
CDMTCS
Research
Report
Series

Computable Isomorphism of
Boolean Algebras with
Operators

Bakhadyr Khoussainov
Department of Computer Science
University of Auckland
Auckland, New Zealand

Tomasz Kowalski
JAIST, Japan

CDMTCS-181
March 2002

Centre for Discrete Mathematics and
Theoretical Computer Science

Bakhadyr Khoussainov, Tomasz Kowalski

Computable isomorphisms of Boolean Algebras with Operators

1. Introduction

One of the central topics in computable algebra and model theory is concerned with the study of

computable isomorphisms. Classically, we do not distinguish between isomorphic structures, however, from

computability point of view, isomorphic structures can differ quite dramatically. A typical example is

provided by the linear order of type ω. It has two computable copies such that in one the successor function

is computable, but it is not computable in the other. These are clearly classically isomorphic, but they are

not computably isomorphic.

Computable isomorphisms of structures have been studied intensely for at least three decades. A

number of natural structures arising in universal algebra, such as Boolean algebras, vector spaces, and

Abelian groups have been considered. In the present paper we continue this line of research and study

computable isomorphisms of Boolean algebras with operators (BAOs). Our interest in these particular

structures is twofold. On the one hand, BAOs are frequently encountered in universal algebra, not least in

their connection to modal logic. On the other, there is a considerable body of results about computable

isomorphisms of Boolean algebras, so one may wonder how expanding the language of Boolean algebras

affects computable isomorphisms. Similar investigations have been carried out quite recently in connection

with computable isomorphisms of Abelian groups and ordered Abelian groups. It has been shown in [5] that

the number of computable isomorphism types of any computable linearly ordered Abelian group is either 1

or ω, a fact true also in the class of computable Abelian groups.

Here is an overview of the paper. In the next two sections we introduce basic concepts from computable

model theory and the theory of BAOs. Section 4 will be devoted to computable enumerations of families of

sets. These will play a central role in our results. In Section 5 we construct a BAO with exactly n computable

isomorphism types, for any given n ∈ ω. This shows how the number of computable isomorphism types

changes when we pass from Boolean algebras (where it can only be 1 or ω, see e.g., [2] or [9]) to Boolean

algebras with operators. Finally, we demonstrate that adding a single constant to a computably categorical

BAO can lift the number of isomorphism types of the expanded BAO to 2, and in fact to any finite k.

2. Basics

We begin with presenting basic definitions from computable model theory.

Definition 1. An algebra A = 〈A; fn0
0 , fn1

1 , . . .〉 is computable if A = ω and the function f(i, x1, . . . , xni) =

fni

i (x1, . . . , xni) is computable. An algebra B is computably presentable if B is (classically) isomorphic to

1

a computable algebra A. In this case, any isomorphism from A onto B is called a computable presentation

(or a computable copy) of B.

For instance, the structure 〈ω; s〉, with s being the successor function, is a computable algebra, andBω—

the Boolean algebra generated by left-closed, right-open intervals of ω under its set-theoretical order—has a

computable presentation.

We are interested in those computable algebras which have the same computable isomorphism types.

We formalise this as follows.

Definition 2. An isomorphism f from a computable algebra B to a computable algebra A is a computable

isomorphism if f itself is a computable function. In this case we say that A and B have the same computable

isomorphism type.

For instance, any two computable copies of ω with successor are computably isomorphic. In general,

two classically isomorphic computable algebras need not be computably isomorphic. The following definition

makes this simple observation precise.

Definition 3. The computable dimension of an algebra A is the number of its computable isomorphism

types. The algebra A is computably categorical if its computable dimension is 1.

A typical example of a computably categorical algebra is any computable finitely generated algebra.

The reason is that any suitable mapping from generators in one computable copy to generators in another

can be extended to a computable isomorphism. As another example we want to mention the following result

obtained independently in [2] and [9] that charcterises computably categorical Boolean algebras.

Theorem 1. A Boolean algebra A is computably categorical if and only if A has finitely many atoms.

Moreover, if A is not computably categorical then its computable dimension is ω.

Usually it is not difficult to find algebras of computable dimension ω or 1. Algebras of finite computable

dimension greater than 1 are much more difficult to come by. Goncharov was the first to construct such

algebras for any given n (cf. [3]).

3. Boolean algebras with operators

Since Theorem 1 above solves completely the question of computable isomorphism types of Boolean

algebras, it seems natural to investigate the same question with respect to algebras which have a Boolean

algebra reduct. A class of such algebras that suggests itself is the class of BAOs. These are Boolean algebras

with additional operations which distribute over join and preserve zero in each argument. More formally, we

have:

Definition 4. A Boolean algebra with operators (BAO) is an algebra A = 〈A;∧,∨,−, fi(i ∈ I), 0, 1〉 such
that the reduct 〈A;∧,∨,−, 0, 1〉 is a Boolean algebra and each operation fi, (i ∈ I), say of arity k, satisfies

the following:

2

(i) fi(a0, . . . , 0, . . . , ak−1) = 0,

(ii) fi(a0, . . . , b ∨ c, . . . , ak−1) = fi(a0, . . . , b, . . . , ak−1) ∨ fi(a0, . . . , c, . . . , ak−1), in each argument j < k.

In the terminology of [6] the first condition is called normality and the second additivity. Operations

that satisfy (i) and (ii) are called operators. BAOs with (many) unary normal operators are often called

(poly-) modal algebras because of the connection with modal logic. Such are going to be the BAOs we

construct. In the sequel we will adopt the following notational convention. If A is a Boolean algebra, and f

an operator on A, we will write 〈A; f〉, for the algebra 〈A;∧,∨,−, f, 0, 1〉.
We will make a particular use of BAOs that arise from certain relational structures akin to unary

algebras, by means of the construction we describe below. Let U = 〈U ; f0〉 be an infinite structure with f0
a binary relation such that for each u ∈ U the f0-image of the singleton {u} is a finite nonempty set. It will
be convenient to view f0 as a multi-valued function on U and for that reason we will call structures of this

kind multi-valued unary algebras, although we are ready to give up this mouthful in favour of any better

alternative. For a subset x of U we will write f0[x] for the f0-image of x. Clearly, U is a unary algebra iff

f0[{u}] is a singleton for all u ∈ U . Now, let B be the Boolean algebra 〈B;∪,∩,−, U, ∅〉, where B is the set

of all finite and cofinite subsets of U . Then, define a unary operation f on B by putting:

fx =
{
f0[x], if x is a finite subset of U ,
U, otherwise.

Further, define another unary operation g on B as follows:

gx =

∅, if x = ∅,
x−, if x = {u} for some u ∈ U ,
U, otherwise.

So defined g will serve as a device for recognising atoms, since it sends every atom into its complement, zero

to zero, and everything else to 1. Let A stand for the algebra 〈B; f, g〉.

Lemma 1. The algebra A is a BAO.

Proof. We need to show that f and g are operators. To see that for f notice first that f0[∅] = ∅. Then,
take x, y ⊆ U . If at least one of x, y is cofinite, f(x ∪ y) = U = fx ∪ fy. If both x and y are finite,

f(x ∪ y) = f0[x ∪ y] = f0[x] ∪ f0[y] = fx ∪ fy. Then, consider g(x ∪ y). Only the case where x and y

are atoms is not immediate. Suppose first x �= y. Then x ∪ y is not an atom and x− ∪ y− = U . Thus,

g(x ∪ y) = U = x− ∪ y− = gx ∪ gy as needed. If x = y, the claim holds trivially.

4. Computable enumerations

A standard method of constructing structures of finite computable dimension is to code certain families of

sets into these structures so that computability theoretic properties of the families are reflected in computable

isomorphism types. We need another definition.

Definition 5. A computable enumeration of a family F of computably enumerable subsets of ω is a bijective

mapping ν : ω −→ F such that the set {(i, x) : x ∈ ν(i)} is computably enumerable.

3

Two computable enumerations ν and µ of F are equivalent if there is a computable function f such

that ν(i) = µ(f(i)). The idea behind is that from the ν-code of a set in F we can find its µ-code. One of

the instrumental results in constructing structures of finite computable dimensions is the following theorem

from [3].

Theorem 2. For any n ≤ ω there exists a family F that has exactly n pairwise non-equivalent computable

enumerations.

It is known that any family with finitely many infinite sets (and possibly infinitely many finite ones)

has either exactly one or ω non-equivalent computable enumerations. The construction of an F satisfying

the theorem above requires sophisticated methods from computability theory and is rather complicated.

Fortunately, for the purpose at hand, all we need to know is that such a family exists.

5. BAOs with finite computable dimensions

We start with a countable multi-valued unary algebra U and construct the associated BAO A, as

described at the end of section 3.

Definition 6. A (presentation of) computable multi-valued unary algebra U is locally effective if there

exists an algorithm that for any given u ∈ U computes the cardinality of the set f0[u].

Note that any computable unary algebra is locally effective, as then by definition |f0[u]| = 1, for all

u ∈ U . However it is not at all hard to give examples of computable multi-valued unary algebras that are

not locally effective. Our next lemma exhibits the relationship between computable presentations of U and

the associated BAO A.

Lemma 2. The structure U has a locally effective computable presentation if and only if the algebra A has

a computable presentation.

Proof. Suppose that U has a locally effective computable presentation. We can assume that this presen-

tation is U itself, i.e., in particular, U = ω. Recall that Bω is the Boolean algebra generated by left-closed

right-open intervals of ω under the natural ordering, and that Bω is isomorphic to the algebra of finite and

cofinite subsets of ω. Let B′
ω be a computable copy of Bω such that the set of atoms of Bω—denoted At(B′

ω)

later on—is a computable set. Let ϕ : ω −→ At(B′
ω) be a computable bijection. The unary multi-valued

function f0 on U naturally induces a computable multi-valued function f ′
0 on At(B

′
ω) via ϕf0ϕ

−1. Now we

can computably extend f ′
0 to a function f

′ as follows:

f ′x =

{ 0, if x = 0,
f0[a1] ∨ . . . ∨ f0[an], if x = a1 ∨ . . . ∨ an, and ai ∈ At(B′

ω), 1 ≤ i ≤ n,
1, otherwise.

Note that f ′ is a computable function, because U is locally effective. Further, define the function g′ by:

g′x =

{ 0, if x = 0,
x−, if x ∈ At(B′

ω),
1, otherwise.

4

Clearly, this function is computable as well. Thus, 〈B′
ω ; f

′, g′〉 is a computable copy of A, with the isomor-
phism established by naturally extending ϕ from atoms onto the whole universe.

For the other direction, assume that A has a computable copyA′. The set U ′ of atoms of A′ is definable

by the formula gx = x−, and therefore computable. On U ′ define a binary relation f ′
0 putting xf ′0y iff y ≤ f ′x

in A′. Clearly, 〈U ′; f ′
0〉 is a computable structure isomorphic to U. Now, by computability of A′ and the way

f ′ behaves, given an x ∈ U ′ one can compute the number of atoms a1, . . . , an ∈ U ′ with f ′x = y1 ∨ . . . ∨ yn.

By definition we have xf ′0y iff y ∈ {y1, . . . , yn}, and therefore 〈U ′; f ′
0〉 is also locally effective.

The proof of the lemma above implicitly defines two transformations: τB and τU . The former transforms

a given computable copy of a multi-valued unary algebra into a computable BAO; the latter transforms a

given computable copy of a BAO into a computable multi-valued unary algebra. It turns out that these

transformations preserve computable isomorphism types. We state this in the next lemma whose proof we

leave to the reader.

Lemma 3. Multi-valued unary algebras U1 and U2 are computably isomorphic if and only if τB(U1) is

computably isomorphic to τB(U2). Similarly, BAOs A1 and A2 are computably isomorphic if and only if

τU (A1) is computably isomorphic to τU (A2).

The two lemmas above show that in order to define BAOs with finite computable dimensions is suffices

to produce unary algebras of finite computable dimensions. The next lemma takes care of this. The reader

will notice that the unary algebras we construct here are not multi-valued, in other words, they are indeed

algebras.

Lemma 4. For each n ∈ ω there exists a unary algebra U of computable dimension n.

Proof. In the proof we use the family F that has exactly n nonequivalent computable enumerations (see

[3]). Let ν : ω −→ F be a computable enumeration of F . For each i ∈ ω construct a unary algebra Ui that

codes the set ν(i), as in the picture below.

t+
1

st
ep

s

︷
︸︸

︷

.
c0 cj ck

ai

5

Picture 1. Left: code of the set {1, 2, 4}; right: algebra Ui.

As it is easy to see from Picture 1, the construction guarantees that the set ν(i) coincides with {t : ∃cj :
f t+1(cj) = ai}. Informally, we view the element ai as the code of ν(i). Clearly, Ui can be constructed from

ν(i). Notice that Ui does not have any nontrivial automorphisms.

Let Uν be an effective disjoint union of all Ui. The following list of properties shows that Uν is the

desired algebra.

(1) For all computable enumerations ν and µ of F , the algebras Uν and Uµ are isomorphic.

(2) For all computable enumerations ν and µ of F , the algebras Uν and Uµ are computably isomorphic iff

ν is equivalent to µ.

(3) From any computable copy U of Uν one can construct a computable enumeration νU of F such that

νU and µ are equivalent iff UνU and Uµ are computably isomorphic.

Property (1) is clear from the construction, as is the ‘if’ part of property (2). For its ‘only if’ part

suppose Uν is computably isomorphic to Uµ via ϕ. For an ai ∈ Uν with fai = ai, consider ϕ(ai). Since

ϕ is an isomorphism, fϕ(ai) = ϕ(ai) and the set {x ∈ Uν : fkx = a for some k ∈ ω}, which in fact is
the subalgebra Ui of Uν , is isomorphic to {ϕ(x) ∈ Uµ : fkϕ(x) = ai for some k ∈ ω}. Again, speaking
informally, ϕ(ai) codes the same set in Uµ as ai in Uν . This proves that ν and µ are equivalent by means

of ϕ composed with the computable bijection ai �→ i. Now, the second part of property (3) follows from

property (2). For its first part, here is the procedure. Pick up any element of U ; iterate f until you reach

an element a with fa = a; this is a code of some set from family F ; then keep enumerating U until the

complete path from a back to the fork-shaped quadruple of elements has appeared. Now you know that the

number t—the length of the path from the top of the fork to a, minus 1—belongs to the set coded by a.

Repeating this ad infinitum you will have enumerated all pairs (a, t) such that t belongs to the set coded by

a, precisely what a computable enumeration of F requires.

The lemmas above amount to a proof of the following theorem.

Theorem 3. For each n ∈ ω there exists a BAO A of computable dimension n.

6. Adding constants

To finish off we will address the question of how constants affect computable dimensions of BAOs. Notice

first that adding a constant to a BAO results in another BAO, so such expansions seem rather natural. The

following theorem proved by Millar in [8] shows that certain amount of decidability makes constants irrelevant

to the issue.

Theorem 4. If a structure S is computably categorical and its existential theory is decidable, then any

expansion of S by finitely many constants is also computably categorical.

6

However, without the decidability assumption the picture changes quite dramatically, as Cholak, Gon-

charov, Khoussainov and Shore proved in [1]. Namely:

Theorem 5. For each k ∈ ω there is a computably categorical structure S such that the expansion of S by

a single constant has computable dimension k.

The proof of the above theorem proceeds by coding certain computably enumerable families of k-

tuples of sets. We will show that the theorem remains true if S is assumed to be a BAO. In fact, we will

confine ourselves to the case k = 2, the extension to any positive k being rather straightforward given the

constructions in [1]. We will need yet another definition.

Definition 7. Let F be a family of nonempty subsets of ω. We call F symmetric, if (A,B) ∈ F implies

(B,A) ∈ F . The family F is computably enumerable, if there is a bijective mapping ν : ω −→ F such that

the set {(i, x, y) : x ∈ lν(i), y ∈ rν(i)} is computably enumerable, where l and r stand for the left and right
projections of pairs.

If ν : ω −→ F is a computable enumeration of a symmetric family F , then νd defined as νd(i) =

(rν(i), lν(i)) is another computable enumeration of F . To prove the result we announced, we will need a

symmetric family F for which ν and νd are the only computable enumerations possible. That is the content

of another theorem from [1].

Theorem 6. There is a symmetric family F and its computable enumeration ν such that ν is not equivalent

to νd and every computable enumeration of F is equivalent to either ν of νd.

The existence of the family F granted, and given a computable enumeration ν of F , we will construct a

multi-valued unary algebra Mν , whose fragment is shown in Picture 2. It shows how to code two pairs from

F . Again, informally we say that the element ai codes the pair (A,B) under enumeration ν, the element bi
codes the same pair under νd; by symmetry the pair (B,A) must also appear somewhere, we have drawn it

as coded by aj and bj under ν and νd, respectively. The whole Mν is obtained by repeating this for all pairs

(A,B) ∈ F , so it can be visualised as a daisy-wheel-like structure around the elements c and d.

Given a structure S and an element s ∈ S, we will write 〈S, s〉 for the structure of the type of S expanded
by a single constant interpreted as the element s. For instance, 〈Mν , c〉 and 〈Mν , d〉 arise fromMν by adding

a name for the element c and d, respectively.

Lemma 5. The structure Mν has the following properties:

(i) there is a single nontrivial automorphism α of Mν , and α(ai) = bi;

(ii) if µ is a computable enumeration of F , then Mµ is isomorphic to Mν ;

(iii) the structures 〈Mν , c〉 and 〈Mν , d〉 are classically isomorphic, but not computably so;

(iv) the computable dimension of 〈Mν , c〉 is 2;

(v) the computable dimension of Mν is 1.

7

c

d

ai

bi

aj

bj

A

B

B

A

Picture 2. Fragment of Mν .

Proof. Part (i) is clear from the picture; the automorphism in question is just the flipping over. For part

(ii) notice that µ is equivalent to either ν of νd. Therefore, Mµ is isomorphic (computably) to either Mν

or Mνd . These are in turn isomorphic by (i). For (iii), classical isomorphism is clear. Suppose 〈Mν , c〉
and 〈Mν , d〉 are computably isomorphic. The isomorphism then induces a computable function ai �→ bi,

which makes enumerations ν and νd equivalent. This contradiction shows that such an isomorphism cannot

be computable. For part (iv) we have by construction that from a computable copy 〈M, e〉 of 〈Mν , c〉 a
computable enumeration µ of F can be effectively obtained, for instance as a listing of members of the

computable set {x ∈ M : x �= e, e ∈ f0[x], x ∈ f2
0 [x]}. If µ is equivalent to ν, then 〈M, e〉 is computably

isomorphic to 〈Mν , c〉; otherwise µ is equivalent to νd, and then 〈M, e〉 is computably isomorphic to 〈Mν , d〉.
Finally, to prove (v) let M be a computable copy of Mν . Enumerate M until an element e with e ∈ f0[e]

appears. Then send e to either c or d and then proceed as in the case with the additional constant. This

establishes a computable isomorphism.

Theorem 7. There is a computably categorical BAO A, such that for a certain element a ∈ A, the expanded

algebra 〈A, a〉 has computable dimension 2.

Proof. Take the multi-valued unary algebra Mν and produce the BAO A as in section 3. Then pick the

element c ∈ Mν ; clearly a = {c} is an element (in fact, an atom) of A. Repeating the argument from
section 4 we see that computable dimensions of A and 〈A, a〉 are respectively the same as the dimensions of
Mν and 〈Mν , c〉.

8

By coding “families of dimension k”, as they are called in [1], we can also obtain the following general-

isation of Theorem 7, which we will state without proof.

Theorem 8. For any k ∈ ω, there is a computably categorical BAO A, such that for a certain element

a ∈ A, the expanded algebra 〈A, a〉 has computable dimension k.

Closing remarks

As we mentioned in the introduction, the computable dimension of any computable Boolen algebra is

either 1 or ω. In this paper we produced BAOs with computable dimension k, for any k ∈ ω. Although our

construction employed two unary operators, there are ways of achieving the same with only one. It suffices

to say that the simulation technique from [7], enabling one to mimic the action of two operators with only

one, preserves computability. It would be therefore interesting to find a natural variety V of modal algebras

which is not term-equivalent to Boolean algebras and yet the computable dimension of any algebra from

V is either 1 or ω, thus extending the result for Boolean algebras. In the variety of monadic algebras all

subdirectly irreducible members are such, so this variety may well be the first candidate to consider.

References

[1] P. Cholak, S. Goncharov, B. Khoussainov, R. Shore, Computably categorical structures and expansions

by constants, Journal of Symbolic Logic 64, 1999, 13–37.

[2] V. Dzgoev, S. Goncharov, Autostability of models, Algebra and Logic 19, 1980, 45–53.

[3] S. Goncharov, The problem of the number of non-self-equivalent constructivizations, Algebra and Logic

19, 1988, 621–639.

[4] S. Goncharov, A. Nerode, J. Remmel (eds) Handbook of Recursive Mathematics, Studies in Logic and

the Foundations of Mathematics, vols. 138, 139, Elsevier, 1998.

[5] S. Goncharov, S. Lempp, R. Solomon, The computable dimension of ordered Abelian groups, to appear

in Advances of Mathematics.

[6] B. Jónsson, A. Tarski, Boolean algebras with operators. Part I, American Journal of Mathematics 73,

1951, 891–939.

[7] M. Kracht, F. Wolter, Normal modal logics can simulate all others, Journal of Symbolic Logic 64, 1999,

99–138.

[8] T. Millar, Recursive categoricity and persistence, Journal of Symbolic Logic 51, 1986, 430–434.

[9] J. Remmel, Recursive isomorphism types of recursive Boolean algebras, Journal of Symbolic Logic 46,

1981, 572–593.

9

