
CDMTCS
Research
Report
Series

A Topological Characterization of
Random Sequences

C. S. Calude, S. Marcus, L. Staiger
University of Auckland, New Zealand,
Romanian Academy, Romania,
Martin-Luther-Universität,
Halle-Wittenberg, Germany

CDMTCS-197
October 2002. Revised March 2003

Centre for Discrete Mathematics and
Theoretical Computer Science



A Topological Characterization of Random
Sequences

Cristian S. Calude
Department of Computer Science

The University of Auckland
Private Bag 92019

Auckland, New Zealand
Email: cristian@cs.auckland.ac.nz

Solomon Marcus
Romanian Academy, Mathematics

Calea Victoriei 125
Bucharest, Romania

Email: Solomon.Marcus@imar.ro

Ludwig Staiger
Martin-Luther-Universität Halle-Wittenberg

Institut für Informatik
D - 06099 Halle, Germany

Email: staiger@informatik.uni-halle.de

June 19, 2003

Abstract

The set of random sequences is large in the sense of measure, but small in the sense
of category. This is the case when we regard the set of infinite sequences over a finite
alphabet as a subset of the usual Cantor space. In this note we will show that the above
result depends on the topology chosen. To this end we will use a relativisation of the
Cantor topology, theUδ -topology introduced in Staiger (1987). This topology is also
metric, but the distance between two sequences does not depend on their longest common
prefix (Cantor metric), but on the number of their common prefixes in a given language
U . The resulting space is complete, but not always compact. We will show how to derive
a computable setU from a universal Martin-Löf test such that the set of non-random
sequences is nowhere dense in theUδ -topology. As a byproduct we obtain a topological



characterization of the set of random sequences. We also show that the Law of Large
Numbers, which fails with respect to the usual topology, is true for theUδ -topology.
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1 Introduction

Algorithmic information theory plays many central roles in theoretical computer science, and,
in particular, in the theory of computation, both in terms of intellectual inspiration and con-
nectivity as well as tool (see, for example, [4, 5, 2]). The aim of this note is to study from
a topological point of view the set of random sequences. This problem is interesting in itself
(because the set of random sequences has constructive Lebesgue mesure one, but it is construc-
tively meagre with respect to Cantor’s topology) and has connections with probability theory
(classically, the Law of Large Numbers fails to hold topologically). Is there any natural topol-
ogy with respect to which the set of random sequences is topologically “large”? We will prove
that a relativisation of the Cantor topology gives a positive answer to the above question (the
set of random sequences is co-nowhere dense) and leads to a topological analogue of Martin-
Löf’s measure-theoretical characterization of random sequences (the role of constructive null
sets is played by nowhere dense sets). Finally, the Law of Large Numbers is topologically true
in this space.

2 Notation

By IN = {0,1,2, . . .} we denote the set of natural numbers. The cardinality of the setA is
denoted by card(A). Let us fix X an alphabet of cardinality card(X) = r ≥ 2, e.g. X =
{0, . . . , r − 1}. By X∗ we denote the set of finite strings (words) onX, including theempty
string e. The length of the stringw is denoted by|w|. We consider the spaceXω of infinite
sequences (ω-words) overX. If x = x1x2 . . .xn . . . ∈ Xω , thenx(n) = x1x2 . . .xn is the prefix
of lengthn of x. Strings and sequences will be denoted respectively byu,v,w, . . . andx,y, . . ..
For w,v ∈ X∗ andx ∈ Xω let w · v,w · x (simply wv,wx) be the concatenation ofw andv,x,
respectively. The concatenation product extends naturally to subsetsW ⊆ X∗ (languages) and
B ⊆ X∗ ∪Xω . By “v” we denote the prefix relation between strings:w v v if there is a
v′ such thatwv′ = v. The relation “@” is similarly defined forw ∈ X∗ andx ∈ Xω : w @ x
if there is a sequencex′ such thatwx′ = x. The setspref(x) = {w : w ∈ X∗,w @ x} and
pref(B) =

⋃
x∈Bpref(x) are the languages of prefixes ofx ∈ Xω andB ⊆ Xω , respectively.

Finally, wXω = {x ∈ Xω : w∈ pref(x)}.
The unbiased discrete measure onX is the probabilistic measureh(A) = card(A)/r, for

every subsetA of X. It induces the product measureµ defined on all Borel subsets ofXω .
This measure coincides with the Lebesgue measure on the unit interval, it is computable and
µ(wXω) = r−|w|, for everyw∈ X∗. For more details see [9, 10, 2].

2



3 The Cantor Space

The setXω is a compact metric space (Cantor space) with the metricρ1(x,y) = inf{ 1
1+|w| : w∈

pref(x)∩pref(y)}. For our purposes it is convenient to use the following equivalent metric
(cf. [18, 15]):

ρ(x,y) = inf{r−|w| : w∈ pref(x)∩pref(y)}= r1−card(pref(x)∩pref(y)). (1)

The open ball IBε(y) of radius ε ∈ (0,1] and centery in (Xω ,ρ) can be described as
IBε(y) = {x : ρ(y,x) < ε} = wy,ε · Xω , wherewy,ε is the unique prefix ofy with length
|wy,ε | = b− logr εc+ 1. Thus the open sets in the Cantor space(Xω ,ρ) are sets of the form
WXω =

⋃
w∈W wXω . The setswXω are both open and closed.

The δ -limit of a languageU ⊆ X∗ is the setUδ of all sequences inXω having infinitely
many prefixes inU , Uδ = {y ∈ Xω : pref(y)∩U is infinite}. This notion is useful in obtaining
the following characterization ofG

δ
-sets, i.e. countable intersections of open sets (cf. [18, 14,

15]):

Theorem 1 In the Cantor space, a subset F⊆ Xω is a G
δ
-set iff there is a language U⊆ X∗

such that F= Uδ .

4 TheUδ -topology

A new metric topology onXω has been introduced in [14] in connection with the study of
sequential mappings. In this section we define this topology and relate it to the usual topology
in the Cantor space.

Definition 1 Fix a languageU ⊆ X∗ and letx,y ∈ Xω . Then we define

ρU(x,y) =
{

0, if x = y,
r1−card(pref(x)∩pref(y)∩U), otherwise.

It is easy to see thatρU is a metric; its induced topology onXω will be called theUδ -topology.

The metricρU resembles, in some sense, the metricρ in the Cantor space; in fact,ρ = ρX∗.
In contrast withρ, ρU counts only those common prefixes ofx andy contained inU . Further
on, sinceρU(x,y) ≥ ρ(x,y), theUδ -topology refines the topology of the Cantor space. In
particular, every closed (open) set in the Cantor space is also closed (open) in theUδ -topology
of Xω .

The following result shows when two languagesU,V induce the same topology onXω ;
hence, a great variety of languages induce the same topology (see [14, 15] for examples).

Theorem 2 ([17]) The Uδ -topology and the Vδ -topology of Xω coincide iff Uδ = Vδ .
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The open ball in(Xω ,ρU) is given by the formula:

IB
ε,U(x) =


{x}, if ρU(x,y)≥ ε,

for all y 6= x,
Xω , if ε > r,
wx,ε ·Xω , otherwise.

Herewx,ε is the unique prefix ofx in U with length card(pref(wx,ε)∩U) = b− logr εc+2.

The following topological properties of(Xω ,ρU) will be useful. Recall that a pointx is
called anaccumulation point of a set F in the metric space(Xω ,d) provided for eachε > 0
there exists a sequencey ∈ F,x 6= y such thatd(x,y) < ε. Invoking Definition 1 we obtain:

Corollary 3 A pointx∈Xω is an accumulation point of the whole space(Xω ,ρU) iff x∈Uδ .

As (Xω ,ρU) is a metric space, the smallest closed (with respect toρU ) subset ofXω con-
tainingF , CU(F), is given by the formula

CU(F) = F ∪{x : x ∈ Xω ,x is an accumulation point ofF in (Xω ,ρU)} . (2)

A point x ∈ F which is not an accumulation point ofF is called anisolated pointof F . Thus,
x is an isolated point ofXω iff there is anε > 0 such that IB

ε,U(x) = {x}. Theset of isolated

pointsof (Xω ,ρU) will be denoted by IIU = Xω \Uδ .

An arbitrary set of isolated points ofXω is open. In caseUδ = /0, in particular ifU is finite,
every point of(Xω ,ρU) is isolated. Thus, in general,(Xω ,ρU) is a complete metric space, not
necessarily compact (as the Cantor space). More precisely, the space(Xω ,ρU) is not compact
whenever IIU 6= /0, cf. [17], Theorem 9.

The close relationship between theUδ -topology and the topology of the Cantor space is
visible in the case of accumulation points and closed sets.

Theorem 4 ([16, 17])Let U⊆ X∗. Thenx ∈Uδ is an accumulation point of F in(Xω ,ρU) iff
x is an accumulation point of F in(Xω ,ρ).

From (2) we obtain:

Corollary 5 LetC (F) = CX∗(F) be the smallest closed set containing F in the Cantor space.

ThenCU(F) = F ∪
(
C (F)∩Uδ

)
= C (F)∩ (F ∪Uδ ).

In particular, every setF containingUδ is closed in(Xω ,ρU).

As it was mentioned above, every setJ⊆ IIU of isolated points is an open set in(Xω ,ρU),
and every set of the formWXω is open in the Cantor space. Consequently, Corollary 5 yields

Corollary 6 A set E⊆Xω is open in(Xω ,ρU) iff E =WXω ∪J, for some W⊆X∗ and J⊆ IIU .

4



Recall that a setF is nowhere densein (Xω ,ρU) if its closure,CU(F), does not contain any
non-empty open set, that is, ifCU(Xω \CU(F)) = Xω ; F is denseif it intersects any non-empty
open set, that is, ifCU(F) = Xω .

The next result is simple but very useful:

Lemma 7 The set Uδ is the union of all nowhere dense sets in(Xω ,ρU).

Proof. We take a nowhere dense setF ⊆ Xω and we show thatF ⊆Uδ . To this aim we prove
that every sequencex ∈ F is inUδ : this is true because ifx 6∈Uδ , then the singleton set{x} is
non-empty and open, hence it cannot be nowhere dense, a contradiction. ❏

Of course,Uδ may or may not be itself nowhere dense. The next theorem gives a necessary
and sufficient condition forUδ to be nowhere dense.

Theorem 8 Let U⊆ X∗. Then the following conditions are equivalent:

1. The setIIU is dense in the Cantor space(Xω ,ρ).

2. The set Uδ is nowhere dense in(Xω ,ρU).

3. The set Uδ is a maximal nowhere dense set.

Proof. For the implication “1⇒ 2” we observe thatUδ is closed in(Xω ,ρ). If Uδ = Xω \ IIU
is not nowhere dense in(Xω ,ρU), then in view of Corollary 6 it contains a non-empty open
set of the formE = WXω ∪ J, J ⊆ IIU . Due to the inclusionE ⊆Uδ we haveJ = /0, that is,
E = WXω . Since IIU is dense in the Cantor space(Xω ,ρ), we have IIU ∩WXω 6= /0 unless
WXω = /0, soE = /0, a contradiction.

The implication “2⇒ 3” follows from Lemma 7.

For “3 ⇒ 1” we assume thatUδ is nowhere dense in(Xω ,ρU), henceCU(IIU) =
CU(Xω \Uδ ) = Xω . According to Corollary 5 we haveXω = CU(IIU) = C (IIU)∩ (IIU ∪Uδ ),
henceC (IIU) = Xω . ❏

5 A Uδ -topology for Random Sequences

There are various equivalent definitions of random sequences, complexity-theoretic (see [4,
5]), measure-theoretic (see [9]), topological; for a proof of their equivalence see [5, 2]. In
what follows we will use the definition based on Martin-Löf tests.

A subsetV⊆ X∗× IN is calledMartin-Löf testprovided

1. V is computably enumerable,

2. Vm+1 ⊆Vm, for all m≥ 1,
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3. card(Xn∩Vm ·X∗) < rn−m/(r−1), for all n,m≥ 1,

whereVm = {v∈ X∗ : (v,m) ∈V} is them-th section ofV andXn = {v : v∈ X∗, |v|= n}.
It is seen thatµ(ViX

ω)≤ r−i/(r−1), for all i ≥ 1, so limi→∞ µ(Vi ·Xω) = 0, constructively,
that is, there exists a computable functionH such thatµ(Vi ·Xω) < 2−m, for all i > H(m).
Moreover, it is possible to chooseV in such a way that eachVi is prefix-free, that is,v,w∈Vi
andvv w imply v = w (cf. [13], Corollary 4.10).

A Martin-Löf testU is calleduniversalif for every Martin-Löf testV there exists a constant
c > 0 (depending uponU andV) such thatVm+c ⊆Um, for all m≥ 1. In [9] Martin-Löf has
proved the existence of universal Martin-Löf tests (see also [2]). IfU is a universal Martin-Löf
test, then

⋂
i∈IN Vi ·Xω ⊆

⋂
i∈IN Ui ·Xω .

The set of random sequences,rand, is defined asrand = Xω \
⋂

i∈IN Ui ·Xω , whereU is a
universal Martin-Löf test. Of course, the definition does not depend upon the choice ofU.

A set S⊆ Xω is constructive nullif there exists a computably enumerable setA ⊆ X∗×
IN such thatS⊆

⋂∞
m=1Am ·Xω , (Am is them-th section ofA), and limm→∞ µ(Am ·Xω) = 0,

constructively.

The following result follows immediately from the existence of the universal Martin-Löf
test:

Theorem 9 ([9]) The set Xω \ rand equals the union of all constructive null sets, hence it is a
maximal constructive null set.

From Theorem 9 it follows thatXω \ rand is a constructive null set, sorand is large in the
sense of measure:

Corollary 10 ([9]) The setrand has constructiveµ measure one.

However, in the Cantor space, the setrand is small in the sense of category ([3, 2]). A set
S⊆ Xω is constructively meagrein the Cantor set if there exist a computably enumerable set
A ⊆ X∗× IN and a computable functionf : X∗× IN → X∗ such thatS⊆

⋃∞
m=1Xω \Am ·Xω ,

for all m≥ 1, and for everyv 6= ewe havevv f (v,m) and f (v,m) ∈ Am.

Theorem 11 ([3]) The setrand is constructively meagre in the Cantor space.

Next we will explore similarities between Theorem 8 (see also Lemma 7) and Theorem 9.
First, we obtain a topological characterization of random sequences:

Theorem 12 Let U be a universal Martin-Löf test and assume that every section ofU, Ui =
{u : (u, i) ∈ U}, is prefix-free. Then

rand = Xω \
(⋃

i∈IN
Ui

)
δ . (3)
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Proof. If x ∈ rand, thenx /∈Ui ·Xω , for almost alli ∈ IN (asUm+1 ⊆Um). Since allUi are
prefix-free,pref(x)∩

(⋃
i∈IN Ui

)
is finite.

Conversely, let x /∈ rand, that is, x ∈
⋂

i∈IN Ui · Xω . From the inequality
µ(Ui ·Xω) ≤ r−i/(r −1) we deduce that the minimum string length inUi , min{|u| : u∈Ui},
tends to infinity asi → ∞. Thusx has infinitely many prefixes in

⋃
i∈IN Ui . ❏

From the well-known fact thatrand is dense in the Cantor space (see [2]) and Theorem 8
we obtain:

Corollary 13 LetU be a universal Martin-Löf test and assume that each Ui = {u : (u, i) ∈ U}
is prefix-free. DefineU =

⋃
i∈IN Ui . Then the setU is computable and Xω \ rand is nowhere

dense in the space(Xω ,ρU).

Proof. We need to prove only the computability ofU. To this aim we fix an arbitrary
universal Martin-Löf test such that each sectionUi is prefix-free. Furthermore, let us fix a
computable enumeration of this Martin-Löf test. LetU be defined as in Corollary 13. A
decision algorithm forU works as follows:

Given a stringw, let k be the smallest positive integer such thatµ(wXω) >
r−k/(r − 1). Then,w 6∈ Ui , for any i ≥ k. Start the computable enumeration of
the universal Martin-Löf test and wait until for eachi < k some element(vi , i) of
the Martin-Löf test has been enumerated such thatwv vi or vi v w. If one of the
vi is equal tow, then the answer affirmative; otherwise, the answer negative.

First we show that the algorithm will stop after finitely many steps. Note that set of non-
random elements is dense. Hence,wXω contains some non-random sequencez. Since the
Martin-Löf test is assumed to be universal, the setUi must contain a prefix ofz, for everyi.
Hence, the algorithm will stop after finitely many steps.

Secondly, we show that the algorithm always gives the correct answer. The affirmative
answer is certainly correct when it is given. The negative answer is correct when it is given,
because in that casew cannot be contained in anyUi , for everyi < k sinceUi is prefix-free,
and we have already seen thatw 6∈Ui , for anyi ≥ k. ❏

It should be noted that the space(Xω ,ρU) is induced by the computable setU in spite of
the fact that the universal Martin-Löf testU is not computable.

With reference to the setU in Corollary 13, we recall that in the space(Xω ,ρU) every
random sequencex is an isolated point, whereas Corollary 13 shows that every non-random
sequencex can be topologically approximated by random sequences. This situation parallels
the measure-theoretical one (see also [6, 8, 7, 2]). It is interesting to note that the union of
all null sets is not a null set, but the union of nowhere dense sets in(Xω ,ρU) is a (maximal)
nowhere dense set. So, nowhere dense sets in(Xω ,ρU) are analogous to constructive null sets.
The space(Xω ,ρU) is residual(see [19]) as each nowhere dense set has measure zero.
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We close the paper with a short discussion of the Law of Large Numbers. In [12, 11] it
was proved that the Law of Large Numbers fails to hold true in the sense of category, i.e.
the setLLN of binary sequencesx such that limn→∞(x1 + x2 + . . . + xn)/n = 1/2 is meagre
with respect to the natural topology of the unit interval; a similar situation occurs with the
set of random sequences for the Cantor topology (see Theorems 9 and 11). As every random
sequence satisfies the Law of Large Numbers (see [1, 2]) we obtain:

Corollary 14 The complement of the setLLN is nowhere dense in({0,1}ω ,ρU), that is, the
Law of Large Numbers holds true in the sense of category in the space({0,1}ω ,ρU).
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properties,An. Univ. Bucureşti Mat.-Inf. 2 (1988), 27–32.

[4] G. J. Chaitin.Algorithmic Information Theory, Cambridge University Press, Cam-
bridge, 1987 (3rd printing 1990).

[5] G. J. Chaitin.Exploring Randomness, Springer-Verlag, London, 2001.

[6] P. Gács. Every sequence is reducible to a random one,Inform. and Control70 (1986),
186–192.

[7] P. Hertling. Surjective functions on computably growing Cantor sets,J. UCS3 (1997),
1226–1240.
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