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ABSTRACT

Increasingly, the design of computer networks and multi-processor con-
figurations are now considered critical applications of computer science.
Communication supported by network design between different nodes
are important for many applications. There are some constraints in net-
work design which usually created by economic and physical limitations.
One constraint is the bounded degree, which is the limited number of
connections between one node to others. Another possible constraint is
a bound on the time that a message can afford to take during a “broad-
cast”. The topic of this thesis will apply group theory, already used
in network design, to design bounded-degree communication-efficient
directed networks. We present, for the first time, the largest-known di-
rected networks satisfied special bounds on node degree and broadcast
time. The thesis also presents a family of optimal (A, A+1) broadcast
digraphs. That is, digraphs with a proven maximum number of nodes,
having degree A and broadcast time at most A+1.
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Chapter 1

Introduction

In this thesis, the topic that we study is the construction of directed networks with
order as large as possible for a given maximum node degree and broadcast time by

exploring uses of group theory.

The development of the recent technology for applications demand an efficient
topological design of the network. Some fundamental design problems related with the
topology of networks have been widely studied. The techniques developed from those
studies provides the best-known constructions for those network design problems.

Some examples will be given in the next section.

One of those design problems is the study of network construction under the
constraint of a bound on the maximum node degree imposed by economic and physical
limitations. The constraint gives a limited number of physical connections with other
nodes to each node in the interconnected network. A lot of research has been done
recently on the design of networks with the largest order satisfying that constraint
(see [CF95, CM96, D91, D98, DPW98]).

An important feature characterizing the “quality” of an interconnection network
for parallel computing is the ability to effectively disseminate the information among
its processors [D92]. One of main problems of information dissemination is broadcast-
ing, which is the process of sending a message originating at one node of a network to
all other nodes. There exists two kinds of network connection models: point-to-point
model and multi-cast model. The minimum time of broadcasting in the interconnec-
tion network for those two different models may not be the same. With these two
connection models, two different basic design sub-problems occur from the original

problem satisfying the constraint of bounded node degree.



Those two basic design problems have been given the several best-known con-
structions, which we describe as follows. We view any interconnection network as a
connected undirected graph, where the vertices in the graph correspond to the pro-
cessors and the edges correspond to the physical links of the network. A good survey

paper [D98] has discussed these two problems.
1.The Degree/Diameter Problem.

The Degree/Diameter problem is the problem of the design of the network with
largest possible order satisfying the bounds on node degree and the diameter. In
this problem, the network connection model we consider is the multi-cast connection
model. That is, each node can communicate with all of its neighbor nodes in one
time step. For example, a node can forward the message it received to all nodes
simultaneously. The diameter is the maximum time delay for broadcasting a message

throughout the whole network under this model.

Fig 1.1(a) shows a broadcasting scheme in a simple graph for the multi-cast con-
nection model. If A is the origin node to broadcast, node G will receive the message
originated from A at lest 3 time steps. Then we can find that for any node which is
the origin node to send the message, the time delay for flowing the message through

the whole network is the same. So the diameter is 3.
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Figure 1.1: A comparison between (a) diameter and (b) broadcast time for a simple
graph (order is 7).

2.The Degree/Broadcast-Time Problem.



The Degree/Broadcast-Time problem provides the construction of network with
largest possible order satisfying the bounds on node degree and maximum broadcast
time. In this problem, the network connection model we consider is point-to-point
connection model. That is each mode communicate with just one of its neighbor nodes
at one time step. Here, the broadcast time is the maximum time for disseminate a
message throughout the whole network under that model. A good survey paper about
broadcasting problem is [HKMP96].

Fig 1.1(b) shows a broadcasting scheme in a simple graph (order is 7) for the
point-to-point model. If the origin node to broadcast is A, A forward the message to
B in first step. In the second time step, A and B send the message to node D and
C. After D and C received the message, node E and F will be the next two nodes
who get the message on next time step. So it costs 4 time steps for node G to get the
message. We can find that for any node which is the origin node to send the message,
the time delay for flowing the message through the whole network is the same. So

the broadcast time is 4.

Generally a network’s broadcast time is larger than its diameter. It is obviously
since communication for diameter is multi-cast while that for broadcast time is point-
to-point. On the other side, in the point-to-point model, the node has more choices
than it in the multi-cast model because the node is able to choose any one of its
neighbor nodes to be the next node to receive the message. So computing the broad-
cast time of the network is harder than computing the diameter when the topology

of the network becomes more complicated.

There are many ways to explore those two problems. Nowadays the use of the
group-theoretic methods for designing networks becomes more and more popular
[D91]. There are some advantages of using group theory in the design of connected
networks. First of all, the most important advantage is node symmetry, also called
vertex transitive, which makes the routing scheme independent of node. It means
that for a given routing scheme, the time for disseminating the information through
the whole network will be the same in spite of different original node sending the
information. Most connection networks with node symmetry are based on Cayley
graphs. In the next section, we will give the definition. Other advantages of using
group theory for the design of network include: line symmetry, hierarchical structure,

and/or high fault tolerance.

Some good results have been presented by using group-theoretic methods for de-



signing networks. For the undirected case, a table of largest-known (A, D) graphs is
shown on [H95|. Michael. J. Dinneen and his colleagues give the table of the largest
known (A, T) broadcast graphs on the paper [DPW98]. For the directed case, Faber
and Moore in [FM88]| study families of digraphs on permutations and give a table of
largest-known vertex symmetric (A, D) digraphs for the Degree/Diameter problem.
Another result of largest known (A, D) digraphs is presented on [CF95]. However,

there is no such result for the Degree/Broadcast-Time problem (directed case).

1.1 Our Research Aims

As discussed in the previous section, the research for large graphs/digraphs which have
the additional property of being node symmetric has been considered more recently.
However, results for the Degree/Broadcast time problem (directed case) has not yet
been presented. Our research aims to establish a table of the largest-known (A, T)

digraphs through the research of the Degree/Broadcast-Time problem.

The original broadcast design problem was introduced by Farley in [F77]. It is
slightly different from what we discuss in this thesis. This is the problem of finding
graphs for a given order with least number of edges that one can broadcast from each
vertex in minimum time. We can find that the minimum time for broadcast in a
network of order n is logy n, because the number of vertices received the message
double at most at each time step on the broadcasting schedule. The current study
for the minimum broadcast problem is presented in [DVWZ97] and [F00].

For the Degree/Broadcast-Time problem we discuss in here, we constrain both the
degree A and broadcast time T while maximizing the order of the network instead
of fixing the order and minimizing the number of edges. Specially, we will focus on

the broadcast directed network (a detailed definition will be given in next chapter).

Our research will begin with the study of some traditional good digraphs such as
the de Brujin digraph and the Kautz digraphs which are two of the earliest known
large (A, D) digraphs. The (A, D) de Brujin digraph has order AP while the (A,
D) Kautz digraphs has order (AP + AP~1). There are also some advantages for
those classic digraphs. Firstly, it is interesting to see different constructions for these
large digraphs. Secondly, these various constructions give us a strong impression that
these digraphs achieve the maximum possible order. For example, the Kautz digraphs

of diameter 2 are optimal. It’s helpful for us to study the construction of good



broadcast directed networks. Normally, people start to study the Degree/Broadcast-
Time problem by studying the (A, D) networks because computing the diameter
of network is much easier than computing the broadcast time and there already
have some good results concerning the (A, D) problem. Additionally, if a digraph’s
diameter is known, we will get the lower bound for the broadcast time of that digraph
because the diameter is smaller than or equal to broadcast time of a digraph. Studying
those classic (A, D) digraphs will help us to establish the basic idea of construction

the optimal broadcast directed networks.

After observing the classic digraphs, we will study the cycle prefix digraph, which
is a Cayley coset digraph. Group theory will help us know how to apply abstract
algebra into the the construction of network. The Cayley coset digraphs are an inter-
esting family of vertex symmetric digraphs, defined by Faber and Moore in [FM88],
and may be viewed as well as family of digraphs on alphabets [FMC93]. We will try
to compute the broadcast time of those Cayley coset digraphs and find the largest
known (A, T) broadcast digraphs from it.

At last, we will use the group theory to explore the Cayley digraphs based on
the semi-product group. This construction way was initiated in [DFF91]. We hope
to establish the table of largest-known (A, T) broadcast digraphs. We will present
the generators for each Cayley digraph. The most important results of our work is
finding a family of optimal (A, A+1) broadcast digraphs. We will give a simple proof
that these broadcast digraphs are optimal.

1.2 Thesis Outline

An outline of the thesis is given as follows:

e Chapter 2: This chapter presents graph-theoretical and group-theoretical def-

initions. We also discuss some important theorems related to these definitions.

e Chapter 3: This chapter provides the two classic families of digraphs. In the
first part, we will discuss the de Brujin digraphs and present their structure
and some other specialties, such as each vertex labeled with the words from a
alphabet of size A. In the second part, we will present the Kautz digraphs and
their structure and specialties. Here we try to compare the Kautz digraphs with

the de Brujin digraphs. For example, the Kautz digraphs have vertices labeled



with words belongs to a alphabet of size A+1. And for a given degree and
diameter, the order of the Kautz digraphs is larger than that of the de Brujin
digraphs. In the last part, we will discuss broadcasting in those digraphs and

presents an upper bound of the broadcast time of those digraphs.

Chapter 4: In this chapter, we analyze Cycle prefix digraphs, a type of Cayley
coset digraphs. Those digraphs are defined on an alphabet of A+1 symbols.
Cycle prefix digraphs have some relevant properties. We will discuss the recur-
siver structure of Cycle prefix digraphs and present the broadcasting algorithm.
At last, we also give some testing results for the broadcasting time for those
digraphs. These results will help us to establish the table of largest known (A,
T) digraphs.

Chapter 5: In this main chapter of thesis, we analyze Cayley digraphs and use
a random algorithm to compute the upper bound of the minimum broadcast
time for those digraphs. At first, we discuss the properties of Cayley digraphs
and the algebra construction methods. Secondly, we will present an algorithm
to compute the broadcast time of those digraphs and give the table of largest
known (A, T) digraphs. At last, we will give a family of optimal (A, A+1)
broadcast digraphs and prove it.

Chapter 6: This chapter gives some conclusions of our thesis. It also discusses

some future research extensions.



Chapter 2

Definitions and Background

We are ready to give some standard definitions and notations for our thesis.

2.1 Graph Theoretic Preliminary Definitions

We present some basic concepts of graph theory that will be used in this thesis. Most
of our definition and further information could be found in [C79], [GY86], [M01] and
[G88].

Definition 1 A graph G=(V, E) is a mathematical structure consisting of two sets
V and E. The elements of V are called vertices (or nodes), and the elements of E
are called edges. Fach edge has set of one or two vertices associated to it, which are

called its endpoints.

Definition 2 A digraph G=(V, E) is a mathematical structure consisting of two

sets V of vertices and E of ordered pairs of distinct vertices of G called ares.

Definition 3 Given a graph G=(V, E), the number of vertices in V is called the
order of G, which is also denoted by |G|. And the number of edges in E is called the
size of G, which is written by |E| .

Definition 4 In a graph G=(V, E), a walk from vertez vy to vertez v, is an alter-
nating sequence W=(vg, e1,v1,€9,...,0, — 1,€n,0,) of vertices and edges, such that

endpoints(e;)={v; — 1,v;}, for i=1,... n.



Definition 5 In a digraph G=(V, E), a directed walk from vertex vy to vertezr v, is
an alternating sequence W=(vy, e1,v1,€a,...,v, — 1, en,v,) of vertices and arcs, such
that tails(e;)=v; — 1 and heads(e;)=v;, for i=1,... n.

Definition 6 The length of a walk or directed walk is the number of edge-steps in

the walk sequence. A path is a walk in which no vertex is repeated.

Definition 7 Vertex v is reachable from verter u if there is a walk from u to v.
Two vertices u and v in a digraph D are said to be mutually reachable if D contains

both a directed u-v walk and a directed v-u walk.

Definition 8 A graph is connected if for every pair of vertices u and v, there is a
walk from u to v. A digraph is strongly connected if every two of its vertices are

mutually reachable.

Definition 9 In a graph, the distance from vertex u to vertex v is the length of a
shortest walk from u to v, or oo if there is no walk from u to v. For digraphs, the

directed distance is the length of a shortest directed walk.

Definition 10 A graph isomorphism f: G — H is a pair of bijections fy :
Vo — Vg and fg : E¢ — Ey. An automorphism of a graph G is an isomorphism
fthat maps G to itself. A graph (digraph) G=(V, E) is vertex symmetric (or vertex
transitive) if for all vertex pairs u, v € V, there is an automorphism of G that maps

u to v.

Definition 11 In a graph, the degree of a vertex v, denoted by deg(v), is the number
of edges incident to v. For digraphs, the out-degree of a vertex v is the number of

vertices adjacent from v and its in-degree is the number of vertices adjacent to v.

Definition 12 The diameter of a connected graph (or a strong connected digraph)
G=(V, E) is the least integer D such that for all vertices u and v in G, the distance
from u to v < D.

Definition 13 For a connected graph (or a strongly connected digraph) G=(V, E)
and vertezx v in V, let broadcast(v) be the minimum time needed to broadcast a mes-
sage originating from vertez v. The broadcast time T of G is the maz{ broadcast(v) |
veVl}



Definition 14 A (A, D) graph is a graph G=(V, E) satisfying: (1) deg(v)< A for
all vertices v in V and (2) diameter of G less than or equal to D. A (A, D) digraph
s defined similarly; in this case, all in-degree and out-degree must be bounded by A.
A (A, D) graph (digraph) is optimal if it have the mazimum order possible for (A,
D) graph (digraph,).

Definition 15 A (A, T) broadcast graph is a graph G=(V, E) satisfying: (1)
deg(v)< A for all vertices v in V and (2) broadcast time of G less than or equal to
T. A (A, T) broadcast digraph is defined similarly; in this case, all in-degree and
out-degree must be bounded by A. A (A, T) graph (digraph) is optimal if it have the
mazximum order possible for (A, T) graph (digraph).

2.2 Group Theoretic Preliminary Definitions

In this section, we give the necessary background in abstract algebra. The book [C37],
[M94], [F82] and [S00] are good references for the subject.

Definition 16 A set G with a binary operation on it is called a group if it has the

following properties:

1. The operation is associative, i.e., for any o, 5, v € G, We have (af)y = a(f7);
2. There is an identity element, written 1 € G, i.e., foranya € G,a-1=1-a = «;

3. Every element in G has an inverse, i.e., for every a € G there exists an element

written o~ € G such that a-a~ ' =a 1 -a=1.

A group G is abelian if it is also commutative, that is ¢ -y =y - x for any z and

y belongs to G.
Definition 17 A subset H of a group G is a subgroup of G if and only if

1. H is closed under the binary operation of G,
2. The identity e of G s in H,

3. For all a € H it is true that a—! € H also.
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The index of a subgroup H of a finite group G is |G|/|H|.

Definition 18 Let G be a group and let a € G. then H = {a™ | n € Z} is a subgroup
of G and is the smallest subgroup of G that contains a. The group H is the cyclic
subgroup of G generated by a, and will be denoted by {(a). An element a of a
group G generates G and is a generator for G if (a) = G. A group is cyclic if
there is some element a in G that generates G. Let a be an element of group G. If the
cyclic subgroup {(a) of G is finite, the the order of a is the order |(a)| of this cyclic

subgroup. Otherwise, we say that a is of infinite order.

Definition 19 A (commutative) ring ( R, +, -) is a set R together with two binary
operations + and -, which we call addition and multiplication , defined on R such that

the following axioms are satisfied:

1. ( R, +, -) is an abelian group.
2. Multiplication is associative (and commutative).

3. For all a, b, ¢ € R, the left distributive law, a(b+c)=(ab)+(ac), and the
right distributive law, (a+b)c=(ac)+(bc),hold.

A multiplicative identity in a ring is an unity element.

Definition 20 Let R and R' be rings. A map ¢ : R — R' is a homomorphism if
the following two properties are satisfied for all a, b € R:

1. ¢la+b) = ¢(a) + 6(b).
2. ¢(ab) = ¢(a)p(b).

An isomorphism ¢ : R — R' from a ring R to a ring R' is a homomorphism

that is one to one and onto R'. The rings R and R' are then isomorphic.

Definition 21 Let R be a ring with unity. An element u in R is a unit of R if it
has a multiplicative inverse in R. If every nonzero element of T is a unit, then R is

a division ring. A field is a commutative division ring.
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Definition 22 The unit of a ring R form the group of unites of R under multi-
plication and we denote this group by U(R). If a generator exists for the group U(R)

then it is called a primaitive root.

Definition 23 Let H be a subgroup of a group G. The subset aH={ah | h € H} of G
is the left coset of H containing a, while Ha={ha | h € H} of G is the righ coset

of H containing a.

Definition 24 The symmetric group S, is the collection of permutations of the set

{0,1,...,n—1} where group multiplication is defined by composition of permutations.

Definition 25 Given two groups G and H, we define their direct product to be the
set Gx H with the operation:

(1, 1), (02, B5)) — (102, 81 B2)

where a1, a9 €G and By, By €H.

Definition 26 Give two groups (G,-) and (H,0), and supposed there exists a homo-
morphism o : G — AUT(H) of G into the group of automorphisms of H. The set
of all ordered pairs {(a,B) | @« € G, 8 € H} can be made into a group if we define
products by:

(a1, 1) * (a2, B2) = (1 - g, B1 0 (0(1)) (B2))
This group is called the sema-directed product of G and H, relative to the homo-

morphism o, and denoted A X, B.

Definition 27 Given a group A and a set S of generators for A the Cayley digraph
G=(V, E), denoted by (A, S), is constructed as follows:

1. The elements of the group A are the vertices V of digraph G.
2. An edge (a,b) is in E if and only if ag=b for some generator g in S.

If we also requires S=S U S™! then G is a Cayley graph.

The semi-directed product methods for the Cayley graphs (digraphs) is a very
useful designing for efficient directed networks. The definition and notation of a
Cayley coset graph (digraph) will be given in Chapter 4.



Chapter 3

Classic Directed Network
Constructions

Before we discuss how to use group-theoretic methods for designing directed broadcast
networks, we would like to present some other well-known digraph constructions.
Vertex symmetry is a main design requirement for large (A, T) broadcast digraphs.

In this section, however, the families of digraphs we discuss are not vertex symmetry.

In this chapter, the de Bruijn digraphs and the Kautz digraphs will be presented.
Both of them were the earliest known large (A, D) digraphs. It would help us to
design large (A, T) broadcast digraphs by observing those network constructions. We
will give a brief description of the de Bruijn and the Kautz digraphs and show their
properties. Afterwards, the broadcasting problem in those digraphs will be discussed.
Some new efficient broadcasting protocols will help us find the minimum broadcasting
time of those digraphs for a given degree and diameter. A table comparing the upper
bounds of the broadcast time between the de Bruijn digraphs and the Kautz digraphs
will be given in the last part of this chapter.

3.1 The de Bruijn digraphs

An import family of digraphs with a larger number of vertices and small diameter
are the de Bruijn digraphs [Q95]. There are three ways to define de Bruijn digraphs.
One of them is based on alphabets. For given integer A > 2 and D > 1, the de Brujin
digraphs B(A, D) have vertices labeled with words z1z5 . .. zp where z; belongs to an

alphabet of size A. Vertices are connected if and only if the label of one is left-shifted

12
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label of the other. That means there is an arc from any vertex z;z5...xp to the A

vertices Ty ...XpTpy1, where xp,q is any letter of the alphabet.

001 011

101

—
=N

100 110

Figure 3.1: The de Bruijn digraph B(2, 3).

Consider the node labelled 001 in Fig 3.1. It is connected to itself right-shifted,
010 and 011. On the other side, there are two arcs from its left-shifted, 000 and 100
to itself. For vertex 001, its out-degree and in-degree is 2. Notice that there is a

self-loop for vertex 000 and 111 according to the defined connection model.

Another way to define the de Brujin digraphs is by using the line digraph iterations
[FYMCB84]. If G is a digraph, its digraph L(G) will be given as follows: Every arc E
in G is represented by a vertex e in L(G); vertex v is adjacent to vertex x in L(G) if
and only if the arc E is incident to the arc F in G. The line digraph of B(A, D) is
B(A,D+1).

B(A, D) are strong connected digraph and also are A-regular, which have A"
vertices and diameter D. B(A, D) are connectivity A-1 (due to the self-loop). De
Bruijn digraphs are neither vertex- or edge- transitive. And they are not recursively
scalable. That is, B(A, D+1) are not composed of A copies of B(A,D).

3.2 The Kautz digraphs

The Kautz digraphs are the earliest known large (A, D) digraphs, which were discov-
ered by Kautz [K69]. One of the definitions of the Kautz digraphs is also based on
alphabets. Let A and D is the positive integers, the vertices of the Kautz digraphs
K(A, D) labeled with words z1z5 . ..zp where z; belongs to an alphabet of A+1 let-

ters and z; # x;41 for 1 <7 < D — 1. A vertex labeled with 2125 ...xp connected to
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the A vertices xoz3...xpxpy1, where xpy 1 # zp and xpyq belongs to the alphabets.
It is easy to see that k(A, D) is a A-regular digraph with in- and out-degree A. The
order of k(A, D) is AP + AP~

210

10z

202 ozc\

120 201

Figure 3.2: The Kautz digraph K(2, 3).

Fig 3.2 demonstrates the construction for the Kautz K(2,3) digraph. For the
vertex 202, there are two arcs from vertex 120 and 020 to itself. On the other side, it
connects to its left-shifted, 021 and 020. The out- and in- degree is 2. And there is

no self-loop for every vertex.

A class of digraphs that generalize the Kautz digraphs is defined by Imase and Itoh
[I183] using arithmetic congruence: The vertices are numbered with integers modulo
n. If the out-degree is d, then vertex v is joined to vertices u = -dv-a (mod n), for
1 < a < d. The diameter of the resulting digraph is at most loggn. Furthermore, if
n=AP + AP~ these digraphs are isomorphic to K(A, D). We call those digraphs the
generalized Kautz digraphs, denoted by GK(A, D).

K(A, D) are strong-connected and enable very simple routing based on left shift-
ing. K(A, D) have connectivity A. The Kautz digraphs are neither vertex- nor
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edge-transitive except that For D = 2 the Kautz digraphs are vertex symmetric.

Similarly, the Kautz digraphs are also not recursively scalable.

3.3 Broadcasting in Kautz/de Bruijn digraphs

For a given degree A and diameter D, the de Bruijn digraphs and the Kautz digraphs
have the a number of vertices. Studying the broacasting in the de Bruijn digraphs
and the Kautz digraphs means finding the minimum broadcast time of those digraphs

for the given degree and diameter.

In this problem, people always first try to give the smallest upper bound of the
broadcast time of those digraphs. Then, people can find more smaller results for the
minimum broadcasting time by establishing a efficient broadcasting scheme. A lot of
efficient broadcasting protocols have been published. For example, Bermond and his
colleagues give a good protocol and improve their results in [BP92]. In [KMPS92],

there is another paper discussing a broadcasting scheme.

We will give the best-known upper bounds on the broadcast time of the de Bruijn

digraphs and the Kautz digraphs.

Theorem 28 [BP88] The broadcast time for de Bruijn digraphs B(A, D), 2 < D <

14, us bounded as follows.

b(B(A, D)) < (A+1)(D+1)

Theorem 29 [H0S92] The broadcast time for Kautz digraphs K(A, D) is bounded

as follows.

b(K(2,D)) < 2D,

b(K(3,D)) < 3D,
(A+3)(D+1) :

b(K(A, D)) < e, fA<A<I2A£D
min{2Dlog, A, 3DlogsA}, if A =9 or A > 13
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Table 3.1: Comparative values of upper bound of the broadcast time of de Bruijn
digraphs and Kautz digraphs for small value of the degree.

L [B&, 3 K(A, 3)
lv[ [ B(B(A, 3)) | vl | B(K(A, 3))

3 27 8 36 9

4 64 10 80 14

5 125 12 150 16

6 | 216 14 252 18

7| 343 16 392 20

8 | 512 18 576 22

9 | 720 20 810 24

10 | 1000 22 1100 26

From Theorem 28 and 29, we get the smallest upper bound of the broadcast
time of the de Bruijn digraphs and the Kautz digraphs. In Table 3.1, we compare
the broadcast time and the order of the de Bruijn digraphs with those of the Kantz
digraphs for diamter 3 and small values of the degree (3-10). In here, |v| is the order
of digraph. S(B(A, D)) is the best-known upper bounds on the broadcast time of
the de Bruijn digraphs while '(k(A, D)) is that of the Kautz digraphs.



Chapter 4

Cayley Coset Directed Network
Constructions

In the last chapter, we have discussed two classic directed network constructions, the
de Bruijn digraphs and the Kautz digraphs. For the given degree and diameter, the
order of those digraphs are not the largest. In most cases, Cayley coset digraphs have

the largest known orders for fixed degree and diameter.

In this chapter, we will give the definition of Caycley coset digraphs and discuss
the methods to construct a special family of (A, D) digraphs using the Cayley coset
digraphs. Very often, vertex symmetric digraphs may be described as digraphs on an
alphabet. Cycle prefix digraphs were defined by Faber and Moore as Cayley coset
digraphs and have some nice properties. We will discuss the recursive structure of
the Cycle prefix digraphs and the upper bounds on the broadcast time of them. At

last, some testing results for the broadcast time of those digraphs will be given .

4.1 Algebra Foundation of Cayley Coset Digraphs

The digraphs mentioned in this section are the result of Faber and Moore in [FM88].
Cayley coset digraphs are defined as follows:

Definition 30 Let G be a group, H a subgroup, and S a subset. Suppose

1. G =(SUH),

2. HSH C SH, (For well-defined arcs)

17
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3. S is a set of distinct non-identity coset representatives of H in G.

Then we can form the Cayley coset Digraph I'=(G,S,H) with vertices given by the
set of left cosets {gH | g € G} and a arc (g1 H, goH) whenever g;sH=goH for some
s € S.

From the definition, we know that a set of generator S C G\H and the arc should

be well-defined. Next, we will proof that Cayley coset digraph is vertex symmetric.
Theorem 31 FEvery Cayley coset digraph (G, S, H) is vertex symmetric.

Proof. Let g1 H, goH are the two elements from {gH | g € G}, where g1,9, € G. We
must show an adjacency-preserving automorphism ¢ of {gH | ¢ € G} mapping g1 H
to goH. Defined ¢(x) = (gog; )z for all x € {gH | g € G}. Clearly ¢ maps g1 H to

goH since

d(g1H) = (gle_l)ng = gg(gl_lgl)H = goeH = goH (associativity).

The map ¢ is injective since if ¢(x) = ¢(y) then (g29; 1) = (g29; ')y and so
z = (9201 ") (9201 )x = (9291 ) (9201 ")y = y (inverses).

Similarly ¢ is surjective since for any x in {gH | g € G}, ¢(g9195 '2)=(g297") (9195 "
x)=x. So ¢ is bijection. Finally, ¢ maps vertices adjacent to g; H to vertices adjacent
to goH.

o(g15iH) = (9291 ) (g18:H) = gos;H for all s; € S.

Moreover, every vertex symmetric digraph is a Cayley coset digraph, as shown
in [S69]. But can every vertex symmetric digraph can be represented as a Cayley
digraph? The answer is no. i.e., the petersen graph is vertex symmetric but is not
a Cayley graph. In particular, a Cayley coset digraph I' is a Cayley digraph if and
only if H={e | e is the identity of G}.

Cayley coset digraph have some other properties. It is connected, and |S|-regular.
|s|-regular means the out-degree and in-degree of Cayley coset digraph is |S|. The

most important properties is as below.
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Theorem 32 For each A > D, there exists a vertex symmetric digraph with degree

A, diameter D, and (A(ﬁf_l)D!)!

The proof of this theorem is presented in [FM88]. The idea of Faber and Moore’s
construction as follow: Let G be any k-transivtive group on A + 1 letters, denoted
by symmetric group Sayi. And T = {0,1,2,..., D — 1} . The subgroup H C Say1
be the set of elements {h | h € Say1, h(i) = i for all 0 < ¢ < D — 1}. The set of
generators S = {g; | 1 <1 < D}. For each i # 0, choose g; € Sa;1 so that

9:(0) = 4,

. ' _ j—1, fori<j<i
<j3<D- i\J) =
Zfl_j_D 1; gz(]) {]’ forj<i

We can denoted the coset of H in G by k-tuples(as, as, . ..,ap 1) with all a; distinct
since each coset gH is completely determined by its action on 7. To see this, note

that is a; = ag onTy, then a;'ay is the identity on Tj. that is ajas € H. Thus, the

(A+1)!
(A+1-D)!

using the generators as needed, the new representative becomes our coset identity
(0,1,...,D —1). So the diameter is D.

total number of cosets is . Given any (a1, as,...,ap_1) in at most D steps

4.2 Composition of Cayley Coset Digraphs

From the last section, we know the Cayley coset digraphs have degree larger than
or equal to diameter. In [H95], P.R. Hafner give the largest-known (A, D) digraphs.
The bold numbers in Table 4.1 are the orders of those largest known (A, D) digraphs
which are Cayley coset digraphs. We find that the Cayley coset digraphs give the
majority of the entries listed in Table 4.1. (When D=2, the largest known (A, D)
digraphs is Kautz digraphs that are Cayley coset digraphs also). We need to find
largest symmetric digraphs with diameter larger than the degree. A lot of methods
have been used to find those digraphs. For example, F.Comellas and M.A. Fiol give
a methods to construct a special family of (A, D) digraphs by using the Cayley coset
digraphs in their paper [CF95]. Before discussing the construction method, we will

give some definitions and theorems.

Definition 33 A digraph G=(V, E) is K-reachable if there exists a uv-path of
length k for all u, v € V.
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Theorem 34 The digraphs U'a(D) are D-reachable for D> 3.

This theorem was proved by Comellas and Fiol. It is possible to apply the new
version of Conway and Guy’s theorem [CG82] into the construction. Comellas and
Fiol present two ways to construct larget (A, D) digraphs. The first method is to

increase of the diameter of digraph.

Theorem 35 IF there is a vertex symmetric A-reqular k-reachable digraph with N
vertices then, for all n and m a multiple of n, there exists a vertex symmetric A-reqular

digraph with mN,, vertices and diameter at most kn+m+1.

In their paper, Comellas and Fiol proved Theorem 35 by presenting the construc-
tion of a new digraph. Let G=(V, E) be a digraph satisfying the hypotheses of the
theorem (vertex symmetric, A-regular k-reachable). A new digrtaph G'=(V’, E’)
may be constructed as follows: The vertex set V' has elements (« | pop1 ---Pn_1)
with « € Z/mZ and p; € V. And the arc is determined by adjacencies of G’
(o | pop1---Pn_1) to (@ + 1 | pop1---pn_1) where all the indices of the vertices of
G are taken modulo n and p, is adjacent to ¢, in the digraph G.

Comellas and Fiol showed that we can constructed the large (A, D) digraphs from
Cayley coset digraphs according to this theorem. For (A, 3) digraphs, they obtain (A,

7) digraphs with order 2(8“:3:)2 and (A, 11) digraphs with order 3(85%:)3 More-

over, they construct (A, 9) digraphs with order 2(&:;:)2 from the (A,4) digraphs.

Comellas and Foil give anther way to construct the largest digraph by increasing
the diameter and degree [CF95].

Theorem 36 [F there is a vertex symmetric A-reqular k-reachable digraph with N
vertices then, for all positive integers b, n and m a multiple of n, there exists a vertex
symmetric A + 1-regular digraph with mN,, vertices and diameter kn+d with d being
the diameter of the fized 2-step digraph Cay(Z/mZ, {1,b}).

The proof of this theorem follows similar step in Theorem 35. The new di-
graph G' = (V', E') is construted as follows: The vertex set V' has elements
(o | pop1--.pn-1) with @ € Z/mZ and p; € V. The arcs of E' are given by (« |

PoP1---Pn_1) to (@ +1 | pop1-..pn_1) and (+b | pop1 - . . Pn_1) Where p, is adjacent
to g, in the digraph G.



With this constructions, a vertex-symmetric (A, 10) digraphs with order 3(

can be created from Cayley coset digraphs I'a_1(3).
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(A—S)!)S

In Table 4.1, the italic number is in the order of the largest-known (A, D) digraph
created by Theorem 35 an 36.

Table 4.1: Largest-known vertex symmetric (A, D) digraphs.

A\D[ 2 | 3 | 4 5 6 7 8

2 6 | 10 | 20 27 72 144 171

3 | 12 | 27 | 60 | 165 333 1152 1860
4 |20 | 60 | 168 | 444 | 1260 7200 12090
5 | 30 | 120 | 360 | 1152 | 3582 | 28800 | 54505
6 | 42 | 210 | 840 | 2520 | 7776 | 88200 | 170898
7 | 56 | 336 | 1680 | 6720 | 20160 | 225792 | 521906
8 | 72 | 504 | 3024 | 15120 | 60480 | 508032 | 1371582
9 | 90 | 720 | 5040 | 30240 | 151200 | 1036800 | 2965270
10 | 110 | 990 | 7920 | 55400 | 332640 | 1960220 | 6652800

4.3 Broadcasting in Cayley Coset Digraphs

The cycle prefix digraphs T'a (D) were introduced as Cayley coset digraphs by Faber
and Moore in 1988. In [CM96], Comellas and Mitjana presented new details concern-
ing cycle prefix digraphs’ structure that are used to design a communication scheme

leading to give a upper bounds on the broadcast time of cycle prefix digraphs.

From the definition of the Cayley coset digraphs given in the beginning of this
chapter, [FMC93] and [CF95] define a cycle prefix digraph on a alphabet of A +1
symbols as follows: For a given digraph G=(V, E), each vertex vy, vy, ...,vp is a se-
quence of distinct symbols from the alphbet. The arc is determined by the adjacencies
which are given by

if vpy1 # v1, 09, ...
1<k<D-1

VU304 ... VDVUD+1, yUD

ViV2...Vp —
V1Vy ... Vg—-1Vk+1 - - - UpDUg,

The first kind of adjacency is called a shift because of introducing a new symbol.

The second adjacency will be called rotation.

Consider the node labeled 21 in Fig 4.1. It is connected to itself shifted node,
10. On the other side, there is arc from 21 to 12 which is a rotation. By using the
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Figure 4.1: The Cayley Coset Digraph I'y(2).

definition as digraphs on an alphabet, it is possible to give a recursive decomposition
for the cycle prefix digraphs. Comellas and Mitjana have presented the next Lemma
and proved it in [CM96].

Lemma 37 The cycle prefiz digraph T'a(D) decomposes into (A[J; 1) subdigraphs each
isomorphic for T'p_1(D — 1).

231

213

312 %

423

N\

123

412

42/

241 134

124 413

Figure 4.2: The Cayley coset digraph I's(3) composed by 4 subdigraphs which iso-
morphic to I'y(2).
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Fig 4.2 shows I'3(3) can be decomposed into 4 subdigraphs each isomorphic to
['5(2). To show the decomposition clearly, we have omit some arcs that join the nodes

of the 4 terminal subdigraphs.

Comellas and Mitjana try to create a broadcast scheme and give the upper bounds
of broadcast time of the cycle prefix digraphs by using the decomposition into sub-
digraphs. The first step of their broadcast scheme is the origin node distributes the
message to (A; 1) -1 other vertices. Those vertices belong to different subdigraphs
of the decomposition. In the second step, the message is transmitted inside of each

subdigraph. The two steps are executed in each subdigraphs in parallel.

It is very difficult to construct the set of vertices which receive the message in
the first step. Comellas and Mitjana solved this problem by building a structure in

['A(D) containing the set of vertices such that, any two vertices in the set differ in

A+1
D

broadcast tree in the first step of the broadcast scheme.

at least one symbol. And the set have ( ) elements. Then, we can construct a

Lemma 38 For any cycle prefiz digraph T'a(D) with A > D, and any verter «,

A+1
D

A +1— D, such that any two vertices in T differ in at least one symbol.

there exists a tree T rooted at r with ( ) vertices, depth D, and mazimum degree

We will give the basic broadcast tree for I'4(3) in Fig 4.3 to shows how to construct
the set of vertices in the first step of the broadcast scheme. Boldface number in Fig

4.3 indicate the broadcast order.

At first, the origin node is labeled 123. The vertices of level one are obtained by
shifts that add one of the symbols {4, 5} to the end of root 123. The two vertices are
234 and 235.

At level two, two vertices are ended with 1 adjacent from two nodes in level 1,
which are 341 and 351. The other vertex in level two should be 34v; and v; € 5,6.

There is only 1 choice for v; because that vertex is adjacent from 234. So v is 5.

At level three, we obtain three vertices {412,452, 512} from vertices of level two
by shifts that add 2. The other vertex of level three must be 41v;. Because there is
a vertex 421 adjacent from 341, v; should not be 2. The only choice from v; is 5 so
that vertex is 415.

From that broadcast scheme, Comellas and Mitjana give the upper bound of the

broadcast time of I'a(D) in the next theorem.
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4 412 (3)
4 341 (2) 415 (4)
234 (1) 345(3) — - 452 (4)
123 (0) 4

235(2) —= 351(3) — = 512(4)

Level 1 Level 2 Level 3

Figure 4.3: The basic broadcast tree for I'4(3).

Theorem 39 The broadcast time for Ua(D), A < D, is bounded as follows:

D(D +1)

b(Ta(D)) < A+ ——

By using a random algorithm described in next chapter, we got some new results of
the broadcast time of the cycle prefix digraphs for small diameter and degree. Those
results are smaller than or equal to the upper bound in Theorem 39. In Table 4.2,
B(T'a(D)) is our new results. The bold number indicate our new results is smaller
than the upper bounds. we also give the corresponding upper bounds of the broadcast
time of ['s (D), which is denoted by b(I'a(D)). Furthermore, |v| denotes the order of
digraph.
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Table 4.2: New results of the broadcast time of the cycle prefix digraphs for small

values of the degree and diameter.

B(Ta(D))

10
11

11

10

11

b(Ca(D))

10

11
15

12

10

11

10
12
11

V]
6
12
24
20
60
120

30
120
360

720

42
210
840

o6
336

72
204

90
720

110

(A, D)

(2,2)
(3,2)
(3,3)
(4,2)
(4,3)
(4,4)
(5,2)

(5,3)
(5,4)
(5,5)
(6,2)
(6,3)
(6,4)
(7,2)
(7,3)
(8,2)
(8,3)
(9,2)
(9,3)
(10,2)




Chapter 5

Efficient Broadcast Directed
Network Constructions

In this chapter, we present the largest-known broadcast directed networks satisfying
the bounds on maximum vertex degree and the broadcast time. As we discussed
in Chapter 2, broadcasting is a process that disseminating the message from the
origin node to all other nodes in a connected network, with the restriction that each
node can only forward the message to one neighbor at a time. It is a point-to-point

communication model, which is similar to the telephone system.

We have already given some definitions in the previous chapters, such as the
broadcast time and (A, T) broadcast digraphs. We now give another definition in

preparation for our directed broadcast network construction.

Definition 40 A broadcast protocol (scheme) for a vertex v (called the origina-
tor) for a graph G=(V, E) may be presented as a sequence Vo ={v}, E1, V1, Ea, Vo, ...,
Ey, Vi =V such that each V; CV, each E; C E, and for 1 <i<t,

1. Each edge in E; has exactly one endpoint in V;_q.

2. No two edges in E; share a common endpoint.

3. Vi=Viau{w| {u,w} € E;}.

The main purpose of the Degree/Broadcast-Time problem is to provide construc-

tions of the largest possible (A, T) broadcast graphs (digraphs), which maximize the

number of nodes for fixed constraints of maximum vertex degree and broadcast time.
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The problem is slightly different from minimum broadcast problem studied by other
researchers (e.g, [F77]).

In [D91] [DFF91] and [DPW98], Dinneen and his colleagues analyzed this prob-
lem. They introduced Cayley graphs as a model and presented algebra methods to
construct the largest-known (A, T) broadcast graphs. Here we would like to use those

same algebra methods to construct the largest-known (A, T) broadcast digraphs.

5.1 Cayley Digraph Construction

In this section, we will give the main group construction for finding large (A, T)
broadcast digraphs. Most of digraphs listed in Appendix A are created by using
semi-direct products of groups.

As explained in [D91], for given two cyclic group Z,, and Z,,, a semi-direct product
group G= Z,,, X, Z, is formed by defining an appropriate homomorphism o : Z,, —
Aut(Z,). In here, Z, is a communitative ring with a group of units U(Z,,). We define
a mapping o'(k) = (1) = rex where r is belonged to Aut(Z,) and c is chosen so that

rem = 1. The multiplication table of the semi-direct product group G is defined by
(ag,a1) *4 (bo, b1) = (ag + by mod m, (a1 + o' (ag) - b1) mod n).

For a € Z,, and b € Z,, (0(a))b= o'(a) - b is a suitable homomorphism. Note that

(0,0) is the group identity for a semi-direct product group constructed as above.

In Fig 5.1, we give a example of the above construction. The digraph is a largest
known (2,4) Cayley digraph with 12 vertices based on the group Z, x, Z3. For a € Z,
and b € Z3, a vertex of the digraph whose corresponding group element is [a,b] is
labeled 4a+3. The normal edge presents the use of the first generator while the

dashed edges represent the second generator.

(A, T) Order Group Generators | Order of
Generators
(2,4) 12 Zi %o 25 |22 6
o'(1)=2 (3 1] 4
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Figure 5.1: A largest known (2, 4) broadcast digraph.

5.2 Upper Bounds and Low Bounds

In [D91], Dinneen presents, as noted by others, a recurrence relation of the upper
bound of the maximum order of broadcast directed networks. Let f(A, T) is the
branch-out upper bound of the maximum order with out-degree A and Broadcast
time T of a directed tree.
f(A0)=1
FAT) = min(A,T)F(A,T —4) +1
i=1
From above recurrence relation, we get the table of some (A, T) broadcast directed

networks upper bounds, Table 5.1.
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Table 5.1: Some (A, T) directed broadcast network upper bounds.

A\T 23| 4 |5|6 |7 8 9 10
2 41711212033 | 54 | 88 | 143 | 232
3 |418[|15]|28 (52| 96 | 177 | 326 | 600
4 141816 |31|60 ]| 116|224 | 432 | 833
3 418|116 |32 |63 | 124 | 244 | 480 | 944
6 |4]18|16|32|64| 127|252 | 508 | 992
7 |4|8]16|32|64 | 128|255 | 511 | 1012
8 |418]16|32|64 | 128|256 | 512 | 1020
9 |418|16|32|64 | 128|256 | 512 | 1023
10 |48 16|32 |64 | 128 | 256 | 512 | 1024

For a given (A, T) broadcast directed network, a lower bound for the order of the
larger broadcast directed networks can be obtain from the following theorem. The

proof of this theorem is similar to that of the theorem for the undirected networks.

Theorem 41 B(A, T) is the order of a (A, T) broacast directed network G, then
the order of (A+1, T+1) broadcast directed network B(A+1, T+1) > 2- B(A,T).

Proof. For a given (A, T) broadcast digraphs, we take the Cartesian product of two
copies of it. That is , an arc for two directions is added between each vertex v and
v' in two identical digraph G and G’. So we have a new digraph G”. The routing
scheme of G” uses one of the (v, v') edge during the first broadcast time. After that,
the message from the originator broadcast in G and G’ in parallel. Notice that the
broadcast time for G” is T+1 while the degree for G" is A+1. So G" is a (A+1,
T+1) broadcast digraph. Obviously, the order of G” is twice as order of G'. That is
B(A+1, T+1) > 2- B(A, 7). O

Similarly, we have a more general theorem as follows:

Theorem 42 B(A+n, T+n) > 2" - B(A,T), n > 2

Proof. The proof is simple. From Theorem 42, we have B(A+1, T+1) > 2-B(A,T).
Then for a (A+n, T+n) broadcast digraph, B(A+n, T+n) should be larger than or
equal to 2- B(A 4+ (n —1),7 4+ (n — 1)). Next, we also get B(A+(n-1), T+(n-1))
>2-B(A+ (n—2),T+ (n—2)). So, B(A+n, T+n) > 2"- B(A,T),n> 2. ]
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5.3 Numerical Results and Broadcast Algorithm

Table 5.2 shows that the current largest known broadcast digraphs. For the reader’s
convenience the bold entries in Table 5.2 shows where the upper bounds have been
achieved. The asterisks in the table denote where the random search algorithm has
been used. Other entries show the results that have been achieved in [DPW98] for

the undirected case, which are implicitly a given lower bounds for the directed case.

Table 5.2: The largest known (A, T) directed broadcast networks.

D\T|2|3]| 4 ) 6 7 8 9 10
2 |4 |7)|12% | 20" | 27 | 42 | 64* | 84* | 126"
3 8 | 15 | 28" | 48* | 80* | 110* | 220* | 328*
4 16 | 31 | 56" | 96* | 165" | 300" | 506*
5 32 | 63 | 116 | 210 | 390 | 686
6 64 | 127 | 234 | 440 | 840
7 128 | 2565 | 486 | 952
8 256 | 512 | 1000
9 512 | 1023
10 1024

Our computer search was processed in the Linux environment. The compiler
is GCC. We now describe how our computer search for efficient directed networks
was conducted. Only the basic algorithm will be discussed and we present only the

principle algorithm used to calculate the broadcast time of the Cayley digraphs.
In [D92], Dinneen proved that Bounded-Degree Minimum Broadcast Time (BDM

BT) is NP-complete. Since exact algorithms are impractical for large networks, a al-
gorithm heuristics have been proposed. Also, because of the hardness of this problem,
some research were restricted to some specific families of “nice” graphs (digraphs).
So we choose an heuristics algorithm to do computer search on the broadcast time of

the Cayley digraphs.

Our algorithm is simple. At first, it read the structure of input Cayley digraph
G=(V, E) and record the label of each vertex and its neighbors. We set the original
node to send the message is the vertex labeled 0. After the initial state is read, the
algorithm divides all vertices into two sets. One set is the vertices that have received
the message from the original node while The other set is the vertices who haven’t

received the message.
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Then, the algorithm will check each vertex in the first set to find whether it has
any neighbor didn’t receive the message. If it has, a random vertex is picked from its

neighbors and that neighbor node is included to the first set.

After that, all vertex in first set have been searched. Then the broadcast time is
added 1. Repeating the step again until the number of elements in first set is equals
to the order of the digraph. That means all vertices have received the message. The
process of broadcasting is finished. We get an upper bound on the broadcast time for
that digraph.

We may repeat the steps listed before for a fixed time. Then, we compare the
results we achieved and choose the minimum one as an upper bound on the minimum

broadcast time for that digraph.

Table 5.3: One routing scheme for an optimal (2, 5) directed broadcast network.

Cayley group digraph: Z4 X, Zs

Generators: Order of the generator
(3 1] 4
[10] 4
Routing scheme from identity element 0.

0—=5 1st broadcast: |V;|=2
0—16 2nd broadcast: |Va|=4
5—10
5—1 3rd broadcast: |V3|=7
10—6
16—2
1—19 4th broadcast: |V;|=12
2—9
6—4
10—15
16—14
1—7 5th broadcast: |V5|=20
2—17
4—18
6—12
9—3
14—8
15—11
19—13
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We give an example in Table 5.3, Which shows a routing alogrithm for optimal
(2,5) broadcast digraph. And Fig 5.2 is the digraph.

Figure 5.2: An Optimal (2, 5) directed broadcast network.
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5.4 Algebra Construction Techniques

We will explain what broadcast digraphs correspond to the various listed in Table
5.1. As we see, we omit the entries below the diagonal since those entries are follow
from the (A, A) broadcast digraphs. All entries in Table 5.1 are Cayley digraphs.
In last section, we have mentioned that all results flagged with an asterisk have been
computed by our random search algorithm. All digraphs are based on the semi-
direct product of cyclic groups. We give the detail information of the group and its

generators which created digraphs in Appendix A.

Next, some theorems will be given to cover some known optimal broadcast di-

graphs.
Theorem 43 The directed hypercube Qa is an optimal (A, A) broadcast digraph.

Proof. Dinneen, and others, have proved that the hypercube QA is an optimal (A,

A) broadcast graph (see [D91]). In this standard proof, the hypercube QA can be

represented as a Cayley graph using the abelian group (7)™ with generators {e; | 1 <

i < n} where ¢; = (0,...,0,1,0,...,0). The routing scheme is all vertices with the
—_— ———

i—1 n—i
broadcast message route by using generator e; at time 7. The first vertex to receive

the message is (1,0,...,0) =(0,0,...,0) + e;. So after n time every vertex will have
received the message original from (0,0,...,0). So the broadcast time is equal to
degree. The hypercube QA is an optimal broadcast graph since 2" is the order of Qa
and also reach the upper bound.

In here, the same construction and routing scheme will be used. We just change
the every edge in hypercube QA to two-directional arc. So the out-degree and in-
degree of new digraph are equal to the degree of hypercube Qa (undirected). Then,
the hypercube Qa (directed) is an optimal broadcast digraph. O

The following construction is our main result of the thesis.
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Figure 5.3: An optimal (2, 3) directed broadcast network.

Theorem 44 The Cayley digraphs from the cyclic groups Zon 1 with generators
{91192: .. 'agnfl} where g1 = 1592 = 3593 = 75 aand In-1 = 2n-t -1 form op-
timal (A-1, A) broadcast digraphs { Aa—1}-

Proof. Before proving the general version of this theorem, we illustrate it by building
a simple (2,3) broadcast digraph A, in Fig 5.3. The bold edges in Fig 5.3 denote the
routing scheme from node 0. For this graph, the generators are 1 and 3. Let V;={
v | vertex v has received the message at time ¢ }. We start the broadcasting at the
identity V5 = {0}. Using 1 as the first generator yields V; = Vo U {1} = {0,1}. Then,
using 1 as the generator for node 1 and using 3 as another generator for node 0 so
that
Vo=V1uU{1+1,0+3}={0,1}U{2,3} ={0,1,2,3}.

Finally, using 3 as the third generator and final broadcast time yields
Va=VoU{0+3,1+3,2+3,3+3}={0,1}U{3,4,5,6} ={0,1,2,3,4,5,6} = Z.

This shows that the broadcast time for A, is 3.



We now give the complete proof of this theorem. At first, we defined

fi = {Spanning broadcast tree for time i+ 1 in A;}.
Proof by induction,

1. When 1=1, f; is given by the next figure:

0

2 O

Figure 5.4: A spanning broadcast tree of time 2 in (1, 2) broadcast digraph A;.

35

In Fig 5.4, The message is originated from vertex 0. When the time is 1, there

exists an arc from vertex 0 to vertex 1 by using generators 1. When the time is

2, vertex 1 sends the message to vertex 2 by using generator 1 again. The bold

number in Fig 5.4 is the generator being used. As we know, f; is a spanning

broadcast tree of time 2 in 4;. Obviously, |f1|=3. That values equals to the

upper bound of the order of (1,2) broadcast digraph.

2. When =2, we defined as the followings,

We show f5 in Fig 5.5. When the time is 1, routing scheme is the same as that

in f;. There is a slight difference in time 2. We add one more arc from vertex 0

to vertex 3 by using a new generator 3. When the time is 3, 3 arcs from vertices

1, 2 and 3 to vertices 4, 5 and 6, respectively. Here, we use generator go=3

again. Then |fy|=443=7. That is |A3|=7. So the order of A, is equal to t
upper bound for an optimal (2,3) broadcast digraph.

he
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Figure 5.5: A spanning broadcast tree of time 3 in (2, 3) broadcast digraph As.

3. When 7 > 1, we do the followings,

In Fig 5.6, f; is the spanning broadcast tree of time 7 4+ 1 in A; while f;,; is a new
spanning broadcast tree of time i+ 2 in A; ;. We construct f;; from f;. The routing
scheme is designed by adding one more arc from vertex 0 to vertex 2'*! — 1 by using
the new generator 2°t! — 1 when the time is 7. Then, when time is 7 + 1, there are
arcs from each vertex from f; (except 0) to the new 2! — 1 vertices of f/ by using

generator 271 — 1. So we have

fi={142F —1,2 4271 — 1, 20F1 L 211}
— {2i+1’2i+1 + 1’. ..’2i+2}

Then,
|fiv1] =2|fil +1 =202 = 1) +1 =2 —1

After time i+1, all vertices in A;;1 have received the message. Because the order of
A; 1 equals to 2°72 — 1 is the upper bound and 7 + 1 is the degree of A, , each Aa
is optimal (A, A+1) directed broadcast network. a
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Figure 5.6: A spanning broadcast tree of time 742 in (i + 1, i+ 2) broadcast digraph
At

We give another example of the optimal broadcast directed networks Aa. Fig
5.7. shows an optimal (3,4) broadcast digraph A3 with 15 vetices. In that digraph, 3
generators {1, 3, 7}have been used. That is, there are 3 arcs from vertex 0 to vertex

1, 3 and 7 by using generators 1, 3 and 7 respectively. Its broadcast time is 4.






Chapter 6

Conclusion

We now summarize our thesis as follows.

We have discussed some directed network constructions to study the broadcast
time of those. At first, we study two classic directed networks. One is the Kautz
digraphs and another is the de Bruijn digraphs. Both of them are the earliest-known
large (A, D) digraphs. The (A, D) de Brujin digraph has (AP) order while the
(A, D) Kautz digraphs has (A” + AP~1) order. We presented upper bounds of the
broadcast time of those digraphs to help us to study the construction for directed

broadcast networks.

After observing those classic digraphs, we study the Cayley coset digraphs. From
the algebra point, we discuss the definition of Cayley coset digraph and show that it
is vertex symmetric. We first show an upper bound of the broadcast time of these
digraphs, and then we have computed the broadcast times of cycle prefix digraphs, a

type of Cayley coset digraphs. Some new results are smaller than upper bounds.

At last, the group theory has been used to discuss Cayley digraphs based on
the semi-product groups. we establish the largest-known (A, T) broadcast digraphs
table for small degree and broadcast time. It is very interesting to find some (A,A+1)
optimal broadcast digraphs. As we have showed before, Aj; is a new family of optimal
(A,A+1) directed broadcast networks. Those digraphs are Cayley digraphs from the
cyclic groups Zyn_; with generators {1,3,7,...,2""1 —1}.

In this paper, we show the advantage of using group theory in designing broad-
cast directed networks. The broadcast digraphs we have discussed are all vertex
symmetric. As mentioned, routing algorithm is node independent in vertex symmet-

ric digraphs. It can help us to establish an broadcast scheme and get the minimum
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broadcast time for those digraphs.

Some problems occurred in the course of this work. We mention some of them as

follows:

1. We just use the random algorithm to compute the broadcast time of a given
Cayley digraph. The efficiency of the algorithm is not so satisfactory. We need
to apply other methods to get upper bounds of the minimun broadcast time. In
Haobi Wang’s paper [W99] and Fang Guo’s thesis [F0O1], he presents a heuristic
broadcast algorithm based on the theory of maximum matching. We can use

their idea to design a heuristic broadcast algorithm for (A, T) digraphs.

2. As we know, the broadcast time of a (A, T) digraph is longer than the diameter
of that. Does there exists another bound or a good polynomial-time algorithm

to predict whether a Cayley digraph has a smaller broadcast time?

3. It seems that the largest known (A, T) dirceted broacast networks are all Cayley
digraphs. Does there exist an non-vertex-symmetric broadcast digraph with

largest order for given degree and broadcast time?



Appendix A

Broadcast (A, T) Digraph Results

(A, T) Order Group Generators | Order of
Generators

(2,4) 12 71 %g 75 | [2 2] 6
o'(1)=2 [3 1] 4

(2,5) 20 71 % Z5 | 3 1] 1
o'(1)=2 [1 0] 4

(2,6) 27 Z3 X g Ly [1 8] 9
o'(1)=2 [14] 9

(2,7) 42 Zg Xo Z14 [0 3] 14
o'(1)=3 [1 3] 6

(2,8) 64 Z4 Xo Z16 [2 7] 16
o'(1)=3 (3 11] 8

2,9) 84 Zs %o Z1a | [10] 6
o'(1)=3 [0 5] 14

(2,10) 126 Zis %o Z7 | [1 4] 18
o'(1)=3 [12 5] 21
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(A, T Order Group Generators | Order of
Generators
(3,5) 28 Z4 X Z7 [1 ]_] 4
o'(1)=3 2 1] 14
[0 4] 7
(3,6) 48 Z16 Xg Z3 [2 ]_] 24
o'(1)=2 [15 0] 16
9 2] 16
(3,7) 80 Zs Xo Z10 | |4 6] 10
o'(1)=3 (7 9] 8
[14] 8
(3,8) 110 Zvo X Z11 | [5 10] 2
o'(1)=2 [4 4] 5
2 9] 5
(3,9) 220 ZQO X Z11 [10 2] 22
o'(1)=2 (3 4] 20
[14 0] 10
(3,10) 328 Zg X Zay 2 7] 4
o'(1)=6 [7 27 8
[1 28] 8
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(A, T) Order Group Generators | Order of
Generators
(4,6) 56 Zi %y Zia | [10] 1
o'(1)=3 3 13] 1
0 12] 7
18] 4
%)) 96 Zo %o Z1s | 27] 18
dM)=3 |[311] 16
(3 14] 8
5 6] 24
(4,8) 165 Zhs %o Zi1 | 127] 15
o'(1)=2 [0 5] 11
[12 0] 5
8 8] 15
4,9) 300 Tz %o Zas | 9 21] 1
o'(1)=2 11 10] 12
8 2] 75
1 15] 12
(4,10) 506 Tz %o Zas | |7 15] 2
o(W)=5 |[511] 22
[0 3] 23
(8 0] 11
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(A, T) Order Group Generators | Order of
Generators
(5,7) 110 Zs %o Zos | 27] 10
o'(1)=T7 [0 5] 22
2 0] 5
3 8] 5
[4 18] 5
(5.,8) 188 Zi %o Zar | 3 17] 1
o'(1)=5 3 6] 4
[0 33] 47
[2 35] 94
[2 39] 94
(5,9) 340 Zoo %o Z17 | 127] 10
o'(1)=3 15 10] 4
17 8] 20
13 5] 20
9 13] 20
(5,10) 520 Z20 Xo Z26 [2 7] 10
o'(1)=7 15 1] 4
[17 6] 20
13 8] 20
[9 10] 20
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(A, T Order Group Generators | Order of
Generators
(6,8) 224 Ziu Xe Z1s | [27] 112
o()=3 | [111] 112
(1 14] 56
[9 6] 56
[9 4] 28
[4 7] 112
[9 3] 112
(6,9) 396 Z1g Xo Zog | [2 7] 198
o'(1)=7 [15 5] 6
(3 0] 6
[17 8] 18
(17 8] 18
(8 17] 198
[15 19] 6
[1 4] 18
(6,10) 770 Zoy Xo Z35 | [2 7] 55
o'(1)=2 15 27] 154
[13 5] 154
13 14] 22
21 22] 154
[10 32] 385
(17 11] 154
[17 33] 154
[10 17] 385
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(A, T) Order Group Generators | Order of
Generators
(7,9) 450 Zlg X Z25 [2 7] 225
o'(1)=2 15 2] 6
(3 10] 6
(17 19] 18
(17 17] 18
8 17] 225
[15 16] 6
[1 23] 18
[0 2] 25
(7,10) 820 ZQO X i [2 7] 10
o'(1)=6 [15 27] 4
[17 28] 20
[13 7] 20
[9 16] 20
6 6] 10
[11 35] 20
9 6] 20
8 38] 5
[5 33] 4
(A, T) Order Group Generators | Order of
Generators
(8,10) 882 Zlg Xo Z49 [2 7] 9
o'(1)=2 [15 27] 6
(3 12] 6
(17 0] 18
[17 22] 18
(8 18] 9
[15 39] 6
[133] 18
[0 24] 49
9 8] 2
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