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1 Introduction

Our aim in writing this paper is twofold. On the one hand, we present the theory
of automatic structures from the points of view of model theory, algebra, complexity
theory, and automata theory. On the other hand, we survey basic results and present
possible directions for future research in the area. The theory of automatic structures
as such is relatively new though its roots go back to the beginning of the developments
of finite automata theory. The term automatic structure in the sense presented in this
paper appeared in [12] in 1995. One can view the theory of automatic structures as

Automata Theory + Model Theory + Universal Algebra + Complexity Theory

The fact that the foundations of the theory come from the interactions of well-established
areas with their own techniques, methods, and problems places it on solid ground.

A remarkable point is that an interest in the area arose from investigations of re-
search groups with different mathematical interests and motivations. One is the group
of Cannon, Epstein and Thurston and their collaborators in the theory of hyperbolic
manifolds. They realised that many computational problems about fundamental groups
of 3-manifolds are related to finite automata theory. This resulted in the development of
the theory of automatic groups, see [7]. The area has now been generalised with the in-
troduction of automatic semigroups (see [1] for example). The other group of researchers
in computable model theory and algebra (see the handbook [9] for the current state of
the area) headed by Nerode and Ershov began the development of the theory of fea-
sible structures with the goal of understanding the relationship between constructions
in model theory and computations with bounded resources, e.g. polynomial time/space
computations (see for example [17]). In this line of work the paper [12] by Khoussainov
and Nerode initiated the study of automatic structures in a general setting. Finally,
Blumensath and Grädel motivate the study of automatic structures as a natural gener-
alisation of finite model theory that provides a framework for extending techniques and
results from finite structures to infinite ones, see [4].

In the theory of formal languages finite automata are used to describe infinite objects,
that is infinite languages. Then the study of infinite objects is done in terms of their
finite descriptions. From an algebraic point of view, languages as such do not carry any
nontrivial structural information because they are identified simply with sets of words.
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The underlying idea in the theory of automatic structures is to describe not just infinite
languages but also algebraic structures, such as graphs, orders, groups etc., using finite
automata.

Here is a brief outline the paper. In the next section we give basic definitions and
provide examples. Section 3 gives an overview of the area from a model theory point
of view. Section 4 is devoted to the study of automatic structures from a point of view
of algebra. In Section 5, we present results that relate the area to complexity theory.
Finally in Section 6, we discuss topics related to automatic isomorphisms and domain
dependency of algebraic properties of structures. Each section contains a list of open
problems for possible future work in the area.

2 Basic Definitions and Examples

Fix a finite alphabet Σ. A finite automaton (FA) A over Σ is a tuple of sets (S, I,∆, F ),
where S is a finite set of states, I ⊂ S is the set of initial states, ∆ ⊂ S × Σ × S is
the transition table and F ⊂ S is the set of final states. One naturally extends ∆ to a
relation on S×Σ∗×S, also denoted by ∆. We sometimes write ∆ in functional notation.
A computation of the automaton A on a word σ1σ2 . . . σn (σi ∈ Σ) is a sequence of states
of A, say q0, q1, . . . , qn, such that q0 ∈ I and (qi, σi+1, qi+1) ∈ ∆ for all 0 ≤ i ≤ n − 1.
If qn ∈ F , then the computation is successful and we say that automaton A accepts the
word. The language, L(A) ⊂ Σ∗ , accepted by the automaton A is the set of all words
accepted by A. In general, D ⊂ Σ is finite automaton (FA) recognisable, or regular, if
D = L(A) for some finite automaton A. We assume that the reader is familiar with the
basics of finite automata theory.

We now introduce automata that recognise n–ary relations on Σ∗. In this paper,
these automata are synchronous n–tape automata. The following description is based
on Eilenberg et al. [6] and is equivalent to the formal definition. A synchronous n–tape
automaton can be thought of as a one-way Turing machine with n input tapes. Each
tape is regarded as semi-infinite having a finite word in the alphabet Σ written on it
followed by an infinite succession of blanks, � symbols. The automaton starts in an
initial state, reads simultaneously the first symbol of each tape, changes state, reads
simultaneously the second symbol of each tape, changes state, etc., until it reads a blank
on each tape. The automaton then stops and accepts the n–tuple of words, or not,
according to whether or not it is in a final state. The set of all n–tuples accepted by the
automaton is the relation recognised by the automaton.

Definition 1. Let Σ� denote the alphabet Σ∪{ � } where
� 6∈ Σ. The convolution of a

tuple (w1, · · · , wn) ∈ (Σ?)n is the tuple (w1, · · · , wn)� ∈ (Σn
� )? formed by concatenating

the least number of blank symbols, �, to the right ends of the wi, 1 ≤ i ≤ n, so that
the resulting words have equal length. The convolution of a relation R ⊂ Σ ∗n is the
relation R� ⊂ (Σn

� )∗ formed as the set of convolutions of all the tuples in R.
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Definition 2. An n–tape synchronous automaton (henceforth n–tape automaton)
on Σ is a finite automaton over the alphabet (Σ�)n. An n–ary relation R ⊂ Σ?n is FA
recognisable or regular if its convolution R� is recognisable by an n–tape automaton.

Thus, a 2–tape automaton takes as input a pair of the form (w1, w2) where w1, w2 ∈
Σ?
� , the words w1 and w2 have the same length, and in each word no element of Σ follows

a �. At the kth step of a computation on (w1, w2), the automaton reads as input a pair
of the form (σ1, σ2) where σi ∈ Σ� is the kth symbol of wi, i = 1, 2. Clearly 1–tape
automata coincide with the usual finite automata.

We now relate n–tape automata to structures. A structure A consists of a set A
called the domain, some constants and atomic relations and operations on A. We may
assume that A only contains relational and constant predicates as the operations can
be replaced with their graphs. We write A = (A,RA

1 , . . . , R
A
k , c

A
0 , . . . , c

A
t ) where RA

i is an
ni–ary relation on A and cAj is a constant element of A. Then (Rn1

1 , . . . , R
nk
k , c0, . . . , ct)

is called the signature of A. In the sequel, all structures are relational, have finite or
countable domains and finite signatures.

Definition 3. A structure A = (A,RA
1 , . . . , R

A
k , c

A
0 , . . . , c

A
t ) is automatic over Σ if its

domain A ⊂ Σ? and the relations RA
i ⊂ Σ∗ni all are FA recognisable. A structure will

be called automatic if it is automatic over some alphabet. An isomorphism from a
structure B to an automatic structure A is an automatic presentation of B in which
case B is called automatically presentable (over Σ) and A an automatic copy of B.

We often ease notation by removing the superscripts from Ri when no ambiguity
arises.

In general, a given structure need not be automatic. For example, the structure A =
({0, 1}?, P ), where P = {0n1n | n ∈ ω}, is not automatic because the unary predicate
P can not be recognised by a finite automaton. However, this structure possesses many
automatic presentations; for example B1 = ({0}?, P1) and B2 = ({0, 1}?, P2), where
P1 = {02n | n ∈ ω} and P2 = {(001)n | n ∈ ω}. Clearly, both of these structures are
isomorphic to A and are automatic. Therefore, these two are automatic copies of A.
Thus, one can think of an automatic copy B of a structure A as a finite automaton
implementation of A.

One can use somewhat different terminology. Let A be a structure and B be an
automatic copy of A; so the domain B is FA recognisable. Let ν : B → A be a mapping
that establishes an isomorphism from B onto A. Now, one can think of the set B as the
set of codes of elements of A. Thus, if a ∈ A and ν(w) = a then w is the code (under
ν) of the element a. Under this coding the atomic relations of A are made to be finite
automata recognisable. Thus, one can talk about algorithmic properties of A under the
presentation B. In other words, instead of working with the structure A itself (that may
actually be impossible to do because A can be computationally inaccessible) one may
identify A with B and work directly with B.
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Thus, the definitions above present the idea of using finite automata as a tool for de-
scribing structures, or more precisely the isomorphism types of structures. In this sense,
automatic structures supersede finite automata recognisable languages, and connect two
fundamental concepts of mathematics: algebraic structures and finite state machines.

Here is a list of structures that have automatic presentations. We invite the reader to
find automatic presentations of these structures though some of the presentations will
be explained later.

• Presburger arithmetic (ω,+, S).
• The group of integers (Z,+).
• The linearly ordered sets ωn, where n is finite.
• The Boolean algebra of finite and co-finite subsets of a countable set.
• Countable absolutely free unary algebras.
• Finitely generated abelian groups.
• The linearly ordered set of rational numbers.
• Infinite countable vector spaces over finite fields.
• The structure (ω, f), where f is a bijection on ω forming exactly one cycle of length
p(n) for any given n with p being any polynomial with coefficients from ω.
• The semirings (ω,+, min) and (ω,+, max).

Let A = (A,R1, . . . , Rn) be an automatic structure. Consider the list pr(A) =
(M0,M1, . . . ,Mn) of finite automata such that each automaton Mi, i > 0, is deter-
ministic and recognises Ri, and M0 recognises the domain A. We set |pr(A)| to be
max{|Mi| | 0 ≤ i ≤ n}. This is the size of the representation of A. Of course, there are
infinitely many presentations of the structure A.

3 A Model Theory Point of View

We refer the reader to the book [10] for the basic model theory concepts. Let T be a first
order theory. In model theory primary objects of study are models of T . As our basic
interest is in automatic structures, we would like to investigate those models of T that
are automatic. A motivating question is this: what are the properties of the theory T
that allow the theory T to admit automatic models? We do not have a complete answer
to this question. Here are, however, some partial results.

Perhaps, a fundamental property that naturally makes automatic structures objects
of investigation from a model theoretic as well as a complexity point of view is the
following theorem, first stated explicitly in [12]:

Theorem 1. For any automatic structure A there exists an algorithm that given a first
order definition of any relation R in A produces a finite automaton that recognises the
relation R. In particular, the first order theory of A is decidable.
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Proof (sketch). Let R be a relation and φ(x1, . . . , xn) be a formula defining R. The
proof proceeds by induction on the complexity of the formula φ and rests on the closure
properties of FA recognisable relations. If φ is an atomic formula then the definition of
automatic structures tells us that R is FA recognisable. The case for boolean connectives
is taken care of by the fact that the FA recognisable relations are closed under the
union and complementation operations. The existential quantifier corresponds to taking
projections; and the FA recognisable relations are closed under this operation. ut

Thus, if T is a complete theory and has an automatic model then T is decidable. We
note that it is not always true that every decidable complete theory has an automatic
model. A good example is the absolutely free algebra generated by a constant whose
language contains at least one binary function symbol (for the proof see [12]). Blumen-
sath and Grädel extended [3] Theorem 1 by showing that the theorem holds even if one
considers the first order logic extended by the quantifier “there exist infinitely many”,
denoted by FO(∃∞). In particular

Theorem 2. For any automatic structure A the set of all sentences of FO(∃∞) logic
true in the structure A is decidable. �

One of the important topics in model theory and logic is related to interpretations.
A general question of interest is the following. Does there exist, for a given class of
models, a universal structure in which all models in the class and only them can be
interpreted? For example, the arithmetic (ω, 0, S,+,×) is the universal structure in
which all computably enumerable structures can be interpreted by existential formulas.
Blumensath and Grädel studied this question for the class of automatic structures.

Definition 4. Let A and B be structures of signatures L and K, respectively. An n-
dimensional interpretation of A in B consists of

1. a FO(∃∞)-formula δ(x1, · · · , xn) of signature K,
2. for each predicate symbol R of L, a FO(∃∞)-formula φR(x̄1, · · · , x̄m) of K where each

x̄i is an n-tuple of distinct variables and m is the arity of R, and
3. a surjective map f : δ(Bn)→ A

such that for all b̄i ∈ δ(Bn),

B |= φR(b̄1, · · · , b̄m) ⇐⇒ (f b̄1, · · · , f b̄m) ∈ RA.

In this case we say that A is interpretable in B.

The idea is that each element in A is named by an element of Bn via the formula

δ(x1, · · · , xn) and to each atomic operation RA there corresponds a first order definable
formula φR in B. Here is a simple but important theorem whose proof can be deduced
from Theorem 1.

Theorem 3. [4] If A is interpretable in an automatic structure B then A is automatic.
�
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It is well known that any structure A can be coded into a graph G(A) so that these
two structures are interpretable in each other (see for example [10]). This basically tells
us that the study of model theoretic properties of structures can be reduced to the study
of graphs. It turns out that a similar result holds for the class of automatic structures.
In [11] the following theorem is proved:

Theorem 4. For any automatic structure A there exists an automatic graph G(A) such
that these two structures are interpretable in each other.

The proof of the theorem is based on a careful checking that the transformation of
A into G(A) provided in [10] preserves the automata-theoretic properties of the original
structure in the graph G(A).

Let us consider the following two structures:

1. The first structure is a weak fragment of arithmetic, namely � p = (ω,+, |p), where
p > 0 is fixed, + is the addition operation, and x|py iff x = pn and y = kx for some
natural numbers k, n.

2. The second structure is a tree structure, namely M(Σ) = (Σ?, σa,�, el)a∈Σ , where
|Σ| > 1 and

(a) σa(x) = xa for all a ∈ Σ and x ∈ Σ?,
(b) x � y if x is a prefix of y, and
(c) el(x, y) if |x| = |y|.
It is not hard to see that both of these structures have automatic presentations.

Grädel in [8] proved that these two structures are interpretable in each other. It turns
out that each of these structures is universal for the class of all automatic structures.

Theorem 5. [3] A structure A has an automatic presentation if and only if it can be
interpreted in M(Σ).

Proof (sketch). Since M(Σ) is automatic, so is any A that is interpretable in
M(Σ). Now, assume that A is automatic and consider an atomic relation R of A. By
the definition of automaticity of A, the relation R is FA recognisable. It suffices to prove
that R is definable in � p by the result of Grädel mentioned above. Definability of R in

� p can be done by coding the successfull computations of the automaton recognising
the relation R into a formula of the language of � p . This was first proved by Büchi in
the sixties. We refer the reader to [3] for a detailed proof. �

There are many questions of a model-theoretic nature that could be asked about
automatic structures. As mentioned at the beginning of this section the class of models
of a given complete first order theory T is a primary object of study. For example,
model theory provides necessary and sufficient conditions for a theory to have prime and
saturated models. The prime models are the ones that can be elementarily embedded
into all models of T , while saturated models are the ones that realise all possible types
of T in expansions by constants. Informally, prime models are the smallest models of T
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and the saturated models are the biggest models of T . We also mention that computable
model theory characterises theories that have decidable prime or saturated models (see
[9]). Thus a natural step in this direction consists of investigating the following problems:

Problem 1. 1. Give a characterisation of first order complete theories that have auto-
matic (prime, saturated or homogeneous) models.

2. Characterise those first order complete theories T such that every model of T has an
automatic presentation.

For example, consider the first order theory Th(ω) of the linear ordering ω. It has an
automatically presentable prime model ω, an automatically presentable saturated model
ω + � · Q, and a model with no automatic presentation, namely ω + � · ωω. The first
problem should be seen in light of Theorem 1 or Theorem 2 and the classical computable
model theory result stating that a decidable theory has a computable model in which
the satisfaction predicate is computable.

In model theory an important concept is the notion of categoricity. Assume that we
are given a cardinal α. A complete theory T is α-categorical if all models of T that
have cardinality α are isomorphic. There are characterisations of α-categorical theories,
such as the Ryll-Nardzewski theorem, and one of the well-known facts is the result of
Morley stating that ℵ1-categoricity is equivalent to β-categoricity for all β ≥ ℵ1. We
pose the following problem:

Problem 2. Give a characterisation of ℵ0-categorical or ℵ1-categorical theories for which
every model has a FA presentation.

For example, the theory of the linear order of rational numbers is ℵ0-categorical and
has a FA presentation. Similarly, the theory T of the model ( � , S) is ℵ1-categorical and
all models of T have automatic presentations.

4 An Algebraic Point of View

This section discusses two closely related issues. One is devoted to understanding the
isomorphism types of automatic structures. The other is concerned with the question as
whether or not a given particular structure of interest possesses an automatic presenta-
tion.

We begin with the first issue. From an algebraic point of view, a basic goal in the study
of a classes of algebraic structures, such as groups, Boolean algebras, linear orders, lat-
tices, rings etc., consists of finding certain invariants that characterise the structures up
to isomorphism. Automaticity is quite a restrictive requirement to place on an algebraic
structure. Therefore one could hope to have satisfying characterisations of isomorphism
types of automatic structures or of classes of automatic structures. It turns out that, in
general, the situation here is complicated for some classes of structures and well under-
stood for others. To illustrate this, we consider two types of structures whose algebraic
nature and classical isomorphism types are very well understood.
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Permutation Structures

We consider algebras of the type (A, f), where f : A→ A is a bijection. These structures
are called permutation structures. For a ∈ A, the set {f i(a) | i ∈ ω} is called an
orbit of f . Define the following two isomorphism invariants

I1(A) = {n | there is an orbit of size n} and
I2(A) = {(n,m) | there are exactly m orbits of size n},

where n,m ≤ ω. Note that I2(A) is a full isomorphism invariant. In other words per-
mutation structures A and B are isomorphic if and only if I2(A) = I2(B), while I1(·) is
merely preserved under isomorphism. Our goal is to characterise automatic permutation
structures in terms of the invariant sets I1 and I2. The results below show that the
situation here is not as desirable as one wants. We consider two cases.

Case 1. Assume we are restricted to those automatic structures that have automatic
presentations over a unary alphabet. The following theorem gives an explicit character-
isation of the isomorphism types of automatic permutation structures in this case.

Theorem 6. [3] [14] A permutation structure A has an automatic presentation over a
unary alphabet if and only if I1(A) is finite and there are finitely many infinite orbits.

Case 2. This is the general case, |Σ| = 2. In the following theorem we show how to
construct automatic permutation structures from a given FA recognisable language L ⊂
Σ?. This construction builds an automatic permutation structure whose isomorphism
invariant I1 exhibits nontrivial behaviour.

Theorem 7. For any function f which is either a polynomial p whose coefficients are
positive integers or an exponential function kan+b, where k ≥ 2 and a, b are fixed positive
integers, there exists an automatic permutation structure A such that I1(A) = {f(n) |
n ≥ 1} and I2(A) = {(f(n), 1) | n ≥ 1}.

Proof (sketch). Let L be a language over Σ. The growth of L is the function gL
defined as gL(n) = |Σn ∩ L| for n ∈ ω. Thus, gL(n) is the number of strings of length
n that belong to L. For the given function f there exists a FA recognisable language L
whose growth function is exactly f (this is proved in [11]). Let ≤ be an automatic well
order of type ω on Σ?. For each x ∈ L we proceed as follows. If x has length n and is
not the maximal element among all elements in L of length n then f(x) is the minimal
y ≥ x in L whose length is n. Otherwise, f(x) is the minimal element of length n that
belongs to L. Clearly, (L, f) is the desired permutation structure. ut

In the theorem above the invariant I2 is a function whose range is finite, in fact a
subset of {0, 1}. The next example shows that the range of I2 can be infinite. Indeed,
consider an automatic permutation structure A so that I2(A) = {(n, 1) | n > 0}.
Consider the automatic permutation structure B = A × A. Then it is not hard to see
that the range of I2(B) is an infinite set.
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To further illustrate the complexity of the general case, we briefly show a connection
between the invariant I1 and the running times of Turing machines. Let T be a TM and
C(T ) be the graph consisting of all configurations of T , with an edge from configuration
c to d if T can move from c to d in a single transition. The configuration graph C(T )
is an automatic graph. A TM T is reversible if every vertex in C(T ) has indegree
and outdegree at most one. Bennett [2] showed that any deterministic TM T can be
simulated by a reversible TM R. Furthermore, running times of these machines differ by
a constant factor.

Let T imeT (w) be the number of steps T takes to halt on w. We assume that the
unique initial state of T is not a final one, and that for any non-final configuration c
there is a d such that (c, d) is an edge in C(T ).

Theorem 8. For every reversible TM T , there is an automatic permutation structure
A(T ) for which I1(A(T )) = {T imeT (w) | w ∈ Σ?}.

Proof (sketch). Transform the configuration graph of T into a permutation struc-
ture in such a way that T halts on w if and only if the initial configuration containing
w belongs to a finite orbit whose length is T imeT (w). It is possible to guarantee that
these are the only finite orbits of the permutation structure. ut

As a corollary of the theorem one obtains the following undecidability result that
indicates that characterisation of isomorphism types of automatic structures is a hard
problem:

Theorem 9. It is undecidable whether or not two automatic structures are isomorphic.

Proof. For a deterministic TM T ′, construct an equivalent reversible TM T and the
structure A(T ). T halts on no word iff A is isomorphic to the permutation structure
consisting only of infinitely many infinite orbits of type ( � , f). �

Problem 3. Find the precise complexity of the isomorphism problem for automatic struc-
tures in the arithmetical hierarchy or show that the isomorphism problem is not arith-
metical.

Well Ordered Sets

We now turn our interest to well-ordered sets – that is, linear orderings satisfying the
property that every non-empty subset has a minimum element. We refer the reader to
Rosenstein [16] for the relevant background. We would like to understand which well
ordered sets have automatic presentations and which do not. Clearly ω is an automatic
well-order. It is not hard to see that the product of any two automatic well-ordered
sets is automatic. Therefore, the well ordered set isomorphic to ωn has an automatic
presentation. In [12] Khoussainov and Nerode asked the question of finding the min-
imal well-ordered set without an automatic presentation. This has been answered by
Delhomme, Goranko and Knapik [5]:
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Theorem 10. The well-ordered set ωω is the minimal one that does not possess an
automatic presentation. ut

The proof of this theorem is beautiful and greatly exploits the finite state transi-
tions of the automata that represent a well-ordered set. It seems that the ideas of the
proof could be very useful in studying questions related to the existence of automatic
presentations of structures of a particular interest.

We list several problems which we think are of interest, at least from an algebraic
point of view:

Problem 4. 1. Characterise Boolean algebras that possess automatic presentations.
2. Characterise Abelian groups (or groups in general) that possess automatic presenta-

tions.
3. Characterise linearly ordered sets that possess automatic presentations.

We turn to a brief discussion on the second issue mentioned at the beginning of this
section. Assume we are given a structure A. Does A have an automatic presentation?
Of course, not every structure A has an automatic presentation. A necessary condition,
which we have mentioned is not sufficient, is that the theory of A be decidable. We
think that we still lack some good techniques and methods for proving or disproving
that certain structures admit automatic presentations. We do not even know whether or
not some fundamental structures common to computer science and mathematics have
automatic presentations. Here is a list of a sample of such structures with which we end
this section:

Problem 5. 1. Does there exist an automatic presentation of the additive group of ra-
tional numbers?

2. Does there exist an automatic presentation of the random graph?
3. Does there exist an automatic presentation of the atomless Boolean algebra?
4. Does there exist an infinite automatic field?

We note that none of the above questions have positive answers in case when one is
restricted to a unary alphabet. We also expect that answers to some of these questions
could be obtained with not much difficulty.

5 A Complexity Theory Point of View

In light of Theorem 1, automatic structures are natural objects from a complexity theory
point of view. A fundamental problem is the the query evaluation problem: given
an automatic structure A and a formula φ(x̄) compute a finite representation of all ā
in the structure such that φ(ā) holds in A. This amounts to constructing an automaton
recognising the set φ(A) of all the tuples that make the formula φ(x̄) true in A. A
particular case of the query evaluation problem is the model checking problem: given
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an automatic structure A, a formula φ(x̄) and a tuple ā ∈ A, decide whether or not φ(ā)
holds in the structure A.

Each of these problems can be measured from three points of view as discussed in
[3]:

1. (Structural complexity) Given a formula φ, what is the time or space complexity
when one varies the automatic structure A ?

2. (Expression complexity) Given an automatic structure A, what is the time or space
complexity one varies the formula φ?

3. (Combined complexity) What is the time or space complexity when one varies φ and
A?

Note that the complexity here is defined in terms of the size of the deterministic
automata representing A. It seems natural that the complexities of questions related to
query evaluation or model checking problems can be reduced to known questions about
finite automata. We provide some illustrative results. For simplicity we restrict ourselves
to pure relational signatures and quantifier free formulas. The case when signatures have
function symbols should be examined more carefully. This is because the graphs of the
atomic functions are FA recognisable, and hence the values of the functions on a given
input must be computed to evaluate a given formula containing the function symbol.

Here is a theorem that tells us that model checking problem for quantifier free for-
mulas can be computed efficiently, while the query evaluation problem needs more time
and space resources.

Theorem 11. [4]

1. Given an automatic structure A, a quantifier free formula φ(x̄), and a tuple ā ∈ A
checking whether or not φ(ā) is true inA can be computed in O(|φ||ā||pr(A)|log(|pr(A)|))-
time and in O(log(|φ|) + log(|pr(A)|+ log(|ā|)))-space.

2. Given an automatic structure A, a quantifier free formula φ(x̄), constructing an au-
tomaton that computes the set φ(A) takes O(|pr(A)|O(|φ|))–time and O(|φ|log(|pr(A)|))–
space.

Proof (sketch). The proof of the first part basically follows from the fact that given
an automatonM and a string w checking whether or not A accepts w can be computed
in O(|w||M|log(|M|))-time and O(log(|M|) + log(|w|))-space.

For the second part, for each atomic formula φi, i ≤ |φ|, that occurs in φ consider
the automaton Mi that recognises φi(A). Then the automaton M recognising φ(A) is
constructed in such a way that the state set of M is the cartesian product of state sets
of Mi. Hence constructing M takes O(|pr(A)|O(|φ|))-time. �

We refer the reader to [3] for a good exposition of complexities of query evaluation
problems on automatic structures.

The next result, first noted by [4], seems rather discouraging, however, it manifests
the richness of the class of automatic structures. A function is called non-elementary
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if it can not be bounded above by means of any of the functions from the list 2n, 22n ,
. . ..

Theorem 12. There exists an automatic structure in which the expression complexity
of the model checking problem is non-elementary.

A structure that satisfies this theorem is in fact � p (Grädel [8]). This result by itself
leads to many open and natural questions that one could investigate. Here is one.

Problem 6. Give natural examples of classes of automatic structures for which the model
checking problem is solvable in polynomial time.

In relation to this problem we note that Blumensath [3] shows that for any automatic
structure that can be presented over a unary alphabet the model checking problem is
solvable in polynomial time.

6 Automatic Isomorphisms and Domain Dependency

Classically, isomorphic structures are considered identical. In general isomorphic com-
putable structures may exhibit distinct computability-theoretic features. Therefore com-
putable model theory and algebra treat computably isomorphic structures as identical.
As we study structures from the automata theory point of view, it is natural to identify
those automatic structures that are automatically isomorphic. We formalise this in the
following definition.

Definition 5. An automatic structure A is automatically isomorphic to an auto-
matic structure B if there is an isomorphism from A into B that is FA recognisable.

Thus, if A and B are automatically isomorphic then there is an automaton that
exhibits an isomorphism between A and B. It is not hard to see that the automatic iso-
morphism relation between automatic structures is reflexive, symmetric and transitive.
Therefore, we say that A and B have the same automatic isomorphism type if they
are automatically isomorphic.

An immediate question that arises consists of finding those structures that are in-
variant with respect to automatic presentations; that is those structures for which any
two automatic copies are automatically isomorphic. This is answered in [12].

Theorem 13. Any two automatic presentations of a structure A are automatically iso-
morphic if and only if A is finite.

Proof (sketch). Assume that A is automatic and infinite. Take a new symbol σ,
and replace every element w = a0 . . . an in the domain of A with a new word σ(w) =
a0σa1σ . . . an−1σan. Now consider the new structure whose domain is σ(A) = {σ(w) |
w ∈ A}. Induce the atomic relations on A into σ(A) in a natural way thus obtaining a
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new automatic copy σ(A) of A. These two automatic structures are isomorphic but not
automatically isomorphic. �

A basic point that can be deduced from this theorem is that we would like to preserve
the codes naming the elements of a structure. That is, we fix domains and then consider
automatic isomorphisms between structures whose domains coincide. As we think that
this is an interesting point of study we give the following definition:

Definition 6. An automatic structure A is automatically D-isomorphic to an au-
tomatic structure B if A and B have the same domain D and there is an isomorphism
from A into B that is FA recognisable.

One can now study the question as to which structures are invariant with respect to
automatic presentations over the same domain. Here we give an example of a class of
such structures. Recall that an equivalence structure is of the type (E,∼), where ∼ is
an equivalence relation on E.

Proposition 1. Let E = ({1}?,∼) be an automatic equivalence structure. Then any two
automatic presentations of E over {1}? are automatically {1}?–isomorphic.

Proof (sketch). It is shown in [13] that E has finitely many infinite equivalence
classes, and there exists n such that the size of any finite equivalence class is at most n.
Let E1 be an automatic copy of E over the domain {1}?. Then using a characterisation
of FA recognisable languages over a unary alphabet (these are basically finite unions of
arithmetic progressions) it is possible to establish an automatic isomorphism between E
and E1. �

Another interesting problem is to find isomorphic automatic structures over the same
domain which are not automatically isomorphic. We present an example.

Proposition 2. Consider the equivalence structure E that consists of infinitely many
classes of size 1 and size 2. The structure E has two automatic presentations over the
domain {0, 1}? that are not automatically isomorphic.

Proof (sketch). Here are two presentations E 1 and E2 whose domains are {0, 1}?.
In E1 the two element equivalence classes are {02n, 02n+1}, where n ∈ ω. In E2 the sets
{(01)2n, (01)2n+1}, where n ≥ 1, form the two element equivalence classes. It can be
proved that these two automatic structures are not automatically isomorphic. ut

The problem of a general character is now the following:

Problem 7. Let D be a regular language. Characterise those automatic structures for
which any two automatic presentations with domain D are automatically isomorphic.

Finally, we note that many concepts and results of this paper can naturally be gener-
alized by considering tree automata presentations or Büchi automata presentations (see
[3]). The former properly extends the class of finite automata presentable structures and
the latter allows one to extend the results to uncountable structures. One can also study
those presentations where finite automata are restricted by certain language-theoretic
or algebraic properties. We leave all these for further development of the area.
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