



CDMTCS Research Report Series

Hideki Yamasaki Hitotsubashi University

CDMTCS-191 July 2002

Centre for Discrete Mathematics and Theoretical Computer Science

A Simple Example of an ω-language Topologically Inequivalent to a Regular One

A Simple Example of an ω-language Topologically Inequivalent to a Regular One

Ludwig Staiger

Martin-Luther-Universität Halle-Wittenberg Institut für Informatik von-Seckendorff-Platz 1, D–06099 Halle (Saale), Germany Electronic Mail: staiger@informatik.uni-halle.de

Hideki Yamasaki*

Department of Mathematics, Hitotsubashi University Kunitachi, Tokyo 186-8601, Japan Electronic Mail: yamasaki@math.hit-u.ac.jp

Landwebers's paper [La69] and the subsequent ones [SW74, TY83] proved a strong relationship between acceptance conditions imposed on finite automata on ω -words and the first classes of the Borel hierarchy in the Cantor space of all ω -words, (X^{ω}, ρ) , over a finite alphabet X. In Theorem 5 of [SW74] it is shown that an ω -language accepted by a finite automaton being simultaneously an \mathbf{F}_{σ} - and a \mathbf{G}_{δ} -set belongs already to the Boolean closure of the class of all open (or, equivalently, closed) subsets of $(X^{\omega}, \rho), \mathcal{B}(\mathbf{G})$. Thus, an ω -language $F \subseteq X^{\omega}$ which is simultaneously an \mathbf{F}_{σ} - and a \mathbf{G}_{δ} -set but not a Boolean combination of open sets cannot be accepted by a finite automaton. For a more detailed discussion see e.g. [EH93, St97] or [Th90], for the notation used here see [St97].

The aim of this note is to provide a simple¹ example that a proposition analogous to Theorem 5 of [SW74] is no longer true if we increase the computational power of the accepting device slightly:

We augment the finite control by a so-called blind counter (cf. [EH93, Fi01], these automata are also known as partially blind counter automata [Gr78]), that is, by a counter which has no influence on the computational behavior of the automaton except

^{*}This paper was written during my visit to Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, 1999, supported by grant 10-KO-87 from Ministry of Education, Culture, Sports, Science and Technology of Japan.

¹The meaning of the word "simple" here is twofold: on the one hand, as explained above, the topological complexity of our counterexample is the simplest possible one, and, on the other hand, the accepting device has a power only slightly increasing the power of a finite automaton.

that the automaton gets stuck when the counter is decremented below zero. Moreover we require the counter to be one-turn, that is, once we decrease the value of the counter we cannot increase it afterwards.

We are not going to define these one-turn blind one-counter automata in full detail, instead we proceed with the announced example. On reading the first block of a's

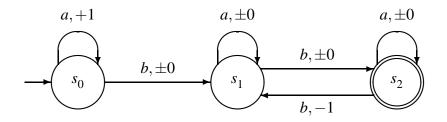


Figure 1: A Büchi automaton accepting the ω -language of Eq. (1)

the automaton stores the block length in the counter, and after reading the first *b* the automaton switches to the cycle of states s_1, s_2 where the counter is decremented after every second *b*. Thus the automaton gets stuck when the input $a^i bw$ contains at least 2i + 2 bs and, consequently, if the automaton does not get stuck it will finally stay in one of its states. (Looping between s_1 and s_2 is bounded by the number of initial *as*.)

Thus depending on the infinite input word ξ our automaton will stay in

 $s = \begin{cases} s_0, & \text{if } \xi = a^{\omega} \\ s_1, & \text{if } \xi = a^n b \cdot \xi' \text{ and } \xi' \text{ contains an even number of } b \text{'s less than } 2n+1 \\ s_2, & \text{if } \xi = a^n b \cdot \xi' \text{ and } \xi' \text{ contains an odd number of } b \text{'s less than } 2n+2. \end{cases}$

Our acceptance condition is Büchi's condition and the set of final states is $\{s_2\}$, that is, an ω -word $\xi \in \{a, b\}^{\omega}$ is accepted if and only if the automaton runs infinitely often through state s_2 when reading ξ . Thus the ω -language accepted by our automaton is

$$F = \bigcup_{n \in \mathbb{N}} a^n b \cdot \bigcup_{i \le n} (a^* b)^{2i+1} \cdot a^{\omega}.$$
⁽¹⁾

This ω -language is a countable subset of $\{a,b\}^{\omega}$, thus an \mathbf{F}_{σ} -set. Since it is accepted by a deterministic automaton using Büchi acceptance it is also a \mathbf{G}_{δ} -subset of $\{a,b\}^{\omega}$ (cf. [EH93, St97]).

We are going to show that our ω -language *F* cannot be represented as a Boolean combination of open (or closed) ω -languages. Thus, according to Theorem 5 of [SW74] (an even stronger version is Corollary 23 of [St83]), it cannot be accepted by a finite automaton.

Assume the contrary, that is, let E_i, E'_i be open subsets of $\{a, b\}^{\omega}$ such that

$$F = \bigcup_{i=1}^{k} E_i \smallsetminus E'_i .$$
⁽²⁾

Consequently, every subset $F \cap w \cdot \{a, b\}^{\omega}$ has a similar representation

$$F \cap w \cdot \{a, b\}^{\omega} = \bigcup_{i=1}^{k} \left(E_i \cap w \cdot \{a, b\}^{\omega} \right) \smallsetminus \left(E'_i \cap w \cdot \{a, b\}^{\omega} \right).$$
(3)

as a Boolean combination of open sets $E_i \cap w \cdot \{a, b\}^{\omega}$ and $E'_i \cap w \cdot \{a, b\}^{\omega}$.

Consider the ω -languages $F_n := F \cap a^n b \cdot \{a, b\}^{\omega} = a^n b \cdot \bigcup_{i \le n} (a^* b)^{2i+1} \cdot a^{\omega}$. Every single ω -language F_n is accepted by a finite automaton. Moreover, F_n is essentially (up to the prefix $a^n b$ and the encoding: $\overline{1} \to a$ and $0 \to b$) Wagner's ω -language $c_1^{2n-1} := \bigcup_{i < n} (a^* b)^{2i+1} \cdot a^{\omega}$ taken over the alphabet $\{a, b\}$.

It is shown in Lemma 11 of [Wa79] that $c_1^{2n+1} \in \widehat{C}_1^{2n+1} \smallsetminus \widehat{C}_1^{2n-1}$ and, consequently, $F_n \in \widehat{C}_1^{2n-1} \smallsetminus \widehat{C}_1^{2n-3}$. For the definition of Wagner classes see [Wa79, p. 139] or Definition 4.1 of [St97].

At the same time Eq. (3) and the fact that the ω -languages F_n are accepted by finite automata imply $F_n \in \widehat{C}_1^{2k+1}$ for all $n \in \mathbb{N}$, a contradiction. Thus Eqs. (3) and (2) cannot hold true, and F is not a Boolean combination of open subsets of Cantor space (X^{ω}, ρ) .

Finally, we present the Petri net derived from the automaton in Fig. 1 which accepts the same ω -language. For acceptance of ω -languages by Petri nets see [HR86, Va83].

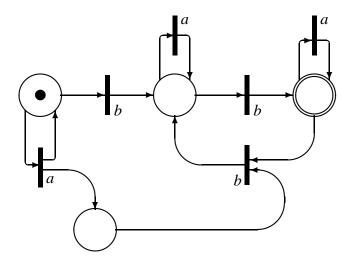


Figure 2: A Petri net accepting F

In Fig. 2, the initial marking is represented by a black dot. We also adopt Büchi's acceptance condition with the set of accepting markings having at least one token in the doubly circled place. Likewise we may adopt the co-Büchi acceptance condition where ultimately all accepting markings have a token in the doubly circled place.

References

- [EH93] J.Engelfriet and H.J. Hoogeboom, X-automata on ω -words, Theoret. Comput. Sci. 110 (1993) 1, 1–51.
- [Fi01] O. Finkel, Wadge hierarchy of omega context-free languages. Theoret. Comput. Sci. 269 (2001), 283–315.
- [La69] L.H. Landweber, Decision problems for ω-automata, Math. Syst. Theory 3 (1969) 4, 376–384.
- [Gr78] S. Greibach. Remarks on blind and partially blind one-way multicounter machines. Theoret. Comput. Sci. 7 (1978), 311–324.
- [HR86] H.J. Hoogeboom and G. Rozenberg, Infinitary languages: Basic theory and applications to concurrent systems. In: Current Trends in Concurrency. Overviews and Tutorials (eds. J.W. de Bakker, W.-P. de Roever and G. Rozenberg), Lect. Notes Comput. Sci. 224, Springer-Verlag, Berlin 1986, 266–342.
- [St83] L. Staiger, Finite-state ω -languages. J. Comput. System Sci. 27 (1983) 3, 434–448.
- [St97] L. Staiger, ω-languages, in: *Handbook of Formal Languages*, Vol. 3,
 G. Rozenberg and A. Salomaa (Eds.), Springer-Verlag, Berlin 1997, 339–387.
- [SW74] L. Staiger und K. Wagner, Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektron. Informationsverarb. Kybernetik EIK 10 (1974) 7, 379–392.
- [TY83] M. Takahashi and H. Yamasaki, A note on ω -regular languages. Theoret. Comput. Sci. 23 (1983), 217–225.
- [Th90] W. Thomas, Automata on infinite objects, in: Handbook of Theoretical Computer Science, Vol. B, J. Van Leeuwen (Ed.), Elsevier, Amsterdam 1990, 133–191.
- [Va83] R. Valk, Infinite behaviour of Petri nets. Theoret. Comput. Sci. 25 (1983), 311–341.
- [Wa79] K. Wagner, On ω-regular sets. Inform. and Control 43 (1979), 123–177.