight of all numbers in Cj − Dj which
belong to a run Qj,σ,y,w(q, β) is at most β.
(b) Let 1 < i ≤ k. The weight of all numbers in Di−1 − Ci which belong to a
run Pi(p, α) is at most α.

Proof. We actually prove that the bounds hold at any stage of the run. This
suffices for the lemma, even if the run gets cancelled.
a) For j = 1 the bound holds since the run has at most one number n in C1−D1

at any given stage. So if the run gets stuck waiting at (Q1), it has left weight β
in C1 −D1. If j > 1, all numbers as in (a) belong to a single run of a procedure
Pj(β, α) called by Qj,σ,y,w(q, β), because, once such a run returns a set C ′, this
set is put into Dj . Since the run of Pj does not return, it does not reach its goal
β. Thus the weight of such numbers is ≤ β at any stage of the run of Qj,σ,y,w.
b) Suppose n belongs to a run Pi(p, α) and n ∈ Di−1,t at stage t. Then n was
put there during a run of a procedure Qi−1,σ,y,w(2−|σ|α, β) called by Pi. We
claim that, if n does not reach Ci, then no further procedure Qi−1,σ,y′,w′ is called
after stage t during the run of Pi. Firstly assume that As � w �= As−1 � w for
some stage s > t. The only possible reason that n does not reach Ci is that
the run of Pi did not need n to reach its goal in (P2σ) (i.e., n �∈ D̃), in which
case the run of Pi ends at s. Secondly, assume there is no such s. Then the run
of Pi, as far as it is concerned with σ, keeps waiting at (P2σ), and σ does not
become available again. This proves the claim.
The claim implies that, for each σ there is at most one run Qi−1,σ,y,w(2−|σ|α, β)
called by Pi(p, α) which leaves numbers in Di−1−Ci. The sum of the weights of
such numbers over all such σ is at most Ωα. [For Theorem 5.2, we distinguish
two cases. If the run of Pi returns at stage s, then the sum of the weights is
bounded by the value of ΩA at the last stage before s. Otherwise the sum is
bounded by ΩAα.] ♦

By the previous lemma and the definitions of the values α∗
i , β

∗
j at substages,

wt(C1 − Ck) ≤ ∑k−1
j=1 wt(Cj − Dj) +

∑k
i=2 wt(Di−1 − Ci) ≤ 1/2.

By Fact 5.3, wt(Ck) ≤ 1/2. We conclude that wt(C1) ≤ 1, and L is a KC-set.
From now on we may assume that Md is a machine for L, using the Recursion
Theorem as explained above.

Lemma 5.6 There is a run of a procedure Pi, called a golden run, such that
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(i) the run is not cancelled

(ii) each run of a procedure Qi−1,σ,y,w started by Pi returns unless cancelled

(iii) the run of Pi does not return.

Proof. Suppose no such run exists. We claim that each run of a procedure
returns unless cancelled. This yields a contradiction, since we call Pk with goal
1, this run is never cancelled, but if it returns, it has enumerated weight 1 into
Ck, contrary to Fact 5.3.
To prove the claim we use induction on levels of procedures of type Q1, P2, Q2,
. . . , Qk−1, Pk. Suppose the run of a procedure is not cancelled.
Qj,σ,y,w(q, β): In case j = 1, by the hypothesis we always reach (Q2) after
putting n into C1, because the run is not cancelled and Md is a machine for L.
In case j > 1, inductively each run of a procedure Pj called by Qj,σ,y,w returns,
as it is not cancelled. In any case, each time the run is at (Q2), the weight of
D increases by β. Therefore Qj,σ,y,w reaches its goal and returns.
Pi(p, α): The run satisfies (i) by hypothesis, and (ii) by inductive hypothesis.
Thus, (iii) fails, i.e., the run returns. ♦

Lemma 5.7 B is K-trivial. [A is strongly K-trivial].

Proof. Choose a golden run of a procedure Pi(p, α) as in Lemma 5.6. We
enumerate a KC set W . Note that p/α = 2g for some g ∈ N. At stage s, when
a run Qj,σ,y,w(2−|σ|α, β) returns, then put 〈|σ| + g + 1, Bs � y〉 into W [put
〈|σ| + g + 1, y〉 into W ] . We prove that W is a KC-set, namely,

SW =
∑

s

∑{2−r : 〈r, z〉 ∈ Ws − Ws−1} ≤ 1.

Suppose 〈r, z〉 enters W at stage s due to a run Qi−1,σ,y,w(2−|σ|α, β) which
returns.
Stable case. The contribution to SW of those axioms 〈r, z〉 where A � w is stable
from s on is bounded by 2−(g+1)Ω [2−(g+1)ΩA], since for each σ such that U(σ)
is defined [UA(σ) is defined] this can only happen once.
Change case. Now suppose that A � w changes after stage s. Then the set D
returned by Qi−1,σ,y,w, whose weight is 2−|σ|α, went into Ci. Since the run of
Pi does not return,

∑
s

∑{2−|σ| : Qi−1,σ,y,w returns at s and A � w changes
at some t > s } < 2g, otherwise the run of Pi reaches its goal α. Thus the
contribution of the corresponding axioms to SW is less than 1/2.
Let Me be the machine for W according to the Kraft-Chaitin Theorem. We
claim that, for all y,

K(B � y) ≤ K(y) + g + e + 1

[K(y) ≤ KA(y) + g + e + 1]. Suppose that s is the minimal stage such that
U(σ) = y, ΓA � y ↓ and A � γ(y − 1) is stable [a stable computation UA(σ) = y
appears], where σ is a shortest description of y. Let w be as in (P1σ), namely,
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w = γA(y − 1) [let w be the use of this computation]. Then σ is available at
s: otherwise some run Qi−1,σ,y′,w′ is waiting to be released at (P2σ). In that
case, A � w′ has not changed since that run was started. Then w = w′ and
y = y′, contrary to the minimality of s. So we call Qi−1,σ,y,w. Since A � w is
stable and the run of Pi is not cancelled, this run is not cancelled, so it returns
by (ii) of Lemma 5.6. At this stage we put 〈|σ| + g + 1, Bs � y〉 into W [we put
〈|σ| + g + 1, y〉 into W ], causing the required inequality. ♦

In the following we show that Proposition 3.3 actually provides a characteriza-
tion of K-trivial sets. We extract some additional information from the proof
of Theorem 5.1.

Theorem 5.8 The following are equivalent.

(i) A is K-trivial

(ii) There is a ∆0
2–approximation (Ãr) of A such that

S =
∑

{c(x, r) : x is minimal s.t. Ãr−1(x) �= Ãr(x)} < 1/2, (5)

where c(x, r) = 1/2
∑

x<y≤r 2−Kr(y).

By (ii) and Fact 3.6, any A ∈ K is ω–r.e.
Proof. (ii) ⇒ (i) is Proposition 3.3, with (Ãr) instead of (Ar).
(i)⇒ (ii). Let P (m) = 2−K(m), and Pt(m) = 2−Kt(m). Let (As) be the modified
∆0

2–approximation from the proof of Theorem 5.1. We first prove that there a
constant g ∈ N and a recursive sequence q(0) < q(1) < . . . such that

Ŝ =
∑

{ĉ(x, r) : x is minimal s.t. Aq(r+1)(x) �= Aq(r+2)(x)} < 2g (6)

where ĉ(z, r) =
∑

z<y≤q(r) Pq(r+1)(y).
We apply Lemma 5.6, for the special case that B = A and Γ is the identity
functional, where γ(y) is defined to be y + 1. Choose a golden run Pi(p, α)
which enumerates a set C. We claim that, for each stage s, there is a stage
t > s such that, for all y < s, if σ is a shortest description of y at t, then a run
Qi−1,σ,y,y+1 has returned by t and is not released yet, that is, Pi waits at (P2σ).
Such a t exists because, for each y, there are only finitely many possible σ’s.
Once A � y + 1 has settled, a run of a procedure Qi−1,σ,y,y+1 is not cancelled,
therefore it returns by property (ii) of golden runs.
Note that the least such t can be determined effectively. Let q(0) = 0. If
s = q(r) has been defined, let q(r + 1) be the least t satisfying this condition
for s.
Again, let g ∈ N is the number such that p/α = 2g. We show that Ŝ < 2g.
Suppose x is minimal such that Aq(r+1)(x) �= Aq(r+2)(x). Then As−1(x) �=
As(x) for some stage s, q(r + 1) < s ≤ q(r + 2). No later that s, the runs
of procedures Qi−1,σ,y,y+1, x ≤ y < p(r) which are still waiting at (P2σ) are
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released. This adds a weight of at least ĉ(x, r) to Ci. Thus Ŝ < 2g, otherwise
the run of Pi reaches its goal.
We obtain the required ∆0

2-approximation Ãr(x) after some manipulations.
First let A∗

r(x) = Aq(r+2)(x). Note that, for z < r, c(z, r) = 1/2
∑

z<y≤r Pr(y) ≤
ĉ(z, r), so that

∑{c(x, r) : x is minimal s.t. Ar−1(x) �= Ar(x)} ≤ Ŝ < 2g.
Now choose r0 so large that the sum over all r ≥ r0 is at most 1/2. Let
Ãr(x) = A∗

r0
(x) for r ≤ r0, and Ãr(x) = A∗

r(x) else. This shows (i)⇒ (ii). ♦

Theorem 5.9 For each K-trivial set A, there is an r.e. K-trivial set D such
that A ≤tt D, via a polynomial time tt-reduction.

Proof. We may assume that Ã0(y) = 0. Recall that, by the remark after
Proposition 3.3, Ãr(y) can only change O(y2) many times. Choose a constant c

such that Ãr(y) changes at most cy2 times, and let f(x) = c
∑

0≤z<x z2. Define
the r.e. set D as follows: when Ãr(x) �= Ãr+1(x) for the i + 1st time, then
enumerate f(x) + i into D. Then A ≤tt D, by a polynomial time tt-reduction
(where numbers are identified with strings) since y
niiA iff the greatest i < cy2 such that f(y) + i ∈ D is odd or there is no such i,
and Ã0(y) = 1 otherwise.
To see D that is K-trivial, note that for each r and each x < r,

Dr−1 � x �= Dr � x ⇒ Ãr−1 � x �= Ãr � x.

Thus the sum in (5) for (Dr) is no greater that the sum for (Ãr). ♦

Definition 5.10 The real A is super-low if A′ ≤tt ∅′.

Of course, super-low sets A are ω-r.e., that is, A ≤tt ∅′. In Nies [12] it is proved
that super-lowness and U -traceability coincide on the r.e. sets, but no inclusion
holds between the classes on the ω-r.e. sets.
The following could be proved directly via a modification of the proof of Theorem
5.1. However, we prefer to use Theorem 5.2 and Proposition 2.8.

Theorem 5.11 Each K-trivial real A is super-low.

Proof. It suffices to show that the r.e. set D obtained via Theorem 5.9 is super-
low. D is strongly K-trivial by Theorem 5.2, hence U -traceable by Proposition
2.8. Thus D is super-low by [12]. ♦

It is not hard to show that there are super-low r.e. sets A,B such that A⊕B is
Turing complete [12]. Thus not all super-low r.e. sets are K–trivial.
Recall that a total function f is fixed-point free if ∀x Wf(x) �= Wx. As an
immediate consequence of Theorems 5.9, 5.11 and the Arslanov completeness
criterion [18, Thm V.5.1], we obtain
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Corollary 5.12 No real A ∈ K computes a fixed-point free function.

In particular, not every Π0
1-class has a K-trivial member.

Each K-trivial real has a ∆0
2-approximation which changes as little as desired

(we thank Frank Stephan for pointing this out).

Corollary 5.13 Let A ∈ K. Given a nondecreasing recursive h such that
limnh(n) = ∞, there is a ∆0

2-approximation (Ar) of A such that Ar(y) changes
at most h(y) times.

Proof. By Theorem 5.9, there is an r.e. D ∈ K such that A = ΦD for a tt-
reduction Φ with recursive use ϕ. D is U -traceable by Theorem 5.11 and [12].
By the method of [20, Fact 1], there is an r.e. trace with bound h for the total D-
recursive function p(y) = µs Ds � ϕ(y) = D � ϕ(y), that is, ∀y p(y) ∈ T [y]. Now
let Ar(y) = 1 if ΦDv (y) = 1 where v = max T

[y]
r , and let Ar(y) = 0 otherwise. ♦

Theorem 5.14 The K-trivial reals form a Σ0
3 ideal in the ω–r.e. T-degrees,

which is generated by its r.e. members. Moreover, this ideal is nonprincipal.

Proof. By Theorems 5.1, 2.3 and 5.9 the K-trivial reals induce an ideal gen-
erated by the r.e. members. This ideal is Σ0

3 by Fact 2.4. Suppose the ideal
equals [0,b] for some degree b, then b is r.e. and low by Theorem 5.11. This
contradicts Theorem 3.5. ♦

Corollary 5.15 There is an r.e. low2 set E such that A ≤T E for each K-
trivial real A.

Proof. It suffices to give such a bound E for the r.e. K-trivial reals. By [11],
any Σ0

3 ideal in the r.e. degrees has a low2 upper bound. ♦

By Theorem 3.5, no such E is low1.

6 Relativizations, operators, and reducibilities

We review some extensions and related notions.
Operators. Let K(X) be the class of reals K–trivial relative to X, that is,
K(X) = {A : ∀n KX(A � n) ≤ KX(n) + O(1)}. The relativization of the class
of strongly K-trivial reals is SK(X) = {A : ∀y KX(y) ≤ KA⊕X(y) + O(1).
We show that K is an operator with good closure properties and a very simple
representation. Firstly, K is degree invariant as an operator, since

X ≡T Y ⇒ ∀z |KX(z) − KY (z)| ≤ O(1) ⇒ K(X) = K(Y ).

All the results on K we have discussed relativize.
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Theorem 6.1 (i) K(X) is closed under ⊕ and closed downward under ≤T .

(ii) There is an r.e. index e such that, for each X, WX
e ∈ K(X) and X <T

WX
e .

(iii) SK(X) = K(X)

(iv) A ∈ K(X) ⇒ A is tt–below some D ∈ K(X) which is r.e. in X, via a
polynomial time tt–reduction as in Theorem 5.9.

(v) A ∈ K(X) ⇒ A′ ≤tt X ′.

Proof. One obtains (i)-(iv) by examining the proofs of Theorems 2.3, 5.1, 3.4
and 5.9. For (v), suppose that A ∈ K(X). By (iv) we can suppose A is r.e. in
X. Since A ⊕ X ∈ K(X), A ⊕ X ∈ SK(X) by (iii). Relativizing Proposition
2.8, A⊕X is jump traceable relative to X. Then, relativizing the fact from [12]
that each U traceable set is super low, A′ ≤tt X ′. ♦

Theorem 6.2 There is an effective listing (Γe) of tt-reduction procedures such
that, for each X, K(X) = {Γe(X ′) : e ∈ N}.

Proof. Since {e : WX
e ∈ K(X) is Σ0

3(X) via a fixed index, there is an effective
listing (Vj) of oracle enumeration procedures such that for each X, {V X

j : j ∈ N}
equals the set of reals in K(X) which are r.e. in X. Let (Φi) be an effective listing
of the tt-reduction procedures needed in Theorem 5.9. For each pair i, j we can
effectively determine a tt reduction Γe, e = 〈i, j〉 such that Γe(X ′) = Φi(V X

j ). ♦

Slaman [16] studied Borel operators M : P(N) 	→ P(P(N)) such that, for each
X, Y , M(X) is an ideal in the Turing degrees containing X, but not all sets,
and M is monotone, that is, for each X, Y , X ≤T Y ⇒ M(X) ⊆ M(Y ),
a property stronger than degree invariance. Slaman proves that, on an upper
cone in the Turing degrees, any such operator is given by (possibly transfinite)
iterates of the jump. For instance, possibilities for M(X) are {Y : Y ≤T X},
{Y : Y ≤T X ′}, or {Y : ∃n ∈ N Y ≤T X(n)}.
Since the operator K is not given by such iterates, it cannot be monotone. An
explicit example of non-monotonicity was pointed out by R. Shore: By Theorem
3.4, let A be a promptly simple set in K(∅) = K . Then A is low cuppable, i.e.
there is a low r.e. G such that K ≤T A⊕G. Hence A ∈ K(∅)−K(G), otherwise
A ⊕ G ∈ KG and hence (A ⊕ G)′ ≤T G′ by Theorem 6.1 (v), contradiction.

Reducibilities. For reals A, B, let A ≤LR B ⇔ RAND(B) ⊆ RAND(A), and
A ≤SK B ⇔ ∀y KB(y) ≤ KA(y) + O(1).
Clearly, ≤T implies ≤SK, which in turn implies ≤LR. In [13] we prove

Theorem 6.3 ([13]) (i) For r.e. A,B, A ≤LR B implies A′ ≤tt B′

(ii) There is an r.e. A which is T -incomplete but SK–complete.
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Let L(X) = {A : A ≤LR X}. Like K, L is a Σ0
3 operator, but unlike K, L is

monotone in the sense of Slaman. Since L(X) is downward closed under ≤T ,
by Slaman’s result, L(X) cannot be ⊕–closed. The explicit counterexample we
used for K can be used again: Note that A ∈ L(∅). Thus A ≤LR G, and trivially
G ≤LR G, but K ≡T A ⊕ G �≤LR G by Theorem 6.3 (i), since G is low. In
particular, ⊕ does not determine a supremum in the r.e. ≤LR–degrees.
Note that the result LR = K relativizes, as follows: A ⊕ X ≤LR X ⇔ A ∈
K(X). Thus K(X) is a subclass of L(X). By relativizing our counterexample,
we see that for each X there is G ≥T X such that K(G) is a proper subclass
of L(G). Then, since K and L are degree invariant, by arithmetic determinacy,
this holds on an upper cone of Turing degrees.
Using Theorem 6.1 (v), A ≡SK B implies A′ ≡T B′ for all reals A,B. We do
not know if this holds for ≡LR in place of ≡SK.
Many other questions remain. For instance, is K definable in the (r.e.) Turing
degrees?

References

[1] K. Ambos-Spies, Carl G. Jockusch, Jr., Richard A. Shore, and Robert I. Soare. An
algebraic decomposition of the recursively enumerable degrees and the coincidence
of several degree classes with the promptly simple degrees. Trans. Amer. Math.
Soc., 281:109–128, 1984.

[2] K. Ambos-Spies and A. Kucera. Randomness in computability theory. In Peter
Cholak, Steffen Lempp, Manny Lerman, and Richard Shore, editors, Computabil-
ity Theory and Its Applications: Current Trends and Open Problems. American
Mathematical Society, 2000.

[3] Cristian Calude. Information and randomness. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, Berlin, 1994. An algorithmic
perspective, With forewords by Gregory J. Chaitin and Arto Salomaa.

[4] G. Chaitin. A theory of program size formally identical to information theory. J.
Assoc. Comput. Mach., 22:329–340, 1975.

[5] G. Chaitin. Information-theoretical characterizations of recursive infinite strings.
Theoretical Computer Science, 2:45–48, 1976.

[6] P. Cholak, M. Groszek, and T. Slaman. An almost deep degree. J. Symbolic
Logic, 66(2):881–901, 2001.

[7] R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan. Trivial reals. In Electronic
Notes in Theoretical Computer Science (ENTCS), 2002.

[8] A. Kucera. On relative randomness. Ann. Pure Appl. Logic, 63:61–67, 1993.

[9] A. Kucera and S. Terwijn. Lowness for the class of random sets. J. Symbolic
Logic, 64:1396–1402, 1999.

[10] P. Martin-Löf. The definition of random sequences. Inform. and Control, 9:602–
619, 1966.

[11] A. Nies. Ideals in the recursively enumerable degrees. To appear.

[12] A. Nies. Reals which compute little. To appear.

27



[13] A. Nies and F. Stephan. Variations on low for random and K-trivial. To appear.

[14] Gerald E. Sacks. Degrees of Unsolvability, volume 55 of Annals of Mathematical
Studies. Princeton University Press, 1963.

[15] Claus-Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische
Begründung der Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, 1971. Lec-
ture Notes in Mathematics, Vol. 218.

[16] T. Slaman. Aspects of the Turing jump. To appear, 2001.

[17] T. Slaman and R. Solovay. When oracles do not help. In Fourth Annual Confer-
ence on Computational Learning Theory, pages 379–383. Morgan Kaufman, Los
Altos, CA, 1991.

[18] R. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic, Omega Series. Springer–Verlag, Heidelberg, 1987.

[19] R. Solovay. Draft of a paper (or series of papers) on chaitin’s work. IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, 215 pages, 1975.

[20] S. Terwijn and D. Zambella. Algorithmic randomness and lowness. J. Symbolic
Logic, 66:1199–1205, 2001.

[21] M. van Lambalgen. Random Sequences. University of Amsterdam, 1987.

28


