
CDMTCS
Research
Report
Series

Finite State Strategies in
One Player McNaughton
Games

Bakhadyr Khoussainov
Department of Computer Science
University of Auckland
Auckland, New Zealand

CDMTCS-189
May 2002

Centre for Discrete Mathematics and
Theoretical Computer Science

Finite State Strategies in One Player
McNaughton Games

Bakhadyr Khoussainov
The University of Auckland, New Zealand

1 Introduction and Basic Concepts

In this paper we consider a class of infinite one player games played on finite
graphs. Our main questions are the following: given a game, how efficient
is it to find whether or not the player wins the game? If the player wins
the game, then how much memory is needed to win the game? For a given
number n, how does the underlying graph look like if the player has a winning
strategy of memory size n?

The games we study can be seen as a restrictive case of McNaughton
games first introduced in McNaughton’s known paper [8]. In turn, Mc-
Naughton games belong to the class Büchi and Landweber games [1]. In
these games one of the players always has a winning strategy by the result of
Martin [7]. McNaughton in [8] proves that winners in his games have finite
state winning strategies, that is strategies induced by finite automata, called
LVR (last visitation record strategies) strategies; the name LVR is derived
from LAR (last appearance record) first used in the known paper of Gurevich
and Harrington [5].

McNaughton games can be used to develop game-theoretical approaches
for many important concepts in computer science (e.g. models for concur-
rency, communication networks, update networks), to model computational
problems (e.g. problems in known complexity classes such as P), and have
close interactions with such fundamental notions as finite state machine or
automata. For example, Nerode, Remmel and Yakhnis in a series of papers
(e.g. [9] [10]) developed foundations of concurrent programming in which
finite state strategies of McNaughton games are identified with distributed

1

concurrent programs. Another example is that McNaughton games may also
be considered as models of reactive systems in which two players, Controller
and Environment, interact with each other. Specifications of McNaughton
games can then be associated with requirements put on the behaviour of the
reactive systems. In this line, finite state winning strategies can be thought
as programs satisfying the specifications.

In [3] Dinneen and Khoussainov use McNaughton games for modeling
and studying structural and complexity-theoretical properties of update net-
works. Later, in [2] Bodlaender, Dinneen and Khoussainov generalize update
networks by introducing the concept of relaxed update network and provid-
ing a p-time algorithm for detecting relaxed update networks. Ishihara and
Khoussainov in [6] study another class of McNaughton games, called linear
games, in which the winners can be detected efficiently with a given param-
eter.

Finally, we would like to mention the work of S. Dziembowski, M. Jur-
dzinski, and I. Walukievich [4]. They provide a detailed study of finite state
winning strategies in McNaughton games, and show that the data structure
associated with McNaughton’s LVR strategies, in a certain natural sense, is
an optimal one. For instance, they provide examples of McNaughton games
Γn, n ∈ ω, such that the size of the graph of Γn is O(n), and every winning
finite state strategy requires memory of size n!

In this paper we continue the line of work outlined above, and devote our
study to a restrictive case of McNaughton games. We first begin with the
following definition borrowed from [8]:

Definition 1 A game Γ is a tuple (S
⋃
A,E,Ω), where:

1. The sets S and A are disjoint and finite, where S is the set of positions
for Survivor and A is the set of positions for Adversary,

2. The set E of edges is such that E ⊆ A× S⋃S × A and for all s ∈ S
and a ∈ A there are a′ ∈ A and s′ ∈ S for which (s, a′), (a, s′) ∈ E,

3. The set Ω is a subset of 2S∪A.

The graph (V,E), with V = S ∪ A, is the system or the graph of the
game, the set Ω is the specification, and each set U ∈ Ω is a winning
set.

2

In game Γ, a play (from p0) is an infinite sequence π = p0, p1, . . . such
that (pi, pi+1) ∈ E, i ∈ ω. Survivor always moves from positions in S, while
Adversary from A. Define Inf(π) = {p | ∃ωi(p = pi)}. Survivor wins the
play if Inf(π) ∈ Ω; otherwise, Adversary wins. The histories are finite
prefixes of plays. A strategy for a player is a rule that specifies the next
move given a history of the play. Let f be a strategy for the player and p be
a position. Consider all the plays from p which are played when the player
follows the strategy f . We call these plays consistent with f from p.

Definition 2 The strategy f for a player is a winning strategy from p if
the player wins all plays from p consistent with f . In this case the player
wins the game from p. To decide game Γ means to find the set of all
positions, denoted by Win(S), from which Survivor wins. The set Win(A)
is defined similarly1.

McNaughton’s algorithm in [8] that decides games is inefficient. In [9]
Nerode, Remmel and Yakhnis improved the algorithm by deciding any given
game Γ in O(|V |!2|V ||V ||E|)-time which is, of course, far from being efficient.
A natural question arises as to find conditions, put either on the specifications
or the systems, under which the games are decided efficiently. Here are
related results.

A natural specification is to require Survivor to update every node of the
system. Formally, Γ is an update game if Ω = {V }. In [3] it is shown that
update games can be decided in O(|V ||E|)-time. Update games have been
generalized in [2]. Namely, a game Γ is a relaxed update game if U

⋂
W =

∅ for all distinct U,W ∈ Ω. It is proved that there exists an algorithm
that decides relaxed update games in O(|V |2|E|)-time. In [6] Ishihara and
Khoussainov study linear games in which Ω forms a linear order with respect
to the set-theoretic inclusion. They prove that linear games can be decided
in polynomial time with parameter |Ω|.

Clearly, in the results above, all the constraints are designed for specifi-
cations Ω but not for the structure (topology) of the system. In this paper
we close this gap. We stipulate a constraint by not allowing Adversary to
have any choices. In other words, we assume that from any given Adver-
sary’s node a ∈ A Adversary can make at most one move. ¿From this point

1Any McNaughton game Γ is a Borel game. Hence, Win(S)
⋃
Win(A) = S

⋃
A.

3

of view, we study one player games. We investigate the complexity of find-
ing the winners in these types of games, extracting winning strategies, and
characterizing the topology of the game graphs in which Survivor wins.

Here is an outline of the paper. In the next section, Section 2, we intro-
duce two basic concepts of this paper. One is that we formally define one
player games. The other is the notion of a finite state strategy, - a strategy
that can be induced by a finite automaton. We also define the concepts of
global and local strategy. In Section 3, we provide an algorithm that decides
any given one player game in linear time. In Section 4, we introduce games
called basic games. Informally, these are building blocks of one player games.
Given such a game, we provide efficient algorithms that construct finite au-
tomata inducing winning strategies. Finally, in the last section we provide
a structural characterization of those basic games in which Survivor has a
winning strategy induced by an automaton with a specified number of states.
This characterization allows one to generate basic games that can be won by
Survivor using strategies induced by n-state automata. We use notations
and notions from finite automata, graphs, and complexity. All graphs are
directed graphs. For a vertex (or equivalently node) v of a graph G = (V,E),
we write Out(v) = {b | (v, b) ∈} and In(v) = {b | (b, v) ∈ E}. Cardinality of
a set A is denoted by |A|.

2 One Player Games and Strategies

We concentrate on games where the topology of the graph games does not
allow Adversary to make choices. We formalize this as follows. Let Γ = (G,Ω)
be a McNaughton game. Assume that |Out(a)| = 1 for each Adversary’s node
a ∈ A. This game is effectively a one player game, the player is Survivor,
because Adversary has no effect on the outcome of any play. We single out
these games in the following definition that ignores the set A of vertices, and
assumes that all vertices are owned by one player, – Survivor.

Definition 3 A one player game is a tuple Γ = (V,E,Ω), where V is the
set of vertices, E is the set of directed edges such that for each v ∈ there is
v′ for which (v, v′) ∈ E, and Ω ⊂ 2V . The graph G = (V,E) is the system
or the graph of the game, and Ω is the specification.

Given a one player game Γ, there is only one player, – Survivor. A run
(or play) from a given node v0 of the system is a sequence π = v0, v1, v2, . . .

4

such that (vi, vi+1) ∈ E for all i ∈ ω. Survivor wins the play if Inf(π) ∈ Ω.
Otherwise, Survivor looses the play. Thus, each play is totally controlled by
Survivor, and begins at node v0. At stage i + 1, given the history v0, . . . , vi
of the play, Survivor makes the next move by choosing vi+1. Survivor wins
the game from position p if the player has a winning strategy that wins
all the plays from p.

One can think of a one player game as follows. There is a finite state
system represented as a graph whose nodes are the states of the system. The
system fully controls all of its transitions. The system runs and tries to satisfy
a certain task represented as a specification of the type Ω. In this metaphor,
the system is Survivor and a winning strategy can be thought as a program
satisfying the specification Ω. Deciding whether or not there is a winning
strategy for Survivor can now be seen as a realizability of specification Ω for
the given system.

Let Γ = ((V,E),Ω) be a one player game. We want to find finite state
strategies that allow Survivor to win the game if this is possible. For this,
we need to formally define finite state strategies. For game Γ = (V,E,Ω)
consider an automaton A = (Q, q0,∆, F), where V is the input alphabet, Q
is the finite set of states, q0 is the initial state, ∆ maps Q× V to Q, and F
maps Q× V into V such that (v, f(q, v)) ∈ E for all q ∈ Q and v ∈ V .

The automaton A induces the following strategy, called a finite state
strategy. Given v ∈ V and s ∈ Q, the strategy specifies Survivor’s next
move which is F (s, v). Thus, given v0 ∈ V , the strategy determines the run
π(v0,A) = v0, v1, v2, . . ., where vi = F (qi−1, vi−1) and qi = ∆(vi−1, qi−1) for
each i > 0. If Inf(π(v0,A)) ∈ Ω, then A induces a winning strategy from v0.
When Survivor follows the finite state strategy induced by A, we say that
A dictates the moves of Survivor. To specify the number of states of A we
give the following definition.

Definition 4 A finite state strategy is an n-state strategy if it is induced
by an n state automaton. We call 1-state strategies no-memory strategies.

Let A be an automaton inducing a finite state winning strategy in game
Γ. The strategy is a global strategy in the sense that A can process any
given node of the system, and dictate Survivor’s next move. This, generally
speaking, means that A knows the global structure of the system, or at least
in order to implement A one needs to know the structure of the game graph.
Therefore implementing A could depend on processing the whole graph G.

5

We now formalize the concept of local strategy in contrast to global strate-
gies. An informal idea is the following. Given a game graph G, assume that
with each node v ∈ V there is an associated automaton Av. The underlying
idea is that Av is a machine that knows v locally, e.g. all or some vertices
adjacent to v and has no knowledge about the rest of the system.

Initially, allAv are at their start states. The strategy for Survivor induced
by this collection of machines is as follows. Say, Survivor arrives to node v.
The player refers to machine Av that based on its current state dictates
Survivor’s next move, changes its state, and waits until the player arrives to
v the next time. The strategy induced in this way is a local strategy. Every
local strategy is a finite state one. The basic idea is that implementing and
controllingAv at node v could be much easier and cheaper than implementing
the whole machine that controls the system globally and dictates Survivor’s
moves all over the system.

3 Deciding One Player Games

This section provides a result that uses Tarjan’s algorithm (see [11]) for
detecting strongly connected graphs. Though the result is simple it shows a
significant difference between times needed to decide McNaughton games in
general case (see introduction) and in case of one player games. Here is our
result:

Theorem 1 There exists an algorithm that decides any given one player
game Γ = (G,Ω) in O(|Ω| · (|V |+ |E|))-time.

Proof. Let p be a node in V . We want to decide whether or not Survivor
wins the game from p. Here is a description of our desired algorithm:

1. Check whether or not there is a U ∈ Ω such that for all u ∈ U there
exists a u′ ∈ U for which (u, u′) ∈ E. Call such U closed. If there is no such
U then declare that Survivor looses.

2. Check whether or not for every closed U ∈ Ω the subgraph GU =
(U,EU), where EU = E ∩ U2, determined by set U is strongly connected2.

2A graph is strongly connected if there is path between any two nodes of the graph.
Tarjan’s algorithm detects whether or not the graph GU is strongly connected in O(|U |+
|EU |)-time

6

If none of these graphs GU is strongly connected, then declare that Survivor
looses.

3. Let X be the union of all closed U ∈ Ω such that ΓU is strongly
connected. Check whether or not there is a path from p into X. If there is
no path from p into X then declare that Survivor looses. Otherwise, declare
that Survivor wins.

Note that it takes linear time to perform the first part of the algorithm.
For the second part we use Tarjan’s algorithm for detecting strongly con-
nected graphs. Thus, for any closed U ∈ Ω, apply Tarjan’s algorithm to
check whether or not GU = (U,EU) is strongly connected. The algorithm
runs in O(|U |+ |EU |)-time. Hence overall running time for the second part
is at most c · (|V |+ |E|). For the third part, constructing X and checking if
there is a path from p to X takes linear time. Thus, the algorithm runs at
most in O(c · (|E|+ |V |)-time.

Now we need to show that the algorithm is correct. Assume that none
of the winning conditions U ∈ Ω is closed. Consider any run π = v0, v1, . . .
of the system. Clearly, there is no U ∈ Ω for which Inf(π) = U because U
is not closed. This shows that if there does not exist a closed U ∈ Ω then
Survivor looses.

Now let U be a closed set. Consider the one player game ΓU = (GU , {U}).
Then it is not hard to see that Survivor wins this game if and only if the
graph GU = (U,EU) is strongly connected. Now assume that for each closed
U the graph GU is not strongly connected. Consider any run π = v0, v1, . . . of
the system and its infinity set Inf(π). Clearly, if U is closed and Inf(π) = U
then this would mean that GU is strongly connected. This contradicts the
assumption.

Now assume that X 6= ∅ and there is a path from p into X. Then Survivor
wins by using the following strategy. From node p reach X. Let q be the
first position in X that has been reached. Then there is a strongly connected
closed U ∈ Ω such that q ∈ U . Then Survivor wins by visiting each of the
nodes in U infinitely often without ever leaving U . Assume that X 6= ∅
but there does not exist a path from p into X. Then by reasoning similar
to above one sees that any run from p is not won by Survivor. Hence the
algorithm is correct.

�

7

4 Finite State Strategies for Basic Games

The proof of Theorem 1 shows that deciding one player games Γ = (G,Ω) is
essentially dependent on checking whether or not the graphs GU = (U,EU),
where U is closed, are strongly connected. Therefore we single out the games
that correspond to winning a single set U ∈ Ω in our next definition:

Definition 5 A one player game Γ = (G,Ω) is a basic game if Ω = {V }.

We begin with the next result showing that finding efficient winning
strategies in basic games is computationally hard. By efficient winning strat-
egy we mean an n-state winning strategy for which n is small.

Proposition 1 For any basic game Γ = (G, {V }), Survivor has a no-memory
winning strategy if and only if the graph G = (V,E) has a Hamiltonian path.
Therefore, finding whether or not Survivor has a no-memory winning strategy
is NP-complete.

Proof. Assume that the graph G has a Hamiltonian path v0, . . . , vn.
Then, it is clear that the mapping vi → vi+1(mod(n+1)) establishes a no-memory
winning strategy for Survivor. Assume now that in game Γ Survivor has a no-
memory winning strategy f . Consider the play π = p0, p1, p2, . . . consistent
with f . Thus f(pi) = pi+1 for all i. Since f is a no-memory winning strategy
we have Inf(π) = V . Let m be the least number for which p0 = pm. Then
it is not hard to see that V = {p0, . . . , pm} as otherwise f would not be a
winning strategy, and that the sequence p0, . . . , pm is a Hamiltonian path.

�

The last two parts of the next theorem are of special interest. The second
part of the theorem motivates the study of basic games in which Survivor
can win with a fixed finite state strategy. This is done in the next section.
The third part of the theorem provides a natural example of a local finite
state strategy.

Theorem 2 1. There exists an algorithm that decides any given basic
game in O(|E|+ |V |)-time.

2. There exists an algorithm that for any given basic game in which Sur-
vivor is the winner provides an automaton with at most |V | states that
induces a winning strategy. Moreover, the algorithm runs in O(|V |2)-
time.

8

3. There exists an algorithm that for any given basic game in which Sur-
vivor is the winner provides a finite state local winning strategy. More-
over, for each v ∈ V the algorithm construct the automaton Av in
O(|Out(v)|)-time.

Proof. Part 1 follows from Theorem 1. We prove Part 2. In the proof
all additions are taken modulo n, where n = |V |. Let us list all nodes of
the system v0, . . . , vn−1. For each pair (vi, vi+1), i = 0, . . . , n− 1, introduce a
state si, and find a path that pi,0, . . . , pi,ti such that pi,0 = vi and vi+1 = pi,ti .
The desired automaton in state si directs Survivor from vi towards vi+1, and
as soon as vi+1 is reached the automaton changes its state from si to si+1.
Finding a path from vi to vi+1 takes linear time. Therefore constructing the
desired automaton takes at most O(|V |2)-time. This proves the second part
of the theorem.

We now prove Part 3). Assume that Survivor wins Γ. We think of Γ as
the graph G given in its adjacency list representation. Let v be a node of
the system and L(v) = {p0, . . . , pr−1} be the list of all nodes adjacent to v.
For node v we construct the automaton Av with r states s0(v), . . . , sr−1(v),
s0(v) being the initial state. The automaton acts as follows. When Av is in
state si(v) and input is v the automaton dictates Survivor to move to pi+1

and changes its own state to si+1(v), where addition is taken modulo r.

Let f be the strategy induced by the collection {Av}v∈V of automata.
We need to prove that f is a winning strategy. Note that (V,E) must be
strongly connected since Γ is won by Survivor by the assumption. Let π be
the play consistent with f . Take v ∈ Inf(π). Since G is strongly connected
for every node v′ ∈ V there is a path v1, . . . , vn with v1 = v and vn = v′. By
the definition of f note that v1 ∈ Inf(π) because v occurs infinitely often.
Reasoning in this way, we see that v2 ∈ Inf(π). By induction, we conclude
that vn ∈ Inf(π). Therefore all the nodes in V appear in Inf(π). The
theorem is proved.

5 Finite State Strategies and Structure

In this section our goal consists of giving a characterization of the graph
structure of the basic games Γ = (G, {V }) in which Survivor has a winning
n-state strategy. This characterization allows one to have a process that
generates basic games won by Survivor using strategies induced by n-state

9

automata. Our main aim is to study the case when n = 2 as the case for
n > 2 can be derived without much difficulty. So from now on we fix the
basic game Γ, and refer to Γ as a game. The case when n = 1 is described
in Proposition 1. The case when n = 2 involves a nontrivial reasoning.

Case n = 2. By the reasons that will be seen below (see the proof of
Theorem 3) we are interested in graphs G = (V,E) such that |In(q)| ≤ 2
and |Out(q)| ≤ 2 for all q ∈ V . A path p1, . . . , pn in graph G is called a
2-state path if |In(p1)| = |Out(pn)| = 2 and |In(pi)| = |Out(pi)| = 1 for all
i = 2, . . . , n− 1. If a node q belongs to a 2-state path then we say that q is
a 2-state node. A node p is a 1-state node if |In(p)| = |Out(p)| = 1 and
the node is not a 2-state node. A path is a 1-state path if each node in it
is a 1-state node and no node in it is repeated.

We now define the operation which we call Glue operation that applied
to finite graphs produces graphs. By a cycle we mean any graph isomorphic
to ({c1, . . . , cn}, E), where n > 1 and E = {(c1, c2), . . . , (cn−1, cn), (cn, c1)}.
Assume that we are given a graph G = (V,E) and a cycle C = (C,E(C))
so that C ∩ V = ∅. Let P1, . . ., Pn and P ′1, . . ., P ′n be paths in G and
C, respectively, that satisfy the following conditions: 1) These paths are
pairwise disjoint; 2) Each path Pi is a 1-state path; 3) For each i = 1, . . . , n,
we have |Pi| = |P ′i |. The operation Glue has parameters G, C, P1, . . ., Pn,
P ′1, . . ., P ′n defined above. Given these parameters the operation produces
the graph G ′(V ′, E ′) in which the paths Pi and P ′i are identified and the edges
E and E(C) are preserved. Thus, one can think of the resulted graph as one
obtained from G and C so that the paths Pi and P ′i are glued by putting
one onto the other. For example, say P1 is the path p1, p2, p3, and P ′1 is the
path p′1, p

′
2, p
′
3. When we apply the operation Glue, P1 and P ′1 are identified.

This means that each of the nodes pi is identified with the node p′i, and the
edge relation is preserved. Thus, in the graph G ′ obtained we have the path
{p1, p

′
1}, {p2, p

′
2}, {p3, p

′
3}. An important comment is the next claim whose

proof can be seen from the definition:

Claim 1 In the resulted graph G ′ each of the paths Pi is now a 2-state path.
�

The definition below defines the class of graphs that can be inductively
constructed by means of the operation Glue.

Definition 6 A graph G = (V,E) has a 2-state decomposition if there
is a sequence (G1, C1), . . ., (Gn Cn) such that G1 is a cycle, each G i+1 is

10

obtained from the G i and Ci, and G is obtained from Gn and Cn by applying
the operation Glue.

An example of a graph that admits a 2-state decomposition can be given
by taking a union C1,. . ., Cn of cycles so that the vertex set of each C i,
i = 1, . . . , n − 1, has only one node in common with C i+1 and no nodes in
common with other cycles in the list. We now need one additional definition:

Definition 7 We say that the graph G = (V,E) is an edge expansion of
another graph G ′ = (V ′, E ′) if V = V ′ and E ′ ⊆ E.

If Survivor wins a basic game Γ = (G, {V }) with an n-state winning
strategy then the same strategy wins the game Γ′ = (G ′, {V ′}) where G ′ is an
edge expansion of G. Now our goal consists of proving the following theorem:

Theorem 3 Survivor has a 2-state winning strategy in Γ = (G, {V }) if and
only if G is an edge expansion of a graph that admits a 2-state decomposition.

Proof. Assume that Survivor has a 2-state winning strategy induced by
the automaton A = (Q,∆, s1, F). We need to produce a 2-state decomposi-
tion of a graph whose edge expansion is G. Consider the play π(p1,A) dic-
tated byA. We can record the play, taking into account the sequence of states
the automatonA goes through, as the following sequence (p1, s1), (p2, s2), (p3, s3), . . .,
where s1 is the initial state, si+1 = ∆(si, pi) and pi+1 = F (si, pi) for all i ∈ ω.
Note that the sequence (p1, s1), (p2, s2), (p3, s3), . . . is eventually periodic, that
is, there are i < j such that (pi+n, si+n) = (pj+n, sj+n) for all n ∈ ω. There-
fore without loss of generality we may assume that the sequence

(p1, s1), (p2, s2), (p3, s3), . . . , (pk, sk) (?)

is, in fact, the period. Thus, (pk+1, sk+1) = (p1, s1) and all pairs in (?) are
pairwise distinct. Note that the set V of vertices coincides with {p1, . . . , pk}
because A induces a winning strategy. Moreover, no pi in the period (?)
appears more than twice since A is a 2-state automaton.

An edge (p, q) of the system is an A-edge if p = pi and q = pi+1 for some
i. Thus, an A-edge is one used by A infinitely often. Consider the basic
game Γ(A) that occurs on the graph (V,E(A)), where E(A) is the set of all
A-edges. Clearly, A induces a winning strategy in game Γ(A). Therefore,
we always assume that E = E(A).

11

If all pis appearing in the period (?) are pairwise distinct then our theorem
is true. Therefore we assume that there is at least one p ∈ V that appears
in (?) twice. Let i < j be positions in the period (?) such that pi = pj and
no node of the system appears twice between these positions. Thus, we have
the cycle pi, pi+1, . . . , pj in the graph G. We denote it by C = (C,C(E)). Let
now pn ∈ C be such that (x, pn) ∈ E and x 6∈ C. Hence, in the sequence
(?) the automaton A dictates Survivor to move from x into pn at some point
of the play. Let pm be be the first position at which Survivor chooses an
edge not in C after moving from x into pn. Thus, there is a y such that
(pm, y) ∈ E \ E(C).

We claim that the path pn, . . . , pm is a 2-state path. Indeed, clearly
|In(pn)| = |Out(pm)| = 2. This guarantees that each p in the path pn, . . . , pm
appears twice in the period (?). Assume that |In(p)| = 2 for some p appear-
ing strictly between pn and pm. This means there is a z such that (z, p) ∈ E,
and this edge is an A-edge. Therefore p must appear in (?) more than
twice. We conclude that the assumption |In(p)| = 2 is incorrect. The case
|Out(p)| = 2 can not happen because of the choice of pm. Thus, pn, . . . , pm
is a 2-state path.

Let P1, . . ., Pt be all 2-state paths appearing in the path pi, . . . , pj. These
paths are pairwise disjoint. Consider the graph G(i, j) = (V (i, j), E(i, j)),
where V (i, j) is obtained from V by removing all the vertices that belong to
C \ (P1 ∪ . . . ∪ Pn), and E(i, j) is obtained by removing all the edges (a, b)
from E if the edge (a, b) occurs in the path pi, pi+1, . . . , pj−1, pj and a and b
belong to distinct paths P1, . . ., Pt. Let Γ(i, j) be the basic game played on
the graph (G(i, j), {V (i, j)}).

Lemma 1 The graph G is obtained from the graph G(i, j), the cycle C, and
paths P1, . . . , Pn by using the operator Glue. Moreover, Survivor has a 2-state
winning strategy in the basic game Γ(i, j).

The first part of the lemma follows without difficulty. For the second
part, we construct a 2-state automaton A′ that induces a winning strategy
in game Γ(i, j). An informal description of A′ is as follows. The automaton
A′ simulates A except the following case: Assume that the automaton A′ is
in state s and reads input q ∈ Pi such that Survivor is dictated to stay in
C but leave Pi. In this case A′ behaves as A would behave when leaving
C. More formally, assume that F(s, q) ∈ C \ Pi and F (s′, q) 6∈ C and (q, s′)
occurs in (?). In this case, ∆′(s, q) = ∆′(s′, q) = ∆(s′, q) and F ′(s, q) =

12

F ′(s′, q) = F (s′, q). Now note that the play consistent with A′ never reaches
those nodes which are in C \ (P1 ∪ . . . ∪ Pt) but assumes any other node
infinitely often. The reason is that each node in C \ (P1∪ . . .∪Pt) is a 1-state
node, and appears in (?) once. The lemma is proved.

The size of G has now been reduced. Recursively, replace Γ with Γ(i, j)
and apply the same reasoning to Γ. Thus, G has a 2-state decomposition.
We proved the theorem in one direction.

For the other direction, we need to show that if G in game Γ = (G, {V }) is
an edge expansion of a graph admitting a 2-state decomposition then Survivor
has a 2-state winning strategy. Without loss of generality, we assume that
(G1, C1), . . ., (Gn Cn) is a 2-state decomposition of G. By induction on n we
prove that Survivor wins game Γ.

For n = 1, G is simply a cycle. Hence Survivor wins G by a no-memory
strategy. Assume now that Survivor has a 2-state winning strategy induced
by an automaton An to win the game Γn = (Gn, {Vn}), and G is obtained
from Gn and the cycle Cn by using Glue operation on paths P1, . . . , Pt and
P ′1, . . . , P

′
t . Another inductive assumption is that E(An) = En.

Lemma 2 Consider the period (?) corresponding to the winning run π(p,An)
in game Gn. Then for each i, 1 ≤ i ≤ n, each node in Pi appears in (?) just
once.

Indeed, take Pi and x ∈ Pi. Since Pi is a 1-state path either there is a
path p, . . . , x such that |Out(p)| = 2 and |Out(y)| = |In(y)| = 1 for all nodes
y between p and x, or there is a path p, . . . , x, . . . , q for which |In(p)| = 2,
|In(q)| = 2 and |Out(y)| = |In(y)| = 1 for all nodes y strictly between p and
q.

In the first case, assume that x appears twice in (?). This mean p must
appear in (?) twice, and Survivor must move along the path p, . . . , x at least
twice. However, |Out(p)| = 2, and therefore Survivor at some position in the
sequence (?) must choose the node adjacent to p but not in the path p, . . . , x.
Thus, p appears in the sequence (?) three times, which is a contradiction. In
the second case, a contradiction is obtained in a similar manner by showing
that q appears at least three times in the sequence (?).

The lemma above tells us that one can implement the automaton An in
such a way that An does not change its states while running through each
path Pi. Based on this assumption we now describe the automaton An+1.

13

First, An+1 runs through the cycle C, then A simulates An by visiting all the
nodes in Gn without entering nodes in C \ (P1 ∪ . . . ∪ Pt). The theorem is
proved.

�

Now we outline how to generalize the case for n > 2. We are interested in
graphs G = (V,E) such that |In(q)| ≤ n and |Out(q)| ≤ n for all q ∈ V . A
path p1, . . . , pn in graph G is called an n-state path if |In(p1)| = |Out(pn)| =
n and |In(pi)| < n and |Out(pi)| < n for all i = 2, . . . , n − 1. If a node q
belongs to an n-state path then we say that q is a n-state node. A node p
is a (n-1)-state node if |In(p)| < n and |Out(p)| < n and the node is not an
n-state node. A path is a (n-1)-state path if each node in it is a (n-1)-state
node.

We now define the operation which we denote by Gluen that applied to
finite graphs produces graphs. Assume that we are given a graph G = (V,E)
and a cycle C = (C,E(C)) so that C∩V = ∅. Let P1, . . ., Pt and P ′1, . . ., P ′t be
paths in G and C, respectively, that satisfy the following conditions: 1) These
paths are pairwise disjoint; 2) Each path Pi is a (n-1)-state path; 3) For
each i = 1, . . . , t, we have |Pi| = |P ′i |. The operation Gluen has parameters
G, C, P1, . . ., Pt, P ′1, . . ., P ′t defined above. Given these parameters the
operation produces the graph G ′(V ′, E ′) in which the paths Pi and P ′i are
identified and the edges E and E(C) are preserved.

Claim 2 In the resulted graph G ′ each of the paths Pi is now a n-state path.
�

The definition below defines the class of graphs that can be inductively
constructed by means of the operation Gluen.

Definition 8 A graph G = (V,E) has an n-state decomposition if there
is a sequence (G1, C1), . . ., (Gk, Ck) such that G1 is a cycle, each G i+1 is
obtained from the G i and Ci, and G is obtained from Gk and Ck by applying
the operation Gluen.

The next theorem gives a characterization of games at which Survivor has
n-state winning strategy. The proof follows the lines of the previous theorem:

Theorem 4 Survivor has a n-state winning strategy in Γ = (G, {V }) if and
only if G is an edge expansion of a graph that admits an n-state decomposition.

�

14

6 Conclusion

This paper deals with a structural constraint put on the topology of the
systems in McNaughton games. It would be interesting to pinpoint those
intrinsic structural properties of McNaughton games that make them hard
to decide. It also seems that there is a trade-off between structural and
specification constraints. Rigid structural constraints allow to weaken spec-
ification constraints without effecting efficiency of deciding games (witness
Theorem 1), and vice versa. Also, we would not be surprised if the first
part of Theorem 2 can be done more efficiently. For this, one probably needs
to have a deeper analysis of BFS algorithms. It seems to be an interesting
problem to understand when efficient finite state strategies (e.g. no-memory
or 2-memory strategies) can be extracted by using efficient time and space
resources. Finally, we mention the relationship between our games and tem-
poral logic (see [12]) not discussed in this paper; essentially, the specifications
of McNaughton games can be expressed in temporal logic. In general, we ex-
pect many more results in the study of McNaughton games from complexity,
structure, and logic points of view.

References

[1] J. R. Büchi, L.H. Landweber. Solving Sequential Conditions by Finite
State Strategies. Trans. Amer. Math. Soc. 138, p.295-311, 1969.

[2] H.L. Bodlaender, M.J. Dinneen and B. Khoussainov. On Game-Theoretic
Models of Networks, in Algorithms and Computation (ISAAC 2001 pro-
ceedings), LNCS 2223, P. Eades and T. Takaoka (Eds.), p. 550-561,
Springer-Verlag Berlin Heidelberg 2001.

[3] M. J. Dinneen and B. Khoussainov. Update networks and their rout-
ing strategies. In Proceedings of the 26th International Workshop on
Graph-Theoretic Concepts in Computer Science, WG2000, volume 1928
of Lecture Notes on Computer Science, pages 127–136. Springer-Verlag,
June 2000.

[4] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory
is needed to win infinite games? In Proceedings, Twelth Annual IEEE
Symposium on Logic in Computer Science, p. 99-110, Warsaw, Poland,
1997.

15

[5] Y. Gurevich and L. Harrington. Trees, Automata, and Games, STOCS,
1982, pages 60–65.

[6] H. Ishihara, B. Khoussainov. Complexity of Some Infinite Games Played
on Finite Graphs, to appear in Proceedings of the 28th International
Workshop on Graph-Theoretic Methods in Computer Science, WG 2002,
Checz Republic.

[7] D. Martin. Borel Determinacy. Ann. Math. Vol 102, 363-375, 1975.

[8] R. McNaughton. Infinite games played on finite graphs. Annals of Pure
and Applied Logic, 65:149–184, 1993.

[9] A. Nerode, J. Remmel, and A. Yakhnis. McNaughton games and ex-
tracting strategies for concurrent programs. Annals of Pure and Applied
Logic, 78:203–242, 1996.

[10] A. Nerode, A. Yakhnis, V. Yakhnis. Distributed concurrent programs
as strategies in games. Logical methods (Ithaca, NY, 1992), p. 624–653,
Progr. Comput. Sci. Appl. Logic, 12, Birkhauser Boston, Boston, MA,
1993.

[11] R.E. Tarjan. Depth first search and linear graph algorithms. SIAM J.
Computing 1:2, p. 146-160, 1972.

[12] M. Vardi. An automata-theoretic approach to linear temporal logic. Pro-
ceedings of the VIII Banff Higher Order Workshop. Springer Workshops
in Computing Series, Banff, 1994.

16

