8888888

CDMTCS
Research
Report
Series

Logical Equivalence Between
Generalized Urn Models and
Finite Automata

Karl Svozil
University of Technology, Vienna

CDMTCS-179
February 2002

Centre for Discrete Mathematics and
Theoretical Computer Science

Logical Equivalence Between Generalized Urn
Models and Finite Automata

Karl Svozil
Institut fur Theoretische Physik University of Technology Vienna
Wiedner Hauptstral3e 8-10/136,
A-1040 Vienna, Austria
homepagehttp://tph.tuwien.ac.at/ svozil

Abstract

To every generalized urn model there exists a finite (Mealy) automaton with identical
propositional calculus. The converse is true as well.

Introduction of concepts

In what follows we shall explicity and constructively demonstrate the
equivalence of the empirical logics (i.e., the propositional calculi) associ-
ated with the generalized urn models (GUM) suggested by Ron Wright
[Wright(1978), Wright(1990)], and automaton partition logics (APL) [Svozil(1993),
Schaller and Svozil(1996), Dvutenskij et al.(1995)Dvurienskij, Pulmannady, and Svozil,
Calude et al.(1997)Calude, Calude, Svozil, and Yu, Svozil(1998)]. This result has been
already mentioned in [Svozil(1998), p.145]. The restriction to Mealy automata is for conve-
nience only. The considerations are robust with respect to variations of different types of finite
input/output automata.

Although the automaton models are dynamic in nature, their logics are equivalent to the
static generalized urn models. This equivalence suggests that these logics are more general
and “robust” with respect to changes of the particular model than can be expected from the
particular instances of their first appearance.

Generalized urn models

A generalized urn moddll = (U,C, L, A) is characterized as follows. Consider an ensemble of
balls with black background color. Printed on these balls are some symbols from a symbolic
alphabetL. These symbols are colored. The colors are elements of a set of Eblofs
particular ball type is associated with a unique combination of mono-spectrally (no mixture
of wavelength) colored symbols printed on the black ball backgrounis. the set of all ball

types. To make life easier we shall assume that every ball contains just one single symbol per
color. (Not all types of balls; i.e., not all color/symbol combinations, may be present in the
ensemble, though.)

Let |U| be the number of different types of ball§| be the number of different mono-
spectral colorsL| be the number of different output symbols.

Consider the deterministic “output” or “lookup” functigh(u,c) =v,ucU,ceC,veL,
which returns one symbol per ball type and color. One interpretation of this lookup function
A is as follows. Consider a set (| eyeglasses build from filters for th€| different colors.
Let us assume that these mono-spectral filters are “perfect” in that they totally absorb all other
colors but a particular single one. In that way, every color is associated with a particular
eyeglass and vice versa.

When a spectator looks at a particular ball through such an eyeglass, the only operationally
recognizable symbol will be the one in the particular color which is transmitted through the
eyeglass. All other colors get absorbed, and the symbols printed in them will appear black and
cannot therefore be different from the black background. Hence the ball appears to carry a
different “message” or symbol, depending on the color at which it is viewed.

An empirical logic can be constructed as follows. Consider the set of all ball types. With
respect to a particular colored eyeglass, this set disjointly “decays” or gets partitioned into
those ball types which can be separated by the particular color of the eyeglass. Every such
state partition can then be identified with a Boolean algebra whose atoms are the elements of
the partition. A pasting of all of these Boolean algebras yields the empirical logic associated
with the particular urn model.

Automaton models

A (Mealy type) automatord = (S 1,0,0,A) is characterized by the set of stagdy the set
of input symbold, and by the set of output symbds &(s,i) =< andA(s,i) =0, s, €S
i € 1 ando € O represent the transition and the output functions, respectively.

At any instant, the automaton is in a particular state. A typical automaton experiment aims
at an operational determination of this initial state by the input of some symbolic sequence and
the observation of the resulting output symbols.

Every such input/output experiment results in a state partition in the following way. Con-
sider a particular automaton. Every experiment on such an automaton which tries to solve the
initial state problem is characterized by a set of input/output symbols as a result of the possible
input/output sequences for this experiment. Every such distinct set of input/output symbols is
associated with a set of initial automaton states which would reproduce that sequence. This
state set may contain one or more states, depending on the ability of the experiment to sep-
arate different initial automaton states. A partitioning of the automaton states is obtained if
one considers a single input sequence and the variety of all possible output sequences (given
a particular automaton). Stated differently: given a set of inputs, the set of automaton states
decays into disjoint subsets associated with the possible output sequences. All elements of a
subset yield the same output on the same input.)

This partition can then be identified with a Boolean algebra, with the elements of the par-
tition interpreted as atoms. By pasting the Boolean algebras of the “finest” partitions together
one obtains an empirical partition logic associated with the particular automaton. (The con-
verse construction is also possible, but not unique; see below.)

To make life easier, we shall assume that every experiment just deals with a single in-
put/output combination. That is, the finest partitions are reached already after the first symbol.
This does not impose any restriction on the partition logic, since given any particular automa-
ton, it is always possible to construct another automaton with exactly the same partition logic
as the first one with the above property. More explicitly, given any partition logic, it is always
possible to construct automata with identical partition logic with the following specification:
associate with every element of the set of partitions a single input symbol. Then take the
partition with the highest number of elements and associate a single output symbol with any
element of this partition. (There are then sufficient output symbols available for the other
partitions as well.) Finally, choose a transition function which completely looses the state in-
formation after only one transition; i.e., a transition function which maps all automaton state
into a single one.

Proof of logical equivalence

From the definitions and constructions mentioned in the previous sections it is intuitively clear
that, with respect to the empirical logics, generalized urn models and finite automata models
are equivalent. Every logic associated with a generalized urn model can be interpreted as
an automaton partition logic associated with some (Mealy) automaton (actually an infinity
thereof). Conversely, any logic associated with some (Mealy) automaton can be interpreted
as a logic associated with some generalized urn model (an infinity thereof). We shall proof
these claims by explicit construction. Essentially, one has to identify the lookup funfEtion
and the output functioh. Again, the restriction to Mealy automata is for convenience only.
The considerations are robust with respect to variations of finite input/output automata.

Direct construction of APL from GUM

In order to define an APL associated with a Mealy automatoea (S,1,0,5,A) from a GUM
U= (U,C,L,A), letueU,ceC,vel,andss €S iel,oe O, and assumiJ| = |5,

C| = |l|, |lL| = |O]. The following identifications can be made with the help of one-to-one
“translation” functionds,t; andto:

s(u) =s,

1(c) =1,

to(v) =0,

o(s,i) for fixeds € Sand arbitrarnys€ S i € 1,
S,i

=5
Ms) = to (At (9).474(0)))

t
t

More generally, one could use equivalence classes instead of a one-to-one translation function.
Since the input-output behavior is equivalent and the automaton transition function is trivially
|L|-to-one, both entities yield the same propositional calculus.

Direct construction of GUM from APL

Conversely, consider an arbitrary Mealy automatba (S1,0,5,A) and its associated propo-
sitional calculus APL.

Just as before, associate with every single automaton statea ball typeu, associate
with every input symbol € | a unique coloc, and associate with every output symbat O
a unique symboV; i.e., againfU| = |9, |C| = ||, |L| = |O|. The following identifications can
be made with the help of one-to-one “translation” functiopstc andt, :

Tu(s)=u,

c(i) =c¢,

(o) =V,

A(U,0) = TL (A (11 (W), 6 H(0))).

Schemes using dispersion-free states

Another equivalence scheme uses the fact that both automaton partition logics and the logic
of generalized urn models have a separating (indeed, full) set of dispersion-free states. (In
what follows, the terms “dispersion-free state” “two-valued state” “valuation” “dispersion-free
probability measure” are synonyms for measures which take on only the values zero and one.
We thereby explicitly exclude dispersion-free measures which take on other values, such as
1/2 and 0, as introduced by Wright [Wright(1978)].) That is, given a finite atomic logic with

a separating set of states, then the enumeration of the complete set of dispersion-free states
makes it possible to explicitly construct generalized urn models and automaton logics whose
logic corresponds to the original one.

This can be achieved by “inverting” the set of two-valued states as follows. (The method
is probably best understood by considering the examples below.) Let us start with an atomic
logic with a separating set of states.

() In the first step, every atom of this lattice is labeled by some natural number, starting
from “1” to “n”, where n stands for the number of lattice atoms. The set of atoms is
denoted byA={1,2,...,n}.

(i) Then, find all two-valued states of this lattice, and also label them consecutively by

natural numbers, starting frommi” to “m.”, wherer stands for the number of two-
valued states. The set of states is denoteMby {my, mp, ..., m}.

(i) Now define partitions as follows. For every atom, create a set whose members are the
numbers or “labels” of the two-valued states which are “true” or take on the value “1” on

this atom. More precisely, the elememiga) of the partition?; corresponding to some
atoma € A are defined by

pi(a) = {k|m(@) =1, ke M}.

The partitions are obtained by taking the unions ofpallvhich belong to the same sub-
algebra®j. That the corresponding sets are indeed partitions follows from the properties
of two-valued states: two-valued states (are “true” or) take on the value “1” on just one
atom per subalgebra and (“false” or) take on the value “0” on all other atoms of this
subalgebra.

(iv) Letthere be partitions labeled by “1” throught®. The partition logic is obtained by a
pasting of all partition®j, 1< j <t.

(v) In the following step, a corresponding GUM or automaton model is obtained from the
partition logic just constructed.

(&) A GUM is obtained by the following identifications (see also [Wright(1978), p.
271)).

e Take as many ball types as there are two-valued states; iypes of balls.
e Take as many colors as there are subalgebras or partitionsciodoys.

e Take as many symbols as there are elements in the partition(s) with the max-
imal number of elements; i.e., mgx<¢|?;| < n. To make the construction
easier, we may just take as many symbols as there are atoms;syenpols.

(In most cases, much less symbols will suffice). Label the symbols. -
nally, taker “generic” balls with black background. Now associate with every
measure a different ball type. (There atsvo-valued states, so there will be
ball types.)

e Theith ball type is painted by colored symbols as follows: Find the atoms for
which theith two-valued statey is 1. Then paint the symbol corresponding to
every such lattice atom on the ball, thereby choosing the color associated with
the subalgebra or partition the atom belongs to. If the atom belongs to more
than one subalgebra, then paint the same symbol in as many colors as there are
partitions or subalgebras the atom belongs to (one symbol per subalgebra).

This completes the construction.

(b) A Mealy automaton is obtained by the following identifications (see also
[Svozil(1993), pp. 154-155]).

e Take as many automaton states as there are two-valued stategutematon
states.

e Take as many input symbols as there are subalgebras or partitiornssym
bols.
e Take as many output symbols as there are elements in the partition(s) with

the maximal number of elements (plus one additional auxiliary output symbol
“x", see below); i.e., maxj<t |Pj| < n+1.

ball type | red green
1 1 3 state d A
2 1 4 1 2 3 4512 3 45
3 2 3 0O (11111112 25
4 2 4 1 /1 1 11 13 4 3 45
5 5 5

(a) (b)

Table 1: (a) Ball types in Wright's generalized urn model [Wright(1990)] (cf. also
[Svozil(1998), p.143ff]). (b) Transition and output table of an associated automaton model.

e The output function is chosen to match the elements of the state partition cor-
responding to some input symbol. Alternatively, let the lattice asgna A
must be an atom of the subalgebra corresponding to the inpdthen one
may choose an output function such as

| it —1
Mmk"'):{ 2 n”f((z;?)):o

with 1 <k <r and 1< <t. Here, the additional output symbal*is needed.
e The transition function is-to—1 (e.g., by(s,i) =s1, 5,51 € S i €), i.e., after
one input the information about the initial state is completely lost.
This completes the construction.

Example 1: The generalized urn logid.;»

In what follows we shall illustrate the above constructions with a couple of examples. First,
consider the generalized urn mod¢ly, ..., us}, {red greer},{1,...,5},A\) with A listed in
Table 1(a).

The associated Mealy automaton can be directly constructed as followstsFakg = id,
where id represents the identity function, and takeed) = O andt, (greer) = 1, respectively.
Furthermore, fix a (fivetwo)-to-one transition function bg(.,.) = 1. The transition and
output tables are listed in Table 1(b). Both empirical structures yield the same propositional
logic L12 whose Greechie and Hasse diagram is drawn in Figure 1(a)&(b), respectively.

Example 2: The automaton partition logicL1»

Let us start with an automaton whose transition and output tables are listed in Table 1(b) and
indirectly construct a logically equivalent GUM by using dispersion-free states. The first thing
to do is to figure out all dispersion-free stated @. There are five of them, which we might
write in vector form; i.e., in lexicographic order:

m = (07 07 07 07 1)7

(@) (b)

Figure 1. (a) Greechie and (b) Hasse diagram of the the logic

colors
ball type C1 C2
“red” “green”
1 * % *x % H5|x x x x b
2 ¥ 2 x x x| *x *x *x 4 %
3 * 2 % x x| % *x 3 *x
4 1 % % * *x|*x *x x 4 x
5 1 % % % *|*x * 3 * x

Table 2. Representation of the sign coloring schémé«” means no sign at all (black) for
the corresponding atom.

(0,1,0,1,0),
= (0,1,1,0,0),
(1,0,0,1,0)
(1,0,1,0,0)

Y

533
[

(1)

Now define the following GUM as follows. There are two subalgebras with the atoms
1,2,5 and 34,5, respectively. Since there are five two-valued measures corresponding to five
ball types. They are colored according to the coloring rules defined above\ asdisted in
Table 2.

Example 3: GUM of the Kochen-Specker “bug” logic

Another, less simple example, is a logic which is already mentioned by Kochen and Specker
[Kochen and Specker(1967)] (this is a subgraph of the)rwhose automaton partition logic

is depicted in Fig. 2. (Itis called “bug” by Professor Specker [Specker(1999)] because of the
similar shape with a bug.) There are 14 dispersion-free states which are listed in Table 3(a).
The associated GUM is listed in Table 3(b).

m lattice atoms
A a a3 4 a d a7 ag A9 A0 A1 A2 A3
171 0 0 0 1 O O 0o 1 O 0 0 1
2/1 0 0 1 0 1 O 0 1 o 0 0 0
311 0 0 0 1 O O 1 o0 1 0 0 0
4/0 1 0 O 1 0o O O 1 o0 0 1 1
5/0 1 0 0 1 O O 1 0 O 1 0 1
6/0 1 0 1 0 1 O O 1 o0 0 1 0
7/0 1 0 1 O O 1 O 0 O 1 0 0
8/0 1 0 1 0 1 O 1 0 O 1 0 0
90 1 0 0 1 O O 1 o0 1 0 1 0
100 0 1 0 O O 1 o0 0 O 1 0 1
11727,0 0 1 0 O 1 O 1 0 o0 1 0 1
120 0 1 0 O 1 O O 1 O 0 1 1
130 0 1 0O O O 1 o0 o0 1 0 1 0
14,0 0 1 O O 1 O 1 0 1 0 1 0
(a)
ball type colors

Cib C C C C Cg Cy

1 1 5 5 9 9 1 13

2 1 4 6 9 9 1 4

3 1 5 5 8 10 3 10

4 2 5 5 9 9 12 13

5 2 5 5 8 11 11 13

6 2 4 6 9 9 12 4

7 2 4 7 7 11 11 4

8 2 4 6 8 11 11 4

9 2 5 5 8 10 12 10

10 3 3 7 7 11 11 13

11 3 3 6 8 11 11 13

12 3 3 6 9 9 12 13

13 3 3 7 7 10 13 10

14 3 3 6 8 10 12 10

(b)

Table 3: (a) Dispersion-free states of the Kochen-Specker “bug” logic with 14 dispersion-free
states. (b) Associated GUM (all blank entriestave been omitted).

as = {10,11,12,13, 14} as = {2,6,7,8} as = {1,3,4,5,9}

a2 = {4,5,6,7,8,9} ag={2,6,8,11,12 14}
13 =
ap ={1,2,3} {1,4,5,10,11,12} » a;={7,10,13}
a12={4,6,9,12,13 14} ag={3,5,8,9,11,14}

a;1 =1{5,7,8,10,11} ajo={3,9,13 14} ag={1,2,4,6,12}

Figure 2: Greechie diagram of automaton partition logic with a nonfull set of dispersion-free
measures.

1 Discussion

We have explicitly demonstrated the logical equivalence of generalized urn models and and the
logic of finite automata, both by a direct construction and by an indirect construction utilizing
the set of two-valued states. In our opinion, the logical equivalence stresses the importance of
these empirical structures.

GUMs and automata are capable to serve as models for particular types of lattices with
a sufficient number of two-valued states (e.g., with a separating set of states). Yet it is this
very property which makes impossible the realization of other, more exotic states, which have
no classical and not even a quantum mechanical counterpart. Take, as an example, the Wright
state [Wright(1978), Svozil(1998)] on the pentagon (or amagon, with odch > 3,n=2k+1,
k=2,3,...) Greechie diagram with value/2 on the five vertices and 0 on each middle atom
(three atoms per subalgebra). The 11 two-valued measures suffice to generate GUMs and finite
automata with that logical structure, none such model realizes the Wright state.

Acknowledgments

This manuscript has been prepared on the request of a friend and colleague Norbert Brunner
who was considerably involved in the foundational stages of automaton partition logic.

Bibliography

[Wright(1978)] R. Wright, inMathematical Foundations of Quantum Theaedited by A. R.
Marlow (Academic Press, New York, 1978), pp. 255-274.

[Wright(1990)] R. Wright, Foundations of Physi2§, 881 (1990).

[Svozil(1993)] K. SvozilRandomness & Undecidability in Physid&/orld Scientific, Singa-
pore, 1993).

[Schaller and Svozil(1996)] M. Schaller and K. Svozil, International Journal of Theoretical
Physics35(5), 911 (1996).

[DvureCenskij et al.(1995)Dvuinskij, Pulmanndy, and Svozil] A. Dvuréenskij, S. Pul-
mannow, and K. Svozil, Helvetica Physica A8, 407 (1995).

[Calude et al.(1997)Calude, Calude, Svozil, and Yu] C. Calude, E. Calude, K. Svozil, and
S. Yu, International Journal of Theoretical Phys3&7), 1495 (1997).

[Svozil(1998)] K. Svozil,Quantum Logi€Springer, Singapore, 1998).

[Kochen and Specker(1967)] S. Kochen and E. P. Specker, Journal of Mathematics and Me-
chanicsl7(1), 59 (1967), reprinted in [Specker(1990), pp. 235-263].

[Specker(1999)] E. Specker (1999), private communication.
[Specker(1990)] E. Speckeé3electaBirkhauser Verlag, Basel, 1990).

10

