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Weighted finite automata are used to describe fractal images(cf. [CD93] CK93]). In particular,
they play some réle in the computation of the contraction coefficients for so-called Multiple
Recursive Function Systems (MRFS are a combinations of finite automata with iterated func-
tion systems). This is explained in more detaillin JTES01].

Here in a finite automatow/ = (X, (0,),Z,7,, f,g) with output monoid((0,), ) to each
transition the contraction coefficient of the mappipgcorresponding to the input lettgre X

is assigned. The resulting outps, w) is an upper bound to the contraction coefficient of the
mMapping@w := @x, ©---0 Py, (W= Xy -+ X,).

In case the contraction coefficients@f for w — & € X® converge to zero the corresponding
MRFS “draws a point fo£ € X®”. The set of all suctt can be described topologically by a
suitable topology (depending on the automéaiofef. [ESTO1]).

Another kind of topology oiX® are thaJ-d-topologies introduced in[St87] (cf. also[DN92]).
Here the distance between twswords&, 1 € X depends of the number of their common
prefixes in the given language C X?.

In the present pager we give a relationship between both topologies. It turns out that every
automaton-definable topology idJad-topology for a suitablé) C X*.

An construction fold C X* from a given automaton is described. Conversely, we derive a
property of automaton-definable topologies which proves that not &leitopology can be
defined by a weighted automata. A last result shows that for every regular languagé€'

the correspondiny -d-topology is definable by a WFA.

1 Notation and Preliminaries

By IN ={0,1,2,...} we denote the set of natural numbers. Xdie our alphabet of cardinality
IX|=r,reiN,r>2.

By X* we denote the set of finite strings (words)Xyincluding theemptyworde. We consider
the spac&X? of infinite sequencesf-words) overX. Forw € X* andn € X*UX® letw-n be
their concatenationThis concatenation product extends in an obvious way to subsetX*
andB C X*UX®,

We will refer to subsets ok* andX® as languages an-languages, respectively.

By “C” we denote the prefix relation, that is; = 7 if and only if there is am’ such that
w-n'=n,andA(n) ={w:weX*AwLC n}andA(B) := UnesA(B) are the languages of
finite prefixes om andB, respectively.

In the study ofw-languages it is useful to consid&f’ as a metric space (Cantor space) with
the following metric (cf. [Th90,-St97])

p(1n,&) =inf{r™M:wcnawre &} = r-AMNAG (1)
Then(X®, p) is a compact metric space. The open ballg & of radiuse € (0, 1] with center
& in (X?,p) can be described asdB) ={n:p(&,n) <e} = ngg-xa’ Wherewé6 eA(&)

and |W§7£| = |—log, €| +1. Thus open sets in Cantor spac€®,p) are sets of the form
W - X = Upew W- X?®. As usually, closed sets are complements of open sets.

Countable intersections of open sets are knowiGgssets. In Cantor space, we have the
following characterization o6 s-sets (cf. [Th90,_Si87,-S197]).

We define for a languade C X* its §-limit, U?, as the set consisting of all infinite words in
X® having infinitely many prefixes ib,

U® = {£ eX?:|A(§)NU| = o}.
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Theorem 1 In Cantor space, a subset € X® is a G;-set if and only if there is a language
U C X* such that F= U9,

For more background on metric topology see €.0-TKu66].

2 TheU-¢o-topology in X?

The paper([St87] considered another metric topologX8nwhich turned out to be useful in
connection with the study of sequential mappings. In this section we derive some fundamental
properties of this topology and relate it to the usual topology in Cantor space.

Definition 1 For a language UC X* and&, n € X® we set

o Jifn=¢&
pu(n, &)= {rllA(n)ﬁA(é)ﬁU , otherwise.

This metric, in some sense, resembles the mpticCantor space; in fach, = py.. Moreover,
sincepy (§,1n) > p(&,7n), theU-6-topology refines the topology of the Cantor space. In
particular, every closed (or open) set in Cantor space is also closed (or open, resp.) in the
U-6-topology ofX®.

The open balls ifX®, p,) are given as follows

{;&w} Jfvn(n# 8 —py(§,n) > ¢€),

,ife>r,and
W, S-X“’ , otherwise.

IBgU(g) =

)

Herew, , is defined bywég eA(&)NU and]A(w§78) NU| = |—log, €| + 2.

The following topological properties ¢X“, p,) are useful for our considerations. A poit
is called araccumulation point of providedve(e >0—3n(n e FAn #EApy(E,n) <¢)).
The following is an easy consequence of Definifipn 1.

Corollary 2 A pointé € X® is an accumulation point of the whole spge€’, p, ) if and only
if & cU?.

As (X?®,p,) is a metric space, the smallest closed (with respegtsubset o)X containing
F, ¢, (F), satisfies

%, (F)=FU{&:& e X?A¢ is an accumulation point df in (X?,p;)}. (2)

A point & € ¢, (F) which is not an accumulation point &f is called anisolated pointof F.
Thus,& is an isolated point oK< iff there is ane > 0 such that B, (§) = {&}. Theset of
isolated pointof (X, p,) is referred to as || := X\ U°?.

It should be mentioned that an arbitrary set of isolated poin¥“bis open.

In caseU?® = 0, every point of(X?®,p,) is isolated. Thus, in contrast to the compactness of
the Cantor space, in general, we have only the following.

Theorem 3 (X?,p,) is a complete metric space.

The close relationship betweého-topology and the topology of the Cantor space is docu-
mented in the following case of accumulation points.
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Theorem 4 Let U C X*. Thené € U? is an accumulation point of F ifiX®, p,) if and only
if £ is an accumulation point of F i(iX?®, p).

Proof. Let& be an accumulation point & in (X®,p,). Then for everyn € IN there is an
nMh € F\{&} suchthap (&,nn) <r". Sincep(§,nn) < py(&,1n), § is also an accumulation
point of F in Cantor space.

In order to prove the converse considee U%. Then the function;r5 :A(&) — IN defined by
Ve (w) := |A(w)NU| is monotone and surjective and satisfigg&,n) < 1% whenever

weA(E)NAM).

Let £ be an accumulation point d¥ in Cantor space, that is, for everye IN there is an

NMn € F\ {&} such thatp(§,mn) < r~". Then there is a wordy, € A(§) NA(nn) such that

Wn| > n. By constructionp,, (€, 1) < r* ¥ (Wn),

Since the function//a3 is monotone and surjective, lim«py(&,nn) =0, andé is also an
accumulation point oF in U-6-topology. O

From Eqg. [R) we obtain immediately the following relation between closed sets in Cantor space
and inU-46-topology.

Corollary 5 Let € (F) := éx-(F) be the smallest closed set containing F in Cantor space.
Then®,, (F) = FU (CK(F) muﬁ) —¢(F)n(FUU?).

As a consequence we obtain Corollary 5.2[0f [St01].

Corollary 6 Every set F2 U? is closed in(X?, p,, ).

It was mentioned above, every skt Il , of isolated points is an open set({X®,p,), and
every set of the formiV- X® is open in Cantor space. Then Coroll@ry 5 yields

Corollary 7 E C X? is open in(X®,p,) iff E =W -X?UJ for some WC X* and JC Il ;.

The following theorem provides a simple condition when two langublg®sinduce the same
topology onX®.

Theorem 8 If U9 =V then the Ué-topology and the \8-topology of X coincide, that is,
{E:EisopeninX®,p,)} ={E:EisopeninX®,p,)}.
If U® £ V9 then the U§-topology and the \B-topology of X° do not coincide.

Proof. The first assertion is immediate from Coroll@ly 7, and the second one follows from the
fact that{£} is open in(X®, p,) and not open ifX?, p,,) wheneveié €V \U?. O

According to Theorem] 8 one has a great variety of languages inducing the same topology. In
[St87] and [ST97, Section 1.4] the possibilities, depending oruth@nguagédJ?, of defining
theU-6-topology via languageg having special properties, e.g.s=V - X* orV = A(V),

are considered.

We conclude this section with showing that the sp@€®, p,, ) is not compact unledsd = X@.

To this end we recall that a complete metric spa2é, d) is compaciff every family of open
sets{E; :i € | } which coversZ’, that is,l ;. E; = Z", contains a finite subfamilyE; :i € 1’}

which also covers?” (e.g. [KU66]).

Theorem 9 The spacg¢X®, p,) is compact if and only if ¥ =Xxo,
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Proof. If U9 = X® then Theoren|8 shows that the topologyust = X® coincides with the

topology of the Cantor space, thug}®, p,) is compact.

AssumeU? # X®, that is, there is & € Il ;. Then{£} is open in(X?,p,). Consider

the Ianguagd_é ={wx:weA(&)Axe XAwx¢ A(E)}. L, is infinite and the family
={E:E={{}VE =v-X®forsomev e Lé} is an infinite family of pairwise disjoint

non-empty open sets covering the whole space. ngsannot contain a proper subfamily

coveringX®. O

3 Metrics on X? Defined by Weighted Finite Automata

Another way to describe non-standard metricsx¢his to use weighted finite automata as-
signing to an input word a positive real number. InJCK94, DK94] this behaviour led to the
computation of real functions. Following the ideasof [ES01] we use weighted finite automata
to generate metrics oX®.

We consider weighted finite automata of the following kind.

Definition 2 A (deterministic) weighted finite automaton (WFA} a tuple o =
(X,(0,0),Z,7,, f,g) where XZ are finite nonempty sets of input letters and states, resp.,
z, € Z is the initial state, f. Z x X — Z is the transition function and gZ x X — (0, )

is the output function.

As usual we extend the state transition and output functions to the da@mnaifi* via

f(ze) = e | f(zwx) = f(f(zw),x),
d(ze) = 1 and g(zzwx) = g(zw)-9(f(zw),x),

where ‘g(z,w) - g(f(z,w),x)” is the usual multiplication of real numbers.

As it was explained in[[ESD1] for valuations, the output functggields a metric inX®
defined by«:

Definition 3 Let.«/ be a weighted finite automaton. Define

Em:={?2 fe=m
Pars: 1= inf{g(z,,w) :we A(E)NA()} ,iFE#7.
Lemma 10 If </ is a deterministic weighted finite automaton thep is a metric on X.

Proof.  Obviously the functiorp , is nonnegative, symmetric in its arguments and van-
ishes to zero only if the arguments coincide. Finagtly, satisfies the ultra-metric inequality
p.,(&.m) <maxp_ (& C).p,(n,C)} becausd (&) NA(n) contains at least one of the sets

A(G)NA(E) orA(n) NA(E). 0

Next we are going to show that every topology Xfi defined by a WFA is equivalent to a
suitably choselJ-5-topology.

Theorem 11 For every WFA< there are a ke IN and a language UC X* such that
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Proof. Define the languagd C X* via
weU = In(neINAQ(Zy,W) <1 "AW(KVE W— g(Zy,V) >1 ).

To everyw € U we assign the valua(w) := max{n: g(z,,w) <r~"}. Thusn(e) = 0 and
u,weU, uc w, imply n(u) < n(w). Then|A(v)NU| < m+1 yields mif{g(z,,V):V C
v} <min{r "W :we A(v)nU} <r ™ Letting A(v) = A(E)NA(n), this proves the first
inequality.

Now, choosek € IN such thatX > max{g(z,,w)/g(zy,Wx) : w € X* Ax € X}. We are going to
show that for wordsl,w € U such thav ¢ U for all v, u_ vC w, the inequalityn(w) —n(u) <k
holds true.

Let n(u) = mandn(w) = n. Sinceg(zy,u) > r~(M™b andv ¢ U forv, uc vC w, we have
9(zy,V) > r~ (™ for all v  w.

This holds, in particular, for the wordV — w with |w| = |w| — 1. Thus rk >
9(29,W)/9(zg, W) > r= (™D /r=n whencek > n—m.

Observe that, by definition, the empty woed= U andg(z,,e) = 1= r® and assume that
A(v)NU| =m+1. LetA(v)NnU = {ew,,...,Wn} WhereeC w; C ... C Wm. Applying
repeatediyn(w;) — n(w,_,;) <k (w, := €) one obtains(wm) < k-m.

As Wn, is the longest word i\ (v) "U, eachv’ C v satisfies - g(z),V') > 9(%,,wm) and, since
N(Wm) < k-mwe haveg(z, Wm) > r—*™1. Consequently, mifg(z,,v') : vV C v} > r=km,
Again lettingA(v) = A(§) NA(n), this proves the second inequality. O
As limp_wpy(én, &) =0 iff limp_wp ,(&n, &) = O our Theorenj 11 shows that a sequence

(&n)nen CONVerges to a limi€ with respect to the metrip , if and only if it does so with
respect tg,. Thus we obtain the following.

Corollary 12 If U is defined as in Theorem]11 then the WFA-topology defined land the
U-topology coincide.

So far we have shown that every topology defined by a WFA is definabléJas-sopology

for a suitable languadé C X*. Next we are going to show that the converse is not the case. To
this end letUlt := {w-v® :w,v € X*} be thew-language of alultimately periodicw-words

As for languages, by ll, we denote the set of isolated points of the space,p_,).

Proposition 13 If Il , © Ult for some WFA¢ thenll , = X©.

Proof. Assumed ¢ Il ,. Then Iimin(NHé 9(Z,,w) = 0. Since« is a finite automaton there is
an infinite family (w; ); ., of prefixes off such that lim , , g(z),w;) = 0 andf(z),w;) = zfor
somez € Z. Choosew, andw; in such a way thaw; C w; andg(z,, ;) > 9g(Z, w;). Define
v € X* by the identityw; - v=w;. Theng(z,v) = g(z),w;)/9(zp, W;) < 1.

Hence, lim_ ., g(z,, W, - V') = 0, and thew-wordw; - v € Ult does not belong to J}. O

The next proposition gives the announced example.

Proposition 14 There is a language & X* such thatll, = Ult but there is no WFAz such
thatll , = Ult.

Proof. The w-languageUlt is countable, and every subgetC X® having a countable
complement is & ;-set. According to Theoreﬂl 1 there is a langullge X* such thatJ® =
X\ Ult.

Propositior] I3 proves that Jl = Ult is impossible. [

Next, we exhibit a class of languages for which th&-topology is definable by a WFA.
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Proposition 15 If U C X*\ {e} is a language accepted by a finite automaton then there is a
WFA .27 such thatpo, = p_,.

Proof. Let# = (X,Z,z,,f,Z,,,) be afinite automaton acceptibg thatis,U = {w:we X*A
f(zy,w) € Z;;,)}- Sete .= (X,Z,(0,2),2,, f,g) where the output functiog: Z x X — (0, )
is defined as follows .
_ Jr— L if f(zx) € Z;, and
9(zx): { 1, otherwise.

Itis easy to see thaf(z,,w) = r~{Ve=VewveUll This proves our assertion. O
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