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Abstract

An approach to the solution of NP-complete problems based on quantum com-
puting and chaotic dynamics is proposed. We consider the satisfiability problem
and argue that the problem, in principle, can be solved in polynomial time if we
combine the quantum computer with the chaotic dynamics amplifier based on the
logistic map.
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1 Introduction

There are important problems such as the knapsack problem, the traveling salesman
problem, the integer programming problem, the subgraph isomorphism problem, the
satisfiability problem that have been studied for decades and for which all known algo-
rithms have a running time that is exponential in the length of the input. These five
problems and many other problems belong to the set of NP-complete problems. Any
problem that can be solved in polynomial time on a nondeterministic Turing machine is
polynomially transformed to an NP-complete problem [1].

Many NP-complete problems have been identified, and it seems that such problems
are very difficult and probably exponential. If so, solutions are still needed, and in this
paper we consider an approach to these problems based on quantum computers and
chaotic dynamics.

It is widely believed that quantum computers are more efficient than classical com-
puters. In particular Shor [2] gave a remarkable quantum polynomial-time algorithm for
the factoring problem. However, it is unknown whether this problem is NP-complete.

The computational power of quantum computers has been explored in a number of
papers. Bernstein and Vasirani [3] proved that BPP⊆BQP⊆ PSPACE. Here BPP
stands for the class of problems efficiently solvable in the classical sense, i.e., the class of
problems that can be solved in polynomial time by probabilistic Turing machines with
error probability bounded by 1/3 for all inputs. The quantum analogue of the class BPP
is the class BQP which is the class of languages that can be solved in polynomial time
by quantum Turing machines with error probability bounded by 1/3 for all inputs.

The question whether NP⊆BQP, i.e., can quantum computers solve NP-complete
problems in polynomial time, was considered in [4]. It was proved in [4] that relative
to an oracle chosen uniformly at random, with probability 1, the class NP can not be
solved on a quantum Turing machine in time o

(
2n/2

)
. An oracle is a special subroutine

call whose invocation only costs a unit time. This result does not rule out the possibility
that NP⊆BQP but it does establish that there is no black-box approach to solving
NP-complete problems in polynomial time on quantum Turing machines.

In this paper we suggest a new model of computations which combine quantum
and classical machines. We would like to mention that above described results are not
immediately applicable to the quantum chaos computer which we consider in this paper
(see more discussion in Sect.3).

For a recent discussion of computational complexity in quantum computing see [5,
6, 7]. Mathematical features of quantum computing and quantum information theory
are summarized in [8]. A possibility to exploit nonlinear quantum mechanics so that the
class of problems NP may be solved in polynomial time has been considered by Abrams
and Lloyd in [9]. It is mentioned in [9] that such nonlinearity is purely hypothetical; all
known experiments confirm the linearity of quantum mechanics.

The satisfiability problem (SAT), which is NP-complete problem, has been considered
in quantum computing in [10]. It was shown in [10] that the SAT problem can be solved
in polynomial time by using a quantum computer under the assumption that a special
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superposition of two orthogonal vectors can be physically detected . The problem one
has to overcome here is that the output of computations could be a very small number
and one needs to amplify it to a reasonable large quantity.

In this paper we propose that chaotic dynamics plays a constructive role in computa-
tions. Chaos and quantum decoherence are considered normally as the degrading effects
which lead to an unwelcome increase of the error rate with the input size. However, in
this paper we argue that under some circumstances chaos can play a constructive role
in computer science. In particular we propose to combine quantum computer with the
chaotic dynamics amplifier. We will argue, by using the consideration from [10], that
such a quantum chaos computer can solve the SAT problem in polynomial time.

2 SAT Problem

Let {x1, · · · , xn} be a set of Boolean variables, xi = 0 or 1. Then the set of the Boolean
variables {x1, x1, · · · , xn, xn} with or without complementation is called the set of literals.
A formula, which is the product (AND) of disjunctions (OR) of literals is said to be in
the product of sums (POS) form. For example, the formula

(x1 ∨ x2) (x1) (x2 ∨ x3)

is in POS form. The disjunctions (x1 ∨ x2) , (x1) , (x2 ∨ x3) here are called clauses. A
formula in POS form is said to be satisfiable if there is an assignment of values to
variables so that the formula has value 1. The preceding formula is satisfiable when
x1 = 0, x2 = 0, x3 = 0.

Definition (SAT Problem). The satisfiability problem (SAT) is to determine whether
or not a formula in POS form is satisfiable.

The following analytical formulation of SAT problem is useful. We define a family of
Boolean polynomials fα, indexed by the following data. One α is a set

α = {S1, ..., SN , T1, ..., TN} ,

where Si, Ti ⊆ {1, ..., n} , and fα is defined as

fα(x1, · · · , xn) =
N∏

i=1

(
1 +

∏
a∈Si

(1 + xa)
∏
b∈Ti

xb

)
.

We assume here the addition modulo 2. The SAT problem now is to determine
whether or not there exists a value of x = (x1, · · · , xn) such that fα(x) = 1.

3 Quantum Algorithm

We will work in the (n+ 1)-tuple tensor product Hilbert space H ≡ ⊗n+1
1 C2 with the

computational basis
|x1, ..., xn, y〉 = ⊗n

i=1 |xi〉 ⊗ |y〉
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where x1, ..., xn, y = 0 or 1. We denote |x1, ..., xn, y〉 = |x, y〉 . The quantum version of
the function f(x) = fα(x) is given by the unitary operator Uf |x, y〉 = |x, y + f(x)〉 . We
assume that the unitary matrix Uf can be build in polynomial time, see [10]. Now let
us use the usual quantum algorithm:

(i) By using the Fourier transform produce from |0,0〉 the superposition

|v〉 =
1√
2n

∑
x

|x, 0〉 .

(ii) Use the unitary matrix Uf to calculate f(x) :

|vf〉 = Uf |v〉 =
1√
2n

∑
x

|x, f(x)〉

Now if we measure the last qubit, i.e., apply the projector P = I ⊗ |1〉 〈1| to the state
|vf〉 , then the probability to find the result f(x) = 1 is ‖P |vf〉‖2 = r/2n where r is
the number of roots of the equation f(x) = 1. If r is suitably large to detect it, then
the SAT problem is solved in polynominal time. However, for small r, the probability is
very small and this means we in fact don’t get an information about the existence of the
solution of the equation f(x) = 1, so that in such a case we need further deliberation.

Let us simplify our notations. After the step (ii) the quantum computer will be in
the state

|vf〉 =
√

1− q2 |ϕ0〉 ⊗ |0〉+ q |ϕ1〉 ⊗ |1〉

where |ϕ1〉 and |ϕ0〉 are normalized n qubit states and q =
√
r/2n. Effectively our

problem is reduced to the following 1 qubit problem. We have the state

|ψ〉 =
√

1− q2 |0〉+ q |1〉

and we want to distinguish between the cases q = 0 and q > 0 (small positive number).

It is argued in [4] that a quantum computer can speed-up NP problems quadratically
but not exponentially. The no-go theorem states that if the inner product of two quan-
tum states is close to 1, then the probability that a measurement distinguishes which
one of the two is exponentially small. And one could claim that amplification of this
distinguishability is not possible.

At this point we emphasize that we do not propose to make a measurement which
will be overwhelmingly likely to fail. Instead we propose to use the output I |ψ〉 of the
quantum computer as an input for another device which uses chaotic dynamics.

The amplification would be not possible if we use the standard model of quantum
computation with a unitary evolution. However the idea of our paper is different. We
propose to combine a quantum computer with a chaotic dynamics amplifier. Such a
quantum chaos computer is a new model of computation and we demonstrate that the
amplification is possible in polynomial time.

One could object that we don‘t suggest a practical realization of the new model of
computations. But at the moment nobody knows of how to make a practically useful
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implementation of the standard model of quantum computing ever. Quantum circuit or
quantum Turing machine is a mathematical model though convincing one. It seems to
us that the quantum chaos computer considered in this paper deserves an investigation
and has a potential to be realizable.

In this paper we consider only the mathematical model of computations. A possible
specific physical implementation of quantum chaos computations will be discussed in a
separate paper [13] based on the recently proposed atomic quantum computer.

This paper is a refined version of our previous paper [12].

4 Chaotic Dynamics

Various aspects of classical and quantum chaos have been the subject of numerious
studies, see [14] and ref’s therein.The investigation of quantum chaos by using quantum
computers has been proposed in [15, 16, 17]. Here we will argue that chaos can play a
constructive role in computations.

Chaotic behaviour in a classical system usually is considered as an exponential sen-
sitivity to initial conditions. It is this sensitivity we would like to use to distinquish
between the cases q = 0 and q > 0 from the previous section.

Consider the so called logistic map which is given by the equation

xn+1 = axn(1− xn) ≡ f(x), xn ∈ [0, 1] .

The properties of the map depend on the parameter a. If we take, for example, a = 3.71,
then the Lyapunov exponent is positive, the trajectory is very sensitive to the initial
value and one has the chaotic behaviour [14]. It is important to notice that if the initial
value x0 = 0, then xn = 0 for all n.

It is known [18] that any classical algorithm can be implemented on quantum com-
puter. Our quantum chaos computer consists of two blocks. One block is the ordinary
quantum computer performing computations with the output |ψ〉 =

√
1− q2 |0〉+ q |1〉.

The second block is a computer performing computations of the classical logistic map.
This two blocks should be connected in such a way that the state |ψ〉 is transformed into
the density matrix of the form

ρ = q2P1 +
(
1− q2

)
P0

where P1 and P0 are projectors to the state vectors |1〉 and |0〉 . This connection is in fact
nontrivial and actually it should be considered as the third block. One has to notice that
P1 and P0 generate an Abelian algebra which can be considered as a classical system. In
the second block the density matrix ρ above is interpreted as the initial data ρ0, and we
apply the logistic map as

ρm =
(I + fm(ρ0)σ3)

2

where I is the identity matrix and σ3 is the z-component of Pauli matrix on C2. To find
a proper value m we finally measure the value of σ3 in the state ρm such that
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Mm ≡ trρmσ3.

After a simple computation we obtain

ρm =
(I + fm(q2)σ3)

2
, and Mm = fm(q2).

Thus the question is whether we can find an m in polynomially many steps of n satisfying
the inequality Mm = 1

2
for very small but non-zero q2. Here we have to remark that if

one has q = 0 then ρ0 = P0 and we obtain Mm = 0 for all m. If q 6= 0, the stochastic
dynamics leads to the amplification of the small magnitude q in such a way that it can
be detected as is explained below. The transition from ρ0 to ρm is nonlinear and can
be considered as a classical evolution because our algebra generated by P0 and P1 is
Abelian. The amplification can be done within atmost 2n steps due to the following
propositions. Since fm(q2) is xm of the logistic map xm+1 = f(xm) with x0 = q2, we use
the notation xm in the logistic map for simplicity.

Proposition 1 For the logistic map xn+1 = axn (1− xn) with a ∈ [0, 4] and x0 ∈ [0, 1] ,
let x0 be 1

2n and a set J be {0, 1, 2, · · · , n, · · · , 2n} . If a is 3.71, then there exists an
integer m in J satisfying xm > 1

2
.

Proof: Suppose that there does not exist such m in J. Then xm ≤ 1
2

for any m ∈ J.
The inequality xm ≤ 1

2
implies

xm = 3.71(1− xm−1)xm−1 ≥
3.71

2
xm−1.

Thus we have

1

2
≥ xm ≥ 3.71

2
xm−1 ≥ · · · ≥

(
3.71

2

)m

x0 =

(
3.71

2

)m
1

2n
,

from which we get

2n+m−1 ≥ (3.71)m .

According to the above inequality, we obtain

m ≤ n− 1

log2 3.71− 1
.

Since log2 3.71 + 1.8912, we have

m ≤ n− 1

log2 3.71− 1
<

5

4
(n− 1) ,

which is definitely less than 2n− 1 and it is contradictory to the statement “xm ≤ 1
2

for
any m ∈ J”. Thus there exists m in J satisfying xm > 1

2
. �
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Proposition 2 Let a and n be the same in the above proposition. If there exists m0 in
J such that xm0 >

1
2
, then m0 >

n−1
log2 3.71

.

Proof: Since 0 ≤ xm ≤ 1, we have

xm = 3.71(1− xm−1)xm−1 ≤ 3.71xm−1,

which reduces to
xm ≤ (3.71)m x0.

For m0 in J satisfying xm0 >
1
2

, it holds

x0 ≥
1

(3.71)m0
xm0 >

1

2× (3.71)m0
.

It follows that from x0 = 1
2n

log2 2× (3.71)m0 > n,

which implies

m0 >
n− 1

log2 3.71
. �

According to these propositions, it is enough to check the value xm (Mm) around the
above m0 when q is 1

2n for a large n. More generally, when q= k
2n with some integer k, it

is similarly checked that the value xm (Mm) becomes over 1
2

within at most 2n steps.

One can think about various possible implementations of the idea of using chaotic
dynamics for computations, about which we will discuss how one can realize nonlinear
quantum gates on an atomic quantum computer in [13].

Finally we show in Fig.1 how we can easily amplify the small q in several steps.

5 Conclusion

The complexity of the quantum algprithm for the SAT problem has been considered in
[10] where it was shown that one can build the unitary matrix Uf in the polynomial time.
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We have also to consider the number of steps in the classical algorithm for the logistic
map performed on quantum computer. It is the probabilistic part of the construction
and one has to repeat computations several times to be able to distingish the cases q = 0
and q > 0. Thus it seems that the quantum chaos computer can solve the SAT problem
in polynominal time.

In conclusion, in this paper the quantum chaos computer is proposed. It combines
the ordinary quantum computer with quantum chaotic dynamics amplifier. We argued
that such a device can be powerful enough to solve the NP-complete problems in the
polynomial time.
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