88868888

CDMTCS
Research
Report
Series

Implementing Bead—Sort
with P systems

Joshua J. Arulanandham
Department of Computer Science

University of Auckland
Auckland, New Zealand

CDMTCS-186
May 2002

Centre for Discrete Mathematics and
Theoretical Computer Science

Implementing Bead—Sort with P systems

Joshua J. Arulanandham

Abstract

In this paper, we implement Bead—Sort, a natural sorting algorithm we introduced
in [1], with the new, biochemically inspired P systems. We make use of a special
type of P system — a tissue P system that computes by means of communication
(using symport/antiport rules) only.

1 Bead—-Sort Algorithm

Bead-Sort is a natural sorting algorithm for positive integers. See [1] where we intro-
duced the new sorting algorithm Bead-Sort along with a proof of correctness, analyzed
its complexity and discussed different possible implementations in detail. Here, we im-
plement Bead—Sort using the new, biochemically inspired P systems. See [2] (where
Paun first introduced P systems) and [3] for a detailed discussion on P systems. A brief
description of Bead—Sort algorithm follows.

We represent positive integers by a set of beads (like those used in an Abacus) as
illustrated below in Figure 1.

number 3 number 2

e e oo

beads
Figure 1

Beads slide through rods as shown in Figure 2.

2T “
¢ | | Je
3 4
J~~~ ¢ e €66 ©6
hh D ©®
ree | &9 ¢ s

Figure 2

Fig. 2 (a) shows the numbers 4 and 3 (represented by beads) attached to rods; beads
displayed in Fig. 2 (a) appear to be suspended in the air, just before they start sliding
down. Fig. 2 (b) shows the state of the frame (a frame is a structure with the rods
and beads) after the beads are ‘allowed’ to slide down. The row of beads representing
number 3 has ‘emerged’ on top of the number 4 (the ‘extra’ bead in number 4 has dropped
down one ‘level’). Fig. 2 (c¢) shows numbers of different sizes, suspended one over the
other (in a random order). We allow beads (representing numbers 3, 2, 4 and 2) to slide
down to obtain the same set of numbers, but in a sorted order again (see Fig. 2 (d)). In
this process, the smaller numbers emerge above the larger ones and this creates a natural
comparison (an online animation of the above process can be seen at [4]).

Rods (vertical lines) are counted always from left to right and levels are counted from
bottom to top as shown in Fig. 3. A frame is a structure consisting of rods and beads.

Levels

Consider a set A of n positive integers to be sorted and assume the biggest number
in A is m. Then, the frame should have at least m rods and n levels. The Bead—Sort
algorithm is the following:

The Bead—Sort Algorithm

For all a € A drop a beads (one bead per rod) along the rods, starting
from the 1%! rod to the a'* rod. Finally, the beads, seen level by level, from
the n'* level to the first level, represent A in ascending order.

The algorithm’s run-time complexity ranges from O(1) to O(S) (S is the sum of the
input integers) depending on the user’s perspective.

2 Objects = Beads, Membranes = Rods

A tissue P system with symport/antiport is used to implement Bead-Sort. (See Figure 4.)
Beads are represented by objects x placed within the membranes; a rod is represented

by a ‘group’ of membranes that can communicate with one another by means of sym-
port/antiport rules. Note that the object ‘—’ represents “absence of bead”. Thus, the
objects z and ‘—’ together will reflect bead—positions in the initial state of the frame.

A

counter—-membranes rod-membranes

_

Figure 4

Morover, the “flow” of objects between the group of membranes representing a rod
(using communication rules) will reflect the actual flow of beads in the physical system.
The ‘counter membranes’ (see Figure 4) along with the object p will serve the purpose
of generating ‘clock pulses’; they are useful especially to synchronize, while ejecting the
output in the desired sequence. We distinguish these from the other set of membranes
— the ‘rod membranes’.

More formally, we have a tissue P system with symport/antiport of degree m x n+n
(m x n membranes to represent m rods with n levels; extra n membranes to serve as
counters). Note that m rods with n levels can sort n positive integers, the biggest among
them being m.

In the following sections, we discuss the various symport/antiport rules used to sim-
ulate Bead-Sort. A simple P system that can sort 3 integers (biggest among them is 3)
is used for illustrative purpose. To explain the necessity of each rule, we initially start
with a system having only the ‘basic rule’, then gradually add more and more complex
rules till we arrive at the complete system. We formally define the system only at the
final stage.

3 Making bead—objects “fall down”

As outlined in the previous section, one can set—up the initial state of the frame using
a tissue P system. Now, the objects = (representing the beads) should be made to
fall down/flow like the real beads in the physical system. This is achieved through a
simple antiport rule. See Figure 5 which demonstrates the rule with a simple tissue
P system representing 3 rods with 3 levels; we start with the unsorted set {2, 1, 3}.
The antiport rule initiates an exchange of objects x and ‘—’; this “simulates” the action
of beads falling down. Figure 5(c) shows the sorted state of the frame; note that the

antiport rule can no longer be applied. Also, one can see that not more than (n — 1)
steps will be consumed to reach the sorted state using the application of this rule.

7 8 9
X X X
(7, x]-,4) 8,x]-,5) (9,x]-,6)
4 5 6
X — _
(4,X|—,1) (5,X|—,2) (6,X|—,3)
1 2 3
X X —

Figure 5(a)

‘o ‘o) 7 8 9
N Y
X —_ —_ —_ —
X
— —/
— —
4 5 6
o o) 4 5 6
N M
X X X -
X X
— —/
— —
1 2 3
) o) 1 2 3
N VN
X X - X X X
— —/
— —
Figure 5(b) Figure 5(c)

Observe that the multiplicity of the object £ in the membranes comprising the same
level taken together (e.g. membranes 1,2 and 3 in Figure 5 comprise level-1) denotes an
integer. And, these integers are now in the sorted order, viewed level-wise, as seen in
Figure 5(c).

Now, we discuss the rules for “reading” the output in the proper sequence, in the
following section.

4 Reading the output

The output can be read in the proper sequence using only symport/antiport rules. But,
the rules are a little more complex. The idea is to first “know” when the P system
has reached the sorted state; then, the objects from the rod—membranes can be ejected
into the environment, starting from level-1 to level-n. The objects from membranes
comprising (denoting) the same level will be ejected simultaneously as a ‘single string’

4

to be externally interpreted as representing a distinct integer. Thus the ejected output
will form the following language:

{String of objects from level-1 membranes, String of objects from level-2 membranes, ...}

Note that, externally, the multiplicity of z is “calculated” separately for each string in
the language which are ejected at different points of time.

Now, let us include new rules that accomplish these actions related to reading the out-
put. Figure 6 shows the inclusion of new symport rules in the rod—-membranes. Observe
the inclusion of new objects c1, ¢2, ¢3 in the rules. These rules would eject (symport) the
z objects from the membranes into the environment along with the “prompting” objects
cl, €2, ¢3, but only if they (cl, ¢2, ¢3) are present. It is clear that, one has to first send
cl, ¢2, ¢3 into the rod—membranes in order to “prompt” the ejection of the output. In
what follows, we discuss the rules that do the “prompting”.

12

7 8 9
X X X
(7,x]|-,4) (8,x]-,5) (9,x]-,6)
(7,xcl,0) (8, xc2,0) (9, xc3,0)
11 4 5 6
X — —
(4, x]-,1) 6,x]-,2) 6,x]-,3)
(4,xc1,0) (5, xc2,0) (6, xc3,0)
10 1 2 3
X X —
(1, xcl,0) (2,xc2,0) (3,xc3,0)
Figure 6

Remember, before prompting the ejection of output, the system has to first “know”
(and ensure) that it has reached the sorted state. The new rules to be discussed help
ensure this. Figure 7 shows new rules added to the counter-membranes. Note the
presence of object p within membrane 12. These new symport rules would “move” p
from one counter membrane to the other, driven by the global clock. After n — 1 time
units of the global clock (2 units in our example), p would have been symported to the
counter—-membrane denoting level-1 (membrane 10). Recall from previous section, not
more than (n — 1) steps will be consumed for the bead-objects to “fall down” and reach
the sorted state.

level-3

level-2

level-1

12

level-3

11

level-2

10

level-1

P
(12,p,11)

(11, p, 10)

(19, p | gc1c2c3,)

(12, pp, 11)

(22, r | gclc2c3, 0)
(12,c1,7)
(12,c2,8)
(12,¢3,9)

(11, p, 10)

(11, g | rclc2ce3, 0)
(11,c1,4)
(11,c2,5)

(11, ¢c3, 6)
. (11,r,12))

4 N
(10, p | gclc2c3, 0)

(10, c1, 1)
(10,c2, 2)
(10, ¢3, 3)

(10,9, 11)

cl, c2,c3.... (available in arbitrary numbers outside)

7 8 9
X X X
(7, x]|-,4) (8,x]-,5) (9,x]-,6)
(7,xc1,0) (8, xc2,0) (9, xc3,0)
4 5 6
X — —
(4, x]-,1) 6,x[-,2) 6,x]-,3)
(4, xc1,0) (5, xc2,0) (6, xc3,0)
1 2 3
X X —
(1,xcl,0) (2,xc2,0) (3,xc3,0)
Figure 7

q,r ...

cl, c2,c3.... (available in arbitrary numbers outside)

7

8 9
X X X
7, x|-,4) 8, x]-,5) (9, x|-,6)
(7, xcl,0) (8, xc2,0) (9, xc3,0)
5 6
X — —
4,x]-,1) 5,x|-,2) 6,x|-,3)
(4,xcl,0) (5, xc2,0) (6, xc3,0)
1 2 3
X X —
(1, xc1,0) (2, xc2,0) (3,xc3,0)
Figure 8

Thus, the presence of p within [evel-1 counter-membrane (membrane 10) would en-
sure that the bead-objects have settled down in a sorted state.! Note that the other
rules written in membrane 10 (level-1 counter-membrane) would start prompting ejec-
tion of the output, after p is availabe in membrane 10. The rules get cl, ¢2, ¢3 (and
another object ¢) from the environment and transfer them into the group of membranes
representing level-1 (1,2 and 3 in our case) thus prompting the ejection of z objects as
output. (Assume the presence of arbitrary number of cl, ¢2, ¢3 in the environment. The
need for object g will be discussed shortly.)

Still we need to add more rules which prompt the ejection of (output) strings from
level-2 upto level-n. The idea is to move two new objects ¢ and r (alternately) through
the counter-membranes, now from level-2 upto level-n (“upward”)?. The presence of
objects ¢ and r in the counter—-membranes would trigger certain new rules that would sub-
sequently prompt output from level-2 upto level-n rod—membranes, one by one. (Note,
in our case, n = 3.) These rules have been included in Figure 8. (Assume the presence
of arbitrary number of ¢’s and 7’s in the environment.)

5 A Sample Illustration

We first formally define a tissue P system of degree 12 (3 rods x 3 levels + 3 counter
membranes) with symport/antiport rules which can sort a set of three positive integers,
the maximum among them being three:

n=(V,T, wl, w2, .., wl2, My, R)
where:
(i) V (the alphabet) = {z, —, p, ¢, r, c1, €2, c3}
(ii) T (the output alphabet) C V'

T = {=z, cl, 2, ¢3} (the multiplicity of cl, ¢2, ¢3 is to be ignored, finally)
(iii) wl, ...,w12 are strings representing the multisets of objects initially present in the
regions of the systems. These are shown in Figure 9(i).
(iv) Mo(z) = Mo(—) = Mo(p) = 0;

Mo(q) = Mo(r) = Mo(cl) = Mo(c2) = Mo(c3) = oo
(v) R is a finite set of (symport/antiport) rules.

They are enumerated in Figure 8.
Note that we do not use a separate ‘output membrane’, but prefer to “eject” the output
into the environment.

Figure 9 illustrates sorting {2, 1, 3} with snap—shots of all the intermediate configu-
rations, clearly showing the evolution of the system until output is “read”.

!Note, we are forced to adopt this method because, there seems to be no better way to ensure whether
the system has reached the final state or not;for instance, we can not deduce this from the ‘states’ of
individual membranes.

2We can not use p again as it has already been used by earlier rules; p would activate the same set of
actions as before, which is undesirable.

12

11

10

X c2

(V)

12

11

10

12

11

10

12

11

10

Figure 9

(vi)

12 7 8 9

' ' ' '
r X a - -
- - clc2 X
— — — — (‘A?
= N—— N—— N——
11 4 5 6
' ' ' N 11 4 5 6
' ' ' '
x cl| |xcZ |—c3
N—— N—— N— N—
N— N—— N—— N——
10 1 2 3
Vo Vo Vo Vo 10 1 2 3
' ' ' '
N—— N—— N— N—
N— N—— N—— N——
(viii)
12 7 8 9 12 7 8 9
' ' ' ' ' ' ' '
q x cl - — q
N—— N— N— N—— N— N—— N—— N——
11 4 5 6 11 4 5 6
' ' ' ' ' ' ' '
N—— N— N— N—— N— N—— N—— N——
10 1 2 3 10 1 2 3
' ' ' ' ' ' ' '
N—— N— N— N—— N— N—— N—— N——
(ix) (x)

Figure 9 (cont’d.)

Note that output strings from membranes denoting levels 1, 2 and 3 would be ejected
during stages(vi), (viii) and (x) (in Figure 9) respectively. One has to ignore the cl, 2,
¢3s that accompany x objects and take into account only the multiplicity of x in each
output string.

6 Conclusion

Bead—-Sort, a natural algorithm for sorting positive integers has been implemented with a
tissue P systemn that uses only symport/antiport rules. The complexity of the algorithm is
O(n). As the system uses only communication rules (symport/antiport), the procedure
to read the output has been a bit tedious. The P system built for sorting three numbers
can be generalized for sorting any n positive integers by simply adding more membranes,
without any change in the number of rules employed.

Acknowledgement

We thank Dr. G. Piaun for comments and suggestions which improved the paper.

References

[1] J. J. Arulanandham, C. S. Calude, M. J. Dinneen. Bead-Sort: A natural sorting
algorithm, EATCS Bull., 76 (2002), 153-162.

[2] Gh. Paun. Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108-143.

[3] C. S. Calude, Gh. Paun. Computing with Cells and Atoms: An Introduction to
Quantum, DNA, and Membrane Computing, Taylor and Francis, New York, 2000.

[4] J. J. Arulanandham. The Bead-Sort. Animation, www.geocities.com/natu-
ral_algorithms/josh/beadsort.ppt.

10

