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Abstract

The set of random sequences is large in the sense of measure, but small in the sense
of category. This is the case when we regard the set of infinite sequences over a finite
alphabet as a subset of the usual Cantor space. In this note we will show that the above
result depends on the topology chosen. To this end we will use a relativisation of the
Cantor topology, théJ®-topology introduced in Staiger (1987). This topology is also
metric, but the distance between two sequences does not depend on their longest common
prefix (Cantor metric), but on the number of their common prefixes in a given language
U. The resulting space is complete, but not always compact. We will show how to derive
a computable se) from a universal Martin-Lof test such that the set of non-random
sequences is nowhere dense intHetopology. As a byproduct we obtain a topological



characterization of the set of random sequences. We also show that the Law of Large
Numbers, which fails with respect to the usual topology, is true fottfi¢opology.
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1 Introduction

Algorithmic information theory plays many central roles in theoretical computer science, and,

in particular, in the theory of computation, both in terms of intellectual inspiration and con-
nectivity as well as tool (see, for example, [4, 5, 2]). The aim of this note is to study from

a topological point of view the set of random sequences. This problem is interesting in itself
(because the set of random sequences has constructive Lebesgue mesure one, but it is construc-
tively meagre with respect to Cantor’s topology) and has connections with probability theory
(classically, the Law of Large Numbers fails to hold topologically). Is there any natural topol-
ogy with respect to which the set of random sequences is topologically “large”? We will prove
that a relativisation of the Cantor topology gives a positive answer to the above question (the
set of random sequences is co-nowhere dense) and leads to a topological analogue of Martin-
L6f’s measure-theoretical characterization of random sequences (the role of constructive null
sets is played by nowhere dense sets). Finally, the Law of Large Numbers is topologically true
in this space.

2 Notation

By IN ={0,1,2,...} we denote the set of natural numbers. The cardinality of thé\sst
denoted by car®). Let us fix X an alphabet of cardinality caff) =r > 2, e.g. X =
{0,...,r —1}. By X* we denote the set of finite strings (words) ¥nincluding theempty
stringe. The length of the stringv is denoted byw|. We consider the spac€” of infinite
sequencesaf-words) overX. If X = X;X,...Xy... € X?, thenx(n) = X;X,...X, is the prefix
of lengthn of x. Strings and sequences will be denoted respectively, fayy, ... andx,y,....
Forw,v € X* andx € X let w-v,w-x (simply wy,wx) be the concatenation a¥ andyv,Xx,
respectively. The concatenation product extends naturally to sul'setX* (languages) and
B C X*UX®. By “C” we denote the prefix relation between strings:C v if there is a
V such thatwV = v. The relation t=” is similarly defined forw € X* andx € X®: w C x
if there is a sequencg such thatwx’ = x. The setspref(x) = {w:w e X*,w x} and
pref(B) = UygPref(x) are the languages of prefixes o X® andB C X, respectively.
Finally, wX® = {x € X® : w € pref(x)}.

The unbiased discrete measureXris the probabilistic measut&A) = card(A)/r, for
every subsef of X. It induces the product measunedefined on all Borel subsets &f“.
This measure coincides with the Lebesgue measure on the unit interval, it is computable and
w(wx®) =r=W for everyw e X*. For more details see [9, 10, 2].



3 The Cantor Space

The seiX® is a compact metric space (Cantor space) with the mejfic,y) = inf{ﬁw‘ RS

pref(x) Npref(y)}. For our purposes it is convenient to use the following equivalent metric
(cf. [18, 15]):

p(x)y) = inf{r—\w\ TWE pref(x) N pref(y)} _ rl—card(pref(x)mpref(y)). (1)

The open ball B(y) of radiuse € (0,1] and centery in (X®,p) can be described as
Be(y) = {X:p(y,X) < &} =wy,-X? wherewy, is the unique prefix ofy with length
Wy ¢| = |—log, €] 1. Thus the open sets in the Cantor spex€, p) are sets of the form
WX? = Upew WX?. The setsvX® are both open and closed.

The §-limit of a languagd) C X* is the selU? of all sequences iXX® having infinitely
many prefixes iU, U% = {y € X® : pref(y) NU is infinite}. This notion is useful in obtaining
the following characterization db-sets, i.e. countable intersections of open sets (cf. [18, 14,
15]):

Theorem 1 In the Cantor space, a subsetEX® is a Gs-set iff there is a language & X*
such that F=U?.

4 TheU-?®-topology

A new metric topology orX® has been introduced in [14] in connection with the study of
sequential mappings. In this section we define this topology and relate it to the usual topology
in the Cantor space.

Definition 1 Fix a languag®) C X* and letx,y € X®. Then we define

0, if x=y,
pu(X.y) = p1—card(pref(x)npref(y)nU)  gtherwise.

It is easy to see thay, is a metric; its induced topology ot® will be called theU %_topology

The metricp, resembles, in some sense, the megtrin the Cantor space; in fagh, = py..

In contrast withp, p, counts only those common prefixes>oandy contained ifJ. Further
on, sincep (x,y) > p(X,y), the U®-topology refines the topology of the Cantor space. In
particular, every closed (open) set in the Cantor space is also closed (operlit+tbeology

of X®.

The following result shows when two languadésV induce the same topology ot®;
hence, a great variety of languages induce the same topology (see [14, 15] for examples).

Theorem 2 ([17]) The W-topology and the ¥-topology of X coincide iff U’ =V?.



The open ball i(X®, p,) is given by the formula:

{X}7 If pU (va) Z 87
forall y # X,
Bey(X) = X ife>r,

Wy ¢ - X, otherwise.

Herew, . is the unique prefix ok in U with length cardpref(wy ) N\U) = | —log, €] +-2

The following topological properties qiX®, p,;) will be useful. Recall that a point is
called anaccumulation point of a set F in the metric spge€”,d) provided for eacte > 0
there exists a sequenges F,x # y such thad(x,y) < €. Invoking Definition 1 we obtain:

Corollary 3 A pointx € X is an accumulation point of the whole spge€’, p ) iff xcU 3,

As (X®,p) is a metric space, the smallest closed (with respept,josubset 0iX® con-
tainingF, ¢, (F), is given by the formula

%, (F) =FU{x:x e X® xis an accumulation point df in (X®,p;)}. 2

A point x € F which is not an accumulation point &fis called ansolated pointof F. Thus,
X is an isolated point oK® iff there is ane > 0 such that IB , (x) = {x}. Theset of isolated

pointsof (X®, ;) will be denoted by ||, = X®\ U°.

An arbitrary set of isolated points & is open. In cas&l® = 0, in particular ifU is finite,
every point of(X?, p,) is isolated. Thus, in generdX®, p,,) is a complete metric space, not
necessarily compact (as the Cantor space). More precisely, the(3{fagg, ) is not compact
whenever |, # 0, cf. [17], Theorem 9.

The close relationship between tbé-topology and the topology of the Cantor space is
visible in the case of accumulation points and closed sets.

Theorem 4 ([16, 17])LetU C X*. Thenx € U? is an accumulation point of F iX?, py) iff
X is an accumulation point of F iGiX®, p).

From (2) we obtain:

Corollary 5 Let%(F) = ¢x.(F) be the smallest closed set containing F in the Cantor space.
Then%, ( ( mu5> %(F)N (FuU?).

In particular, every sef containingU? is closed in(X®,py)-

As it was mentioned above, every Set Il of isolated points is an open set(iX®,p, ),
and every set of the forW X® is open in the Cantor space. Consequently, Corollary 5 yields

Corollary 6 A setEC X®is openin(X®,p) iff E =WX®UJ, for some WZ X* and JC Il ;.



Recall that a seft is nowhere densi (X, p; ) if its closure, 4, (F ), does not contain any
non-empty open set, that is4f, (X®\ 4, (F)) = X?; F isdenséf it intersects any non-empty
open set, that is, f&, (F) = X°.

The next result is simple but very useful:
Lemma 7 The setU is the union of all nowhere dense set§Xf, p,).

Proof. We take a nowhere dense $et X® and we show tha C U?. To this aim we prove
that every sequenoec F is inU?: this is true because ¢ U9, then the singleton sék} is
non-empty and open, hence it cannot be nowhere dense, a contradiction. [

Of courselU® may or may not be itself nowhere dense. The next theorem gives a necessary
and sufficient condition fou 9 to be nowhere dense.

Theorem 8 Let U C X*. Then the following conditions are equivalent:

1. The setl, is dense in the Cantor spa¢¥®,p).
2. The setU is nowhere dense itX?, p,, ).

3. The set U is a maximal nowhere dense set.

Proof. For the implication “1= 2" we observe that? is closed in(X®, p). If U% = X\ I,

is not nowhere dense ifX®, p,), then in view of Corollary 6 it contains a non-empty open
set of the formE =WX®UJ, J C ll ;. Due to the inclusiorE C U% we havel = 0, that is,

E =WX®. Since ||, is dense in the Cantor spat¥®,p), we have |, "W X?® # 0 unless
WX® =0, soE = 0, a contradiction.

The implication “2=- 3" follows from Lemma 7.

For “3= 1" we assume thal® is nowhere dense itiX?,p,), hence®(ll,) =
%, (X®\U?%) = X®. According to Corollary 5 we hav¥® = %, (Il ;) = € (Il ;) N (Il , UUY),
hencez (Il ;) = X°.

[

5 AU?%-topology for Random Sequences

There are various equivalent definitions of random sequences, complexity-theoretic (see [4,
5]), measure-theoretic (see [9]), topological; for a proof of their equivalence see [5, 2]. In
what follows we will use the definition based on Martin-L6f tests.

A subsetd C X* x IN is calledMartin-Lof testprovided

1. U is computably enumerable,

2. Viny1 €V, forallm>1,



3. card X"NVpy- X*) <r"™M/(r —1), foralln,m> 1,

whereVim = {ve X*: (vym) € U} is them-th section ofg andX" = {v:v e X*, |v| = n}.

Itis seen thap (V,X?) <r~'/(r—1),foralli >1,solim__ u(V,-X®) =0, constructively,
that is, there exists a computable functidnsuch thatu(V; - X®) < 2=™, for all i > H(m).
Moreover, it is possible to choo&g in such a way that ead¥ is prefix-free, that isy,w € V,
andv C wimply v=w (cf. [13], Corollary 4.10).

A Martin-Lof testil is calleduniversalif for every Martin-Lof testl there exists a constant
¢ > 0 (depending upofil and®¥) such tha,,,, . € U, for all m> 1. In [9] Martin-L6f has
proved the existence of universal Martin-Lof tests (see also [2}}.i¢fa universal Martin-Lof
test, therm; . Vi - X? € Nien Y - X

The set of random sequenceand, is defined asand = X\ ;. U; - X, whereil is a
universal Martin-Lo6f test. Of course, the definition does not depend upon the chaice of

A setSC X? is constructive nulif there exists a computably enumerable ¥et X* x
IN such thatSC N1 Am- X2, (Am is them-th section ofl), and limy e L (Am- X?) =0,
constructively.

The following result follows immediately from the existence of the universal Martin-Lof
test:

Theorem 9 ([9]) The set X \ rand equals the union of all constructive null sets, hence itis a
maximal constructive null set.

From Theorem 9 it follows thaX® \ rand is a constructive null set, s@nd is large in the
sense of measure:

Corollary 10 ([9]) The setrand has constructiver measure one.

However, in the Cantor space, the sahd is small in the sense of category ([3, 2]). A set
SC X% is constructively meagrin the Cantor set if there exist a computably enumerable set
2A C X* x IN and a computable functiof: X* x IN — X* such thatSC (Jy_1 X® \ Am- X,

for allm> 1, and for every # ewe havev C f(v,m) andf(v,m) € An.

Theorem 11 ([3]) The setand is constructively meagre in the Cantor space.

Next we will explore similarities between Theorem 8 (see also Lemma 7) and Theorem 9.
First, we obtain a topological characterization of random sequences:

Theorem 12 Let 4 be a universal Martin-L6f test and assume that every sectidi of =
{u: (u,i) € U}, is prefix-free. Then

rand = X\ (UielN Ui) 3 (3)



Proof. If x € rand, thenx ¢ U; - X®, for almost alli € IN (asU,,,, ; € Up). Since allU; are
prefix-free,pref(x) N (U Y;) is finite.

Conversely, letx ¢ rand, that is, x € NigyVY; - X?. From the inequality
u(U; - X?) <r='/(r —1) we deduce that the minimum string lengthip min{|u| : u € U;},
tends to infinity as — oo. Thusx has infinitely many prefixes ig); . U;- [

From the well-known fact thatand is dense in the Cantor space (see [2]) and Theorem 8
we obtain:

Corollary 13 Letil be a universal Martin-L6f test and assume that eagh-u: (u,i) € U}
is prefix-free. DefindJ = (J;.U;. Then the set) is computable and X\ rand is nowhere
dense in the spad&X®, p,).

Proof. We need to prove only the computability of To this aim we fix an arbitrary
universal Martin-Lof test such that each sectldnis prefix-free. Furthermore, let us fix a
computable enumeration of this Martin-L6f test. lWlétbe defined as in Corollary 13. A
decision algorithm fotJ works as follows:

Given a stringw, let k be the smallest positive integer such thgtwX®) >
r=%/(r —1). Then,w ¢ U,, for anyi > k. Start the computable enumeration of
the universal Martin-Lof test and wait until for eack: k some elementv;, i) of
the Martin-Lof test has been enumerated suchwhatv, orv; C w. If one of the
v; is equal tow, then the answer affirmative; otherwise, the answer negative.

First we show that the algorithm will stop after finitely many steps. Note that set of non-
random elements is dense. Hene&X® contains some non-random sequerceSince the
Martin-Lof test is assumed to be universal, theldemust contain a prefix of, for everyi.
Hence, the algorithm will stop after finitely many steps.

Secondly, we show that the algorithm always gives the correct answer. The affirmative
answer is certainly correct when it is given. The negative answer is correct when it is given,
because in that case cannot be contained in aty, for everyi < k sinceU, is prefix-free,
and we have already seen thag U;, for anyi > k. O

It should be noted that the spag¢®, p;) is induced by the computable détin spite of
the fact that the universal Martin-Lo6f tedtis not computable.

With reference to the sed in Corollary 13, we recall that in the spa¢¥®,p ) every
random sequenceis an isolated point, whereas Corollary 13 shows that every non-random
sequence can be topologically approximated by random sequences. This situation parallels
the measure-theoretical one (see also [6, 8, 7, 2]). It is interesting to note that the union of
all null sets is not a null set, but the union of nowhere dense sg¥%9np,;) is a (maximal)
nowhere dense set. So, nowhere dense s¢k‘np,;) are analogous to constructive null sets.
The spacéX®, p,,) is residual(see [19]) as each nowhere dense set has measure zero.



We close the paper with a short discussion of the Law of Large Numbers. In [12, 11] it
was proved that the Law of Large Numbers fails to hold true in the sense of category, i.e.
the setLLN of binary sequences such that lim_.(X; + X, + ... +Xn)/n = 1/2 is meagre
with respect to the natural topology of the unit interval; a similar situation occurs with the
set of random sequences for the Cantor topology (see Theorems 9 and 11). As every random
sequence satisfies the Law of Large Numbers (see [1, 2]) we obtain:

Corollary 14 The complement of the SeitN is nowhere dense i({0,1}“,p,), that is, the
Law of Large Numbers holds true in the sense of category in the Sgack®,p,,).
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