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1 Introduction and Basic Concepts

Games played on finite graphs were first introduced by McNaughton in [6]. McNaughton,
using the ideas of the paper by Gurevich and Harrington [3], proved that winners in his
games have finite state winning strategies. Later based on McNaughton games, Nerode,
Remmel and Yakhnis in a series of papers (see [7] and [8], for example) developed foun-
dations of concurrent programming by identifying distributed concurrent programs with
finite state strategies and studied complexities of finding winners in McNaughton games.
Dinneen and Khoussainov use McNaughton games for modelling and studying structural
and complexity-theoretical properties of update networks (see [1]). Later in [2] Bodlaen-
der, Dinneen and Khoussainov generalize the study of update networks by introducing the
concept of relaxed update network. They proved that it is possible to detect in polynomial
time whether or not a given game represents a relaxed update network. In this paper we
continue the line of research of the above mentioned work and begin with the following
definition from [6]:

Definition 1 A game Γ is a tuple (S
⋃

A,E,W,Ω), where:

1. The sets S and A are disjoint and finite, where S is the set of positions for Survivor
and A is the set of positions for Adversary,

2. The set E of edges is such that E ⊆ A×S
⋃

S×A and for all s ∈ S and a ∈ A there
are a′ ∈ A and s′ ∈ S for which (s, a′), (a, s′) ∈ E,

3. The set W is a subset of S
⋃

A and Ω ⊆ 2W .

The graph G = (V,E), where V = S∪A, is called the system or the graph of the game,
the pair (W,Ω) is the specification, and each set U ∈ Ω is a winning set.
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In game Γ, a play (from p0) is an infinite sequence π = p0, p1, . . . such that (pi, pi+1) ∈
E, i ∈ ω. Consider the set Inf(π) consisting of those positions p ∈ V that appear infinitely
often in play π. Survivor wins the play if Inf(π) ∈ Ω; otherwise, Adversary wins. The
histories of the play π are its finite prefixes. The set H(S) consists of all histories of all
plays whose last positions are in S. The set H(A) is defined similarly. A strategy for
Survivor is a function f : H(S)→ A such that (qn, f(u)) ∈ E for all u = q0 . . . qn ∈ H(S).
A strategy for Adversary is defined similarly.

Let f be a strategy for a player and p be a position. Consider all the plays that begin
from p which are played when the player follows the strategy f . We call these plays
consistent with f from p.

Definition 2 The strategy f of a player is a winning strategy from position p if all
plays consistent with f from p are won by the player. In this case we say that the player
wins the game from p. To decide game Γ means to find all the positions q in the game
from which Survivor wins. We denote this set of position by Win(S). The set Win(A) is
defined similarly1.

In [6] McNaughton proved that there is an algorithm that decides any given McNaughton
game. McNaughton’s algorithm is quite inefficient, however. In [7] Nerode, Remmel and
Yakhnis improved MacNaughton algorithm by showing that it takes O(|W |!2|W ||W ||E|)
time to decide a given game Γ. Thus, a natural question arises as to under which conditions,
put either on the specifications or the systems, the games can be decided more effectively.
Here is a list of some results and definitions related to this question.

A natural specification is to require Survivor to update every node of the system in-
finitely often. This is formalized as follows.

Definition 3 A game Γ is an update game if W = V and Ω = {V }. If Survivor wins
this game, then we call this game an update network.

Update games can be decided in polynomial time as shown in [1]:

Theorem 1 There exists an algorithm that given a game decides in O(|V ||E|) time whether
or not the game is an update network.

We use this theorem (most of the time without a reference to it) in obtaining several
results of this paper. The proof of this theorem is based on finding certain structural
properties of update networks. In [2] Theorem 1 has been generalized.

Definition 4 A game Γ is a relaxed update game if U
⋂

V = ∅ for all distinct U, V ∈ Ω.
If Survivor wins this game, then we call Γ a relaxed update network.

In [2], similar to the notion of rank defined in Gurevich-Harrington [3], certain natural
concepts (such as forcing) are introduced for the investigation of relaxed update games,
and the following theorem is proved:

1Any McNaughton game Γ is a Borel game. Hence, by the known result of Martin, Γ is determined (see
[5]). Therefore Win(S)

⋃
Win(A) = S

⋃
A.
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Theorem 2 There exists an algorithm that given a game decides in O(|V |2|E|)-time whether
or not the game is a relaxed update network.

In this paper our goal is three fold. Firstly, we generalize the theorems above by greater
exploiting the ideas of the proofs of Theorem 1 and Theorem 2. Secondly, we give other
types of natural specifications when the winners can be determined in polynomial time
with a parameter. Finally, we study the interactions between efficent winning strategies,
complexity of finding such strategies, and the structural properties of the underlying graphs
for games with an emphasis to update games. We also briefly consider the relationship
between McNaughton games and temporal logic.

2 Preliminary Results

Given a game Γ and a subset X ⊆ V , a node v is in the set REACH(S,X) if Survivor can
force every play starting at v into X after a finite number of steps.

Lemma 1 [2] The set REACH(S,X) can be computed in O(|V |+ |E|) time.

Proof. We build a set R, that will eventually be REACH(S,X). Initially, R = X. If
a node x ∈ S has an edge to a node in R, then x is added to R. If a node x ∈ A has only
edges to nodes in R, then x is added to R. ¿From every node in R Survivor can force plays
to go to a node in X. When no nodes can be added to R anymore, then REACH(S,X)=R.
Adversary has a strategy to stay inside V \REACH(S,X) when game begins in a node from
V \REACH(S,X). The procedure of constructing REACH(S,X) can be implemented in
O(|V | + |E|) time, by giving each node not in X a counter, that is initially 1 for nodes
owned by Survivor and its outdegree for nodes owned by Adversary. Whenever we add
a node v to R, we subtract 1 from the counters of each node with an edge to v; when a
counter becomes 0 then the node is also added to R. 2

Let v �∈REACH(S,X). Iteratively define the set AVOID(v, A,X): initially, AVOID(v, A,X)={v}.
For x ∈ A∩AVOID(v, A,X) we add a neighbor y of x into AVOID(v, A,X) if (x, y) ∈ E
and y �∈ REACH(S,X). For x ∈ S∩AVOID(v, A,X) we add all neighbors of x into
AVOID(v, A,X). From Lemma 1 we obtain the following:

Lemma 2 The set AVOID(v, A,X) has the following properties:

1. AVOID(v, A,X) can be constructed in O(|V |+ |E|) time.

2. AVOID(v, A,X) ∩ REACH(S,X) = ∅.

3. Adversary has a strategy such that when a play visits a node in AVOID(v, A,X) then
all nodes visited afterwards are in AVOID(v, A,X).

4. For all s in AVOID(v, A,X) ∩ S and all a ∈ A if (s, a) ∈ E then a is in AVOID(v, A,X).

Note that the sets REACH(A,X) and AVOID(v, S,X) can be defined in a similar
matter. We will now need some notations that will be used later. The strategy for a player
P to force the plays into X from a node v will be denoted by ForceP,vX . Similarly, the
strategy that keeps out all the plays from v to enter the set X will be denoted AvoidP,vX .
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3 Games With Separable Winning Sets

Given a system we would not like the system to enter useless states during a computation.
This naturally suggests that the specification (W,Ω) of the game to be such that W =
S
⋃

A. Another natural assumption on the specification is that each winning condition U
to be distinguishable from all other winning condition U ′ in Ω. We formalize this as follows:

Definition 5 Game Γ is fully separated if W = S
⋃

A and for each U ∈ Ω there is a
sU , called separator, such that sU ∈ U but sU �∈ U ′ for all U ′Ω distinct from U .

Thus, the separator sU for U ∈ Ω can be thought as a certificate of the winning set U .
Now our goal is to provide a polynomial time algorithm that decides fully separted games.
We use techniques developed in [1] and [2].

Definition 6 [2] A winning set U ∈ Ω is S-closed if it satisfies the following conditions:

1. For each s ∈ U ∩ S there is an a ∈ U ∩ A such that (s, a) ∈ E.

2. For each a ∈ U ∩A and all s such that (a, s) ∈ E we have s ∈ U .

Thus, this definition informally tells us the following. If a play arrives to a node v in
an S-closed set U then Survivor is able to always keep all the plays after v inside U no
matter what the oppenent does. Here is a lemma which is true for any McNaughton game
and therefore is of independent interest:

Lemma 3 Let Γ be a McNaughton game. Then if Survivor wins Γ from a position p then
one of the winning sets U in Ω must be S-closed.

Proof. In order to prove the lemma, we assume the opposite and then construct a
winning strategy for Adversary thus contradicting the assumption of the lemma.

Since each U ∈ Ω is not S-closed, there is a pU ∈ U that satisfies one of the following
conditions:

1. pU ∈ S and for all a ∈ A if (pU , a) ∈ E then a �∈ U .

2. pU ∈ A and there is an s such that (pU , s) ∈ E and s �∈ U .

We call pU a witness. Here is a strategy for Adversray. Let p0, . . . , pn be a finite
play. If pn is not a witness and pn ∈ A then Adversray moves to any node s such that
(pn, s) ∈ E. Assume that pn is a witness. Let U0, . . . , Uk−1 be all winning sets in Ω for
which pn is a witness. Note that if pn ∈ S then for every a such that (pn, a) ∈ E we have
a �∈ U0∪. . .∪Uk−1. Assume now that pn ∈ A. Let i be the number of times pn appears in the
finite play p0, . . . , pn. Then Adversray moves to any s that does not belong to Ui+1(mod(k)).
The basic idea is that, once pn is reached, Adversary leaves the sets U0, . . . , Uk−1 turn by
turn making in a cyclic manner.

We claim that the strategy described is a winning strategy for Adversary. Indeed let
π = p0, p1, . . . be a play consistent with the strategy. Assume that In(π) = U and U ∈ Ω.
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Let n be the first position after which no nodes outside of U appear in π. Then since a
witness pU appeares in In(π) infinitely many times it must be the case that pU appears in
π after position n. Hence, by the definition of the strategy we described, there is a position
j > n such that pj �∈ U . This contradicts with the choice of n. The lemma is proved. 2

We now need the following lemma that characterizes update networks (see Definition
3) in terms of the sets REACH(S,X).

Lemma 4 Survivor wins an update game Γ if and only if x ∈ REACH(S, {y}) for all
x, y ∈ V .

Proof. Assume that x ∈ REACH({y}) for all x, y ∈ V . List all the nodes v0, . . . , vn.
Survivor cycles by forcing the plays to visit v0, then v1, etc. This shows that Survivor wins
the game Γ.

Assume that there exists x, y such that x �∈ REACH(S, {y}). Then Adversray uses the
strategy AvoidA,xy as soon as a play is at the node x. By by Part 3 of Lemma 2 Adversary
wins the game. The lemma is proved. 2

The next lemma gives another sufficient condition for Adversary to win a fully separated
game.

Lemma 5 Let Γ be a fully separated game Γ such that every U ∈ Ω satisfies one of the
following properties:

1. U is not S-closed,

2. U is S-closed and Adversary wins the update game (U, {U}).

Then Adversray wins the game Γ.

Proof. By the lemma above, if U ∈ Ω is an S-closed set and (U, {U}) is not an update
network then there exists a pair xU , yU such that xU �∈ REACH(S, {yU}). If U is not S-
closed then we take a witness pU for U as in the proof of Lemma 3. Now we construct the
following strategy g for Adversray. Let p0, . . . , pn be a finite play such that pn ∈ A. Let pi
be the last separator seen in the finite play and pi = sU for some U ∈ Ω. There are three
cases to consider.

Case 1. The set {pi, . . . , pn} is not a subset of U then Adversary chooses any pn+1 for
which (pn, pn+1) ∈ E.

Case 2. The set {pi, . . . , pn} is a subset of U and U is S-closed. In this case Adversary
follows AvoidA,xUyU

strategy.

Case 3. The set {pi, . . . , pn} is a subset of U and U is not S-closed. Then if pn = pU
then Adversray chooses pn+1 such that pn+1 �∈ U and (pn, pn+1) ∈ E.

Let π = p0, p1, . . . be a play consistent with g. Assume that Inf(π) = U and U ∈ Ω.
Let n be the first position after which no nodes outside of U appear in π. Then since the
separator sU appeares infinitely many times in In(π) it must be the case that sU appears
in π after position n. Hence, either Case 2 or Case 3 is applied. In Case 2, Adversary
wins as the node yU will not be visited infinitely often, and hence Inf(π) �= U which is a
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contradiction. In Case 3, we will have a contradiction with the choice of position n. The
lemma is proved. 2

We are now ready to prove the following theorem whose proof uses the lemmas proved
above as well as Theorem 1.

Theorem 3 There exists an algorithm that decides any given fully separated game Γ in
O(|V |2|E|) running time.

Proof. Let p be the node from which all the plays begin. We describe the following
algorithm Procedure(Γ, p):

1. For each U ∈ Ω, find whether or not U ∈ Ω is S-closed. If each U ∈ Ω is not S-closed
then Adversary wins the game from p.

2. For each S-closed U ∈ Ω find whether or not the game (U, {U}) is an update network.

3. Let X be the union of all U ∈ Ω so that (U, {U}) is an update network and U is
S-closed. If X = ∅ then Adversary wins the game from p.

4. If p ∈ REACH (S,X) then Survivor wins the game from p.

5. If p �∈ REACH (S,X) then construct the game Γ1 = (V1, E1,W1,Ω1) as follows. The
set V1 of nodes is AVOID(p, A,X), the set E1 is the restriction of E to V1, the set
W1 is V1, and Ω1 consists of all U ∈ Ω such that U ⊂ V1. Note that |V1| < |V |. Run
Procedure(Γ1, p).

It is not hard to see that the algorithm runs in O(|V |2|E|) time. This proves the
theorem. 2

4 Games with Linear Winning Conditions

Let Γ be a game. The winning conditions set Ω is a partially ordered set in which the
partial order is defined by means of the set-theoretic inclusion. We call it the partial order
associated with the game Γ. The previous section deals with those winning conditions
whose associated partial orders form antichains, that is U �⊆ V for all distinct U, V ∈ Ω.
In this section, we investigate a dual case by considering games whose associated partial
orders are linearly ordered.

Definition 7 A game Γ is a linear game if the set Ω forms a linear order U1 ⊂ U2 ⊂
. . . ⊂ Un and W = V . We call n the length of the winning conditions.

Our goal is to show that linear games can be decided in polynomial time if the length of
the winning conditions is fixed. We begin with an example.

Example 1 Consider the game Γ = (S ∪ A,E,W,Ω), where:

1. S = {s1, s2, . . . , sn}, A = {a1, a2. . . . , an}, W = S ∪ A,
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2. E = {(si, ai) | 1 ≤ i ≤ n} ∪ {(ai, si+1) | 1 ≤ i ≤ n− 1} ∪ {(ai, s1) | 1 ≤ i ≤ n},

3. Ω = {Ui | 1 ≤ i ≤ n}, where Ui = {s1, a1, . . . , si, ai}.

In this game Survivor wins the whole game. It is worth to note that Adversary wins each
of the game whose winning conditions set is a proper subset of Ω. The basic reason for this
is that Survivor has no choice at any given node si ∈ S but to move to ai.

We need some notations, definitions, and lemmas for our next theorem. Let X, Y be
a subset of nodes in a given game. Then REACH(S,X, Y ) is the set of all nodes v such
that Survivor can force every play starting at v into X after a finite number of steps and
staying inside Y . As in Lemma 1 it can be shown that the set REACH(S,X, Y ) can be
computed in O(|V |+ |E|) time.

Let Γ = (V,E,Ω) be a game with the winning conditions Ω = {U1 ⊂ U2 ⊂ . . . Un}.
Assume that n > 1. For each i < n consider the linear game Γi = (V,E,Ωi), where
Ωi = {U1 ⊂ U2 ⊂ . . . Ui}. Here is a simple lemma whose proof is left to the reader.

Lemma 6 1. Survivor wins the game Γ1 from position p if and only if p ∈ REACH(S, U1),
the set U1 is S-closed, and Survivor wins the update game (U1, {U1}).

2. If Survivor wins the game Γi from p then Survivor wins games Γj from position p for
all j ≥ i. 2

For each i < n consider the set Xi consisting of all positions p from which Survivor wins
the game Γi. By the second part of the lemma above we have the sequence X1 ⊆ X2 ⊆
. . . ⊆ Xn−1. Assume that Xn−1 �= ∅. For every position p �∈ REACH(S,Xn−1), consider the
set AVOID(p, A,Xn−1). Now note that since U1 ⊆ U2 ⊆ . . . ⊆ Un and Xn−1 �= ∅ it must be
the case that U1 ⊆ Xn−1. Therefore Inf(π) �∈ Ω for any play π inside AVOID(p, A,Xn−1).
We conclude that the following lemme is true:

Lemma 7 Assume that Xn−1 �= ∅. Then Survivor wins the game Γ from position p if and
only if p ∈ REACH(S,Xn−1). 2

An important point of this lemma is that the original game can be reduced to a smaller
linear game in case Xn−1 �= ∅.

Next we consider the case when Xn−1 = ∅.

Lemma 8 Assume that Xn−1 = ∅. Then if Survivor wins the game Γ from position p then
p ∈ REACH(S, Un) and Un is S-closed.

Proof. Clearly p ∈ REACH(S, Un). Assume that Un is not S-closed. There is a x ∈ Un
that satisfies one of the following conditions:

1. x ∈ S and for all a ∈ A if (x, a) ∈ E then a �∈ U .

2. x ∈ A and there is an s such that (x, s) ∈ E and s �∈ U .
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We describe a strategy for Adversary. Let h = p0 . . . pn with p0 = p be a finite play with
pn ∈ A. We consider several cases.

Case 1. pn = x. Then Adversary moves outside of Un.

Case 2. pi �= x for all i = 1, . . . , n. In this case Adversary plays his winning strategy in
game Γn−1 from p0.

Case 3. Let pi = x and x �∈ {pi+1, . . . , pn}. In this case Adversary plays his winning
strategy in game Γn−1 from pi+1.

Assume that π is play consistent with the strategy described above. If x occurs in π

finitely many times then there is a position pi in the play after which the play becomes con-
sistent with Adversray’s winning strategy in game Γn−1 from position pi. Hence Inf(π) �∈ Ω
since x �∈ Inf(π) and Xn−1 = ∅. If x occurs infinitely often then Inf(π) has an element
outside of Un. Thus, the strategy is a winning strategy for Adversray. 2

Assume that Xn−1 = ∅. Let x, y ∈ Un be such that x �∈ REACH(S, {y}, Un). Consider
the set AVOID(x,A, {y}). We can define a new game denoted by Γ(x, y) such that the
graph of the game is AVOID(x,A, {y}), and the set Ω(x, y) of winning conditions are those
U ∈ Ω which are subsets of AVOID(x,A, {y}). Note that if Ω(x, y) is the empty set then x
is a winning position of Adversary in the original game. Also, Γ(x, y) is a linear game and
the length of its winning conditions is strictly less than n. Here is our next lemma.

Lemma 9 Assume that Xn−1 = ∅. Survivor wins the linear game Γ from position p if and
only if p belongs to REACH(S, Un), Un is S-closed and one of the following two conditions
is satisfied:

1. Survivor wins the update game (Un, {Un}).

2. For any pair x, y ∈ Un of nodes if x �∈ REACH(S, {y}, Un) then Survivor wins the
game Γ(x, y) from p while staying inside Un.

Proof. Assume that Survivor wins the game Γ from position p. Clearly it must be the
case that p ∈ REACH(S, Un). Now assume that none of the conditions is true. We need to
describe a winning strategy for Adversary. By the assumption, there must exist x0, y0 ∈ Un
such that x0 does not belong to the set REACH((S, {y0}) and Adversray wins the game
Γ(x0, y0) while staying inside Un. We fix x0 and y0. Here is now a strategy for Adversary.
Let h = p0, . . . , pm be a finite play from p.

Case 1. pi = x0 for some i ≤ m and all nodes in h after pi are in Un. In this case
Adversary follows his winning strategy (from position pi) in game Γ(x0, y0).

Case 2. Suppose that Case 1 does not hold and all nodes in h are in Un. In this case
Adversary follows his winning strategy (from position p) in game (V,W, {U1, . . . , Un−1}).

Case 3. pi �∈ Un for some i ≤ m and no node in h after pi is x0. In this case Adversary
follows his winning strategy (from position pi) in game (V,W, {U1, . . . , Un−1}).

We need to show that thus described strategy is a winning strategy for Adversary. Let
π = p0, p1, p2, . . . be a play, where p = p0, consistent with the strategy. Assume that pi = x0
for some i so that pj ∈ Un for all j > i. Then Adversary follows his winning strategy in
Γ(x0, y0). Note that y0 �∈ Inf(π). We conclude that Inf(π) �∈ Ω. Assume that pi �= x0
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for all pi after some pj �∈ Un. Then the play is consistent with the Adversary’s winning
strategy in game (V,W, {U1, . . . , Un−1) after pj . Hence Inf(π) �∈ {U1, . . . , Un−1}. Since
x0 �∈ Inf(π) we conclude that Inf(π) �= Un. Assume that x0 and y0 appears infinitely
often in π. This means π contains infinitely many nodes outside of Un. Hence Inf(π) �∈ Ω.
Thus, the strategy is winning strategy for Adversary. This is contradiction.

Now assume that one of the two conditions is satisfied and p ∈ REACH (S, Un). Clearly
if the first conditions is true then Survivor wins the game. Assume that the first condition
is not satisfied. Let p = x0, x1, . . . , xk be the list of all nodes in Un. Survivor’s strategy is
as follows. Initially i = 0 and the current position is p. If the current position q of a play
is in REACH((S, {xi+1(mod(k)), Un) then Survivor forces the play into xi+1(mod(k)). As soon
as xi+1(mod(k)) is reached i is set to i + 1(mod(k)) and the current position is xi+1(mod(k)).
If the current position q is not in REACH((S, {xi+1(mod(k)), Un}) then Survivor plays his
winning strategy inside Γ(xi, xi+1(mod(k))) while staying in Un. We need to show that this is
a winning strategy for Survivor. Let π = p0p1p2 . . . (with p0 = p) be a play consistent with
the strategy. Let U = Inf(π) be the infinity set of the play. Assume that xi+1(mod(k)) �∈ U
for some i. This means that there is a position n in the play π such that all xj with j > n
belong to AVOID(xi, A, xi+1(mod(k))). Since Survivor plays his winning strategy inside the
game Γ(xi, xi+1(mod(k))) the set U must belong to Ω. 2

¿From the lemmas above and Theorem 1 we now can derive the following result about
complexity of deciding linear games.

Theorem 4 There exists an algorithm that decides any linear game G with winning condi-
tions {U1, . . . , Un} in O(|V |2·n−1|E|) running time. In particular, if n is fixed then deciding
linear games with n winning conditions can be done in a polynomial time.

Proof. We analyze the case when n = 2. We use the lemmas above. Constructing X1
and checking if p ∈ REACH(S,X1) takes at most O(|V ||E|)-time.

Assume that X1 = ∅. Cheking that p ∈ REACH(S, U2) and (U2, {U2}) is an update
network takes at most (|V ||E|)-time.

Let us now compute the time needed to check the second condition in the lemma above.
It is not hard to see that for each y ∈ U2 the set AVOID(A, {y})=V \ REACH(S, {y}) can
be constructed in O(|E|+ |V |)-time (see Lemma 2). For each x ∈ AVOID(A, {y}) checking
if Survivor wins Γ(x, y) inside U2 takes at most O(|AVOID(x,A, {y})||E|)-time. Therefore,
by varying x, y we see that the total time does not exceed O(|V |2 × |V ||E|). This proves
the theorem for n = 2.

The rest can be done by using recursion and the use of the previous lemmas. The
theorem is proved. 2

5 No-Memory Strategies, Complexity, and Structure

The goal in this section is twofold. On the one hand we show that finding efficient strategies
in McNaughton games, even in a simple case such as update games, is an untractible
problem. On the other hand, we show how efficient winning strategies can be used to
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extract structural properties of the underlying graphs. In this section we consider update
games only.

Argueably the most simple strategies are the ones that depend on the current node of
a play and not any other part of its history. We single out such strategies in the following
definition.

Definition 8 A strategy for Survivor is a no-memory strategy if it is induced by a
function f : S → A such that (s, f(s)) ∈ E for all s ∈ S.

Thus if f is a no-memory strategy and h is a finite play whose last symbol last(h) is in
S then Survivor’s next move is f(last(h)). The next definition gives us a tool to analyze
the structure of graph games.

Definition 9 A cycle a0, s0 . . . , an, sn in game graph G is a forced cycle if (ai, s) ∈ E
implies s = si for all 0 = 1, . . . , n.

Here is our theorem that shows the interaction between no-memory winning strategies
in update games and the structural properties of the underlying graphs.

Theorem 5 Let Γ be an update game whose graph is G. Then Survivor has a no-memory
winning strategy if and only if the graph G forms a forced cycle.

Proof. Assume that the graph G forms a forced cycle a0, s0 . . . , an, sn. Then the
mapping si → ai+1(mod(n+1)) establishes a no-memory winning strategy for Survivor.

Assume that in game Γ Survivor has a no-memory winning strategy f . Consider a play
π = s0, a0, s1, a1, . . . consistent with f . Thus f(si) = ai for all i. Since f is a no-memory
winning strategy we have Inf(π) = V . In this play there exist positions i and i + m such
that si = si+m, m > 0, and no two Survivors nodes between positions i and i+m coincide.
It is not hard to see that si, ai, . . . , ai+m is the list of all the nodes of the graph as otherwise
f would not be a winning strategy. Moreover, in this list if k �= t then ak �= at. Indeed,
say k < t and ak = at. Then Adversary by always moving from ak into st+1 would win
against strategy f . This would contradict the assumption that f is a winning strategy.
Thus, si, ai, . . . , ai+m−1, si+m is in fact a forced cycle. The theorem is proved.

Corollary 1 The problem of finding whether or not Survivor has a no-memory winning
strategy in a given update game is NP -hard.

Proof. We reduce the problem of finding a Hamiltonian path in a directed graph to
the problem of interest. Let G = (V ′, E′) be a directed graph. Construct an update game
Γ(G) = (S ∪ A,E) as follows:

1. S = V ′, A = {a(v,w) | (v, w) ∈ E′}.

2. E = {(s, a(s,w)) | s ∈ S, a(s,w) ∈ A} ∪ {(a(v,s), s) | a(v,s) ∈ A, s ∈ S}.

Basically, we subdevide each edge (v, w) of the original graph G by introducing new Adver-
sary’s node a(v,w) that is connected to v and w. Clearly, the construction of Γ(G) is linear
on the size of the graph G. Moreover, it is easy to see that G has a Hamiltonian cycle if
and only if Survivor has a non-memory winning strategy in Γ(G). The corollary is proved.
2
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6 Games and Temporal Logic

We now say a few words in relation to connections with temporal logic. There are several
ways to think about these games using the language of temporal logic. For example, one
way to think about the specifications (W,Ω) is to identify them with classes of formulas
of temporal logic. Formally, this can be established as follows as it is done in [4]. Given a
system (S

⋃
A,E), form propositions of temporal logic by identifying each p ∈ S ∪A as an

atomic proposition. In the inductive step, if φ and ψ are propositions then their Boolean
combinations and the expressions Gφ and Fφ are also propositions. Semantics for these
propsitions are the runs of the system (S

⋃
A,E). Let π = p0, p1, p2, . . . be a run and φ be

formula. Let πi be the sequence pi, pi+1, . . .. One now can define what it means φ to be
true on π, denoted by π |= φ, by induction as follows. If p0 = p then π |= p. The case for
Boolean connectives is defined naturally. For φ = Fψ, π |= φ if πi |= ψ for some i. For
φ = Gψ, π |= φ if πi |= ψ for all i. Thinking of G as “globally” and of F as “future”, we
can represent specifications (W,Ω) in the language of temporal logic. Thus, given a system
(S
⋃

A,E) and a specification φ we can now ask whether or not the system satisfies φ.
The satisfaction can be expressed in terms of winning. Namely, the system satisfies φ if
Survivor has a strategy so that in every play π consistent with the strategy the formula φ
is true. For example, for the system (S

⋃
A,E) with nodes {p0, . . . , pn−1}, the specification

(p0 ∨ . . .∨ pn)&&0≤i≤n−1G(pi → Fpi+1(mod n)) tells us that Survivor must visit every node
infinitely often. This is in fact a specification of update networks in terms of temporal
logic. Thus, one can study the following natural questions:

1. (Model checking complexity) Given a system, what is the time complexity of finding
whether or not a given temporal formula is staisfied in the system?

2. (Implementation complexity) Given a formula φ, what is the complexity of finding
whether or not a given system satisfies φ?

3. (Combined complexity) What is the complexity of finding, given a formula φ and the
system A, that A satisfies φ?

Fore details on research on the relationship between verification and specifications of
systems, temporal logic and games see Vardi [9].

7 Conclusion

The results of this paper can be generalized. For example, in fully separated games or
in linear games the condition W = S

⋃
A can be removed. Techniques for a such gener-

alization can be found in [2]. We expect that it is possible to decide linear games more
efficiently than the time bound presented in Theorem 4. We think that the methods and
techniques developed in this paper, papers [1] and [2] give sufficient tools for a deep study
of games from computational, algebraic and logical points of view. One can hope to pro-
vide fast algorithms for deciding those games in which the winning configurations can be
decided efficiently, e.g. when the number of winning conditions is fixed. Section 5 shows
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that interesting results can be obtained in relation to implementing winning strategies by
finite automata. This is a topic of our future papers. Note that apart from Corolloary 1
neither in this nor in any of the previous papers [1] [2] the topic on complexity of extracting
winning strategies has been discussed. To our knowledge the only paper that deals with
this issue explicetly is one by Nerode, Remmel, and Yakhnis [7]. A fruitful direction is
related to the study of connections with temporal logic briefly described in the last section.
One can also study the effect of the topology of the systems on finding the winners and
winning strategies. As it is seen, much more is needed to be done.
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