

CDMTCS Research Report Series

On Complexity of Computable \aleph_1 -Categorical Models^a

Sergey S. Goncharov Institute of Mathematics

Novosibirsk, Russia

Bakhadyr Khoussainov

Department of Computer Science University of Auckland

CDMTCS-176 January 2002

Centre for Discrete Mathematics and Theoretical Computer Science

^aThis work was partially supported by the Marsden Fund of New Zealand. The

On Complexity of Computable \aleph_1 -Categorical Models*

Sergey S. Goncharov, Institute of Mathematics, Novosibirsk, Russia

Bakhadyr Khoussainov The University of Auckland, New Zealand

1 Introduction

One of the themes of computable model theory is concerned with finding computable models for first order theories. It is well known that if a consistent theory T is decidable then T has a decidable model, that is one for which the satisfaction predicate is decidable. On the other hand, if a theory T has a computable model then T is computable in $\mathbf{0}^{\omega}$. For example, the theory of arithmetic $(\omega, S, +\times, \leq, 0)$ is Turing equivalent to $\mathbf{0}^{\omega}$. In this paper, for any natural number $n \geq 1$, we present examples of \aleph_1 -categorical computable models whose theories are equivalent to 0^n . The following are related results. In [1] Baldwin and Lachlan showed that all models of any \aleph_1 -categorical theory T can be listed into the chain $A_0 \leq A_1 \leq A_2 \leq \dots A_{\omega}$ of elementary embeddings, where A_0 is the prime model, A_{ω} is the saturated model, and each A_{i+1} is a minimal proper elementary extension of A_i . Let SCM(T)be the spectrum of computable models of T, that is $SCM(T) = \{i \mid A_i\}$ has a computable presentation $\}$. If T is \aleph_1 -categorical and decidable then, as proved by Harrington and Khisamiev in [4] [5], all countable models of T have decidable presentations, that is $SCM(T) = \omega \cup \{\omega\}$. In [3] Goncharov showed that there exists an \aleph_1 -categorical theory T computable in

^{*}This work was partially supported by the Marsden Fund of New Zealand. The paper is to appear in *Novosibirsk University Vestnik* in Russian.

 $\mathbf{0}'$ for which $SCM(T) = \{0\}$. Kudeiberganov extended this result by showing that for every $n \geq 0$ there exists an \aleph_1 -categorical T computable in $\mathbf{0}'$ such that $SCM(T) = \{0, 1, \ldots, n\}$ [7]. In [6] it is shown that there exist \aleph_1 -categorical theories T_1 and T_2 computable in $\mathbf{0}''$ such that $SCM(T_1) = \omega$ and $SCM(T_2) = \omega \cup \{\omega\} \setminus \{0\}$. Thus, all the known \aleph_1 -categorical theories that have computable models are computable in $\mathbf{0}''$. Our examples show that for each $n \geq 1$ there is an \aleph_1 -categorical computable model whose theory is Turing equivalent to $\mathbf{0}^n$.

We now give basic definitions. We fix a computable language L. A structure \mathcal{A} of this language is **computable** if the domain, functions, and predicates of the structure are uniformly computable. This is equivalent to saying that the atomic diagram of \mathcal{A} is computable. A structure \mathcal{B} is **computably presentable** if it is isomorphic to a computable structure. In this case any isomorphism from \mathcal{B} into \mathcal{A} is called a **computable presentation** of \mathcal{B} . A complete theory T is \aleph_1 -categorical if all models of T of power \aleph_1 are isomorphic. A model \mathcal{M} is \aleph_1 -categorical if the theory $Th(\mathcal{M})$ of the model is \aleph_1 -categorical. Typical examples of \aleph_1 -categorical theories are the theory of algebraically closed fields of fixed characteristic, the theory of vector spaces over a fixed countable field, the theory of the successor structure (ω, S) . A theory T is **almost strongly minimal** if in every model of T every element is in the algebraic closure of a strongly minimal set.

Now we briefly outline the paper. In the next section, Section 2, we provide a model—theoretic construction of a model whose theory is an \aleph_1 —categorical theory. The construction of the model follows the ideas of Marker's construction from [8] but is carried out with an eye towards reducing the computability-theoretic complexity of presentations of the model. In Section 3 we prove a representation lemma about Σ_2^0 —subsets of natural numbers. Finally, in the last section we prove the following theorem:

Theorem For any natural number $n \ge 1$ there exists an \aleph_1 -categorical theory T with a computable model so that T is equivalent to $\mathbf{0}^n$. Moreover, all (countable) models of T have computable presentations and T is almost strongly minimal.

We assume that the reader is familiar with basics of model theory and computability theory. We use some standard notions and notations, such as $\langle \cdot, \cdot \rangle$, l, r Cantor's pairing functions, the concept of X-computable

sets (e.g. sets computable with an oracle for X), the jump operation X' for subsets $X \subset \omega$. Standard references are [2] [9].

2 Construction

In [8] Marker provided an example of non Σ_n axiomatizable almost strongly minimal theory for $n \in \omega$. We adapt that construction for our case. The construction uses induction. We first provide the base case and then explain the inductive step.

2.1 Basic 0-Structure

We construct theory T_0 . The basic 0-structure will be the model of T_0 denoted by \mathcal{M}_0 . The language of the structure \mathcal{M}_0 is $L_0 = \langle X, Y, C_0, D_0, P_0, R_0 \rangle$, where X, Y, C_0, D_0 are all unary predicate symbols, P_0 is a binary predicate, and R_0 is a predicate of arity 4. Now we list axioms of the theory T_0 .

- 1. Any model of T_0 is a disjoint union of X, Y, C_0 , and D_0 .
- 2. If $P_0(x, y)$ holds then $x \in X$ and $y \in Y$. Thus P_0 defines a bipartite graph between X and Y.
- 3. Every element of X is connected either to every element of Y or all but one element of Y, and there are infinitely many elements of each type.
- 4. Every element of Y is connected to all but one element of X.

Thus, $\neg P_0$ determines a one to one function from Y into x, that is $y \in Y$ is mapped into $x \in X$ if $\neg P_0(x, y)$. Based on P_0 we now define the following two predicates. We say $x \in X$ is **good** if it is connected to every element in Y, and we call x **bad** otherwise. Thus, we have the unary predicates G and B:

$$G(x) = \forall y(X(x) \& P_0(x, y))$$
 and $B(x) = \exists y(X(x) \& Y(y) \& \neg P_0(x, y)).$

What we have defined is not an \aleph_1 -categorical theory because B and G can realize different cardinalities. Therefore R_0 will be used to remedy this. Using R_0 we define a permutation $\mu: X \to X$ so that $\mu(B) = G$, $\mu(G) = G$ and $\mu(\mu(x)) = x$ for all $x \in X$. Axioms for R_0 are as follows:

- 5. If $R_0(x, y, c, d)$ then $x \in X$, $y \in X$, $c \in C_0$, and $d \in D_0$.
- 6. $R_0(x, y, c, d)$ if and only if $R_0(y, x, c, d)$.

Define the predicate $R^*(x, y, c)$: $R^*(x, y, c) = \forall dR_0(x, y, c, d)$. The predicate R^* will define a bipartite graph between the set $X^{(2)}$ of all unordered pairs of X and the set C. Here are the axioms for R^* :

- 7. For every unordered pair $\{x,y\}$ in X there is at most one $c \in C_0$ such that $R^*(x,y,c)$.
- 8. For every element $c \in C_0$ there is a unique pair $\{x,y\}$ such that $R^*(x,y,c)$.
- 9. If $R^*(x, y, c)$ then one element of the pair $\{x, y\}$ is good and the other is bad.
- 10. For every $x \in X$ there is unique $y \in X$ so that $R^*(x, y, c)$ for some $c \in C_0$.

Thus, R^* determines a one to one function from C_0 into $X^{(2)}$. We now define a function $\mu: X \to X$ as follows: $\mu(x) = y$ if and only if $\exists c R^*(x, y, c)$. Clearly, μ is a definable permutation such that $\mu(B) = G$, $\mu(G) = G$ and $\mu(\mu(x)) = x$ for all $x \in X$.

- 11. For all $x \in X$, $y \in Y$, $c \in C_0$ either $\forall d \in D_0R_0(x, y, c, d)$ or there is a unique d_0 such that $\neg R_0(x, y, c, d_0)$. Moreover, there are infinitely many elements of each type.
- 12. For each $d_0 \in D_0$ there are unique pair $\{x,y\}$ and $c_0 \in C$ so that $\neg R_0(x,y,c_0,d_0)$.

Thus, $\neg R_0$ establishes a one to one mapping from D_0 into $X^{(2)} \times C_0$. This completes the description of T_0 .

Here are some properties of the model \mathcal{M}_0 .

Claim 1 Every element of \mathcal{M} is in definable closure of B.

Proof. We denote the closure of B by cl(B). Take any $a \in M$. If $a \in G$ then $\mu(x) = a$ for some $x \in B$. Hence $a \in cl(B)$. If $a \in Y$ then $\neg P_0(x, a)$ for some $x \in B$, and from the axioms for P_0 we see that $a \in cl(B)$. Assume that $a \in C_0$. Then there is a pair $\{x,y\}$ in X such that $R^*(x,y,c)$. From the axioms for R^* we derive that $a \in cl(B)$. Similarly, if $a \in D_0$ then from the fact that R_0 is a one-to-one mapping from D_0 into $X^{(2)} \times C_0$, we obtain that $a \in cl(B)$. The claim is proved.

Claim 2 The set B is strongly minimal.

Proof. Let a_1, \ldots, a_n be elements of \mathcal{M} . We need to prove that there is no infinite and coinfinite subset of B definable with parameters a_1, \ldots, a_n . We may assume, by the previous claim, that the parameters a_1, \ldots, a_n are in B. Let b_i and c_i be all elements such that $\mu(b_i) = a_i$ and $R^*(a_i, b_i, c_i)$ for $i = 1, \ldots, n$. It is not hard to see that for all $x, y \in B$ if $x, y \notin \{a_1, \ldots, a_n\}$ then there is an automorphism α of \mathcal{M}_0 for which $\alpha(x) = y$ and $\alpha(a_i) = a_i$, $\alpha(b_i) = b_i$ and $\alpha(c_i) = c_i$ for all $i = 1, \ldots, n$. This proves the claim.

2.2 *n*-Structure

Suppose that we have constructed the theory T_{n-1} for $n \geq 1$. The language of the theory T_n is $\langle X, Y, Z_1, Z_2, \ldots, Z_{2n}, C_0, D_0, \ldots, C_{2n}, D_{2n}, P_n, R_n \rangle$, where $X, Y, Z_1, Z_2, \ldots, Z_{2n}, C_0, D_0, \ldots, C_{2n}$, and D_{2n} are all unary predicate symbols, P_n is a (2n + 2)-ary predicate symbol, and R_n is (2n + 4)-ary predicate symbol. The model of T_n will be denoted by \mathcal{M}_n . The idea is that we want the previous structure \mathcal{M}_{n-1} to be definable in \mathcal{M}_n . The axioms of T_n are the following:

1. Any model of T_n is a disjoint union of the unary predicates $X, Y, Z_1, Z_2, \ldots, Z_{2n}, C_0, D_0, \ldots, C_{2n}$, and D_{2n} .

We now describe the predicate P_n .

2. If $P_n(x, y, z_1, ..., z_{2n})$ holds then $x \in X$, $y \in Y$, $z_1 \in Z_1$, ..., $z_{2n} \in Z_{2n}$. We define the following predicate $P^{\star\star}(x, y, z_1, ..., z_{2(n-1)})$:

$$P^{\star\star}(x, y, z_1, \dots, z_{2(n-1)}) = \exists z_{2n-1} \forall z_{2n} P_n(x, y, z_1, \dots, z_{2n}).$$

3. We postulate that the predicate $P^{\star\star}$ satisfies all the axioms of the predicate P_{n-1} .

Now consider the following predicate $P^*(x, y, z_1, \dots, z_{2n-1})$:

$$P^{\star}(x, y, z_1, \dots, z_{2n-1}) = \forall z_{2n} P_n(x, y, z_1, \dots, z_{2n-1}, z_{2n}).$$

Here are the axioms for P^* :

- 4. For all $x \in X$, $y \in Y$, $z_1 \in Z_1$, ..., $z_{2(n-1)} \in Z_{2(n-1)}$ there is at most one $z_{2n-1} \in Z_{2n-1}$ such that $P^*(x, y, z_1, \dots, z_{2n-1})$.
- 5. For each $z_{2n-1} \in Z_{2n-1}$ there exists a unique tuple $(x, y, z_1, \ldots, z_{2(n-1)})$ such that $P^*(x, y, z_1, \ldots, z_{2(n-1)}, z_{2n-1})$.

Thus, the predicate P^* determines a one-to-one function from Z_{2n-1} into $X \times Y \times Z_1 \times \ldots \times Z_{2(n-1)}$. The next two axioms finish the description of P_n . These axioms basically tell us that $\neg P_n$ establishes a one-to-one mapping from Z_{2n} into $X \times Y \times Z_1 \times \ldots \times Z_{2n-1}$.

- 6. For all $x \in X$, $y \in Y$, $z_1 \in Z_1$, ..., $z_{2n-1} \in Z_{2n-1}$ either there is a unique $z_{2n} \in Z_{2n}$ for which $\neg P_n(x, y, z_1, \dots, z_{2n-1}, z_{2n})$ is true or $P_n(x, y, z_1, \dots, z_{2n-1}, z_{2n})$ is true for all $z_{2n} \in Z_{2n}$.
- 7. For each $z_{2n} \in Z_{2n}$ there is a unique tuple $(x, y, z_1, \ldots, z_{2n-1})$ such that $\neg P_n(x, y, z_1, \ldots, z_{2n-1}, z_{2n})$.

Now we describe the predicate R_n . Here are the lists of axioms for R_n .

8. If $R_n(x, y, c_0, d_0, \ldots, c_n, d_n)$ then $x \in X$, $y \in X$, $c_i \in C_i$, and $d_i \in D_i$ for all $i \leq n$. Moreover, $R_n(x, y, c_0, d_0, \ldots, c_n, d_n)$ if and only if $R_n(y, x, c_0, d_0, \ldots, c_n, d_n)$.

Define the predicate $R^{\star\star}(x, y, c_0, d_0 \dots, c_{n-1}, d_{n-1})$ as follows:

$$R^{\star\star}(x, y, \dots, c_{n-1}, d_{n-1}) = \exists c_n \forall d_n R_n(x, y, \dots, c_{n-1}, d_{n-1}, c_n, d_n).$$

Define the predicate $R^*(x, y, c_0, d_0, \dots, c_{n-1}, d_{n-1}, c_n)$ as follows:

$$R^{\star}(x, y, \dots, c_{n-1}, d_{n-1}, c_n) = \forall d_n R_n(x, y, \dots, c_{n-1}, d_{n-1}, c_n, d_n).$$

Here are the axioms for $R^{\star\star}$ and R^{\star} :

- 9. We postulate that the predicate $R^{\star\star}$ satisfies all the axioms of the predicate R_{n-1} . For all $\{x,y\} \in X^{(2)}, c_0 \in C_0, \ldots, d_{n-1} \in D_{n-1}$ there is at most one $c_n \in C_n$ such that $R^{\star}(x,y,c_0,d_0\ldots,c_{n-1},d_{n-1},c_n)$.
- 10. For each $c_n \in C_n$ there exist a unique tuple $(c_0, \ldots, c_{n-1}, d_{n-1})$ and a pair $\{x, y\}$ such that $R^*(x, y, c_0, d_0, \ldots, c_{n-1}, d_{n-1}, c_n)$.
- 11. For all $\{x,y\} \in X^{(2)}$, $c_0 \in C_0$, $d_0 \in D_0$, ..., $d_{n-1} \in D_{n-1}$, $c_n \in C_n$ either $R_n(x,y,c_0,d_0\ldots,c_{n-1},d_{n-1},c_n,d_n)$ for all $d_n \in D_n$ or there is a unique $d \in D_n$ for which $\neg R_n(x,y,c_0,d_0\ldots,c_{n-1},d_{n-1},c_n,d)$.
- 12. For each $d_n \in D_n$ there is a unique tuple $(c_0, d_0, \ldots, c_{n-1}, d_{n-1}, c_n)$ and a pair $\{x, y\}$ such that $\neg R_n(x, y, c_0, d_0, \ldots, c_{n-1}, d_{n-1}, c_n, d_n)$.

Now by induction on n one can prove the following lemma.

Lemma 1 For the theory T_n the following are true:

- 1. The unary predicate B(x) is definable by a Σ_n formula in the language of T_n .
- 2. The theory T_n is \aleph_1 -categorical.
- 3. The predicate B(x) is strongly minimal.
- 4. The theory T_n is almost strongly minimal. \square

3 On Presentations of Σ_2^0 -Sets

In this section we prove a computability-theoretic lemma needed for the main result of this paper. For the lemma we define the following notion.

Definition 1 A Σ_2^0 -set A is **one-to-one representable** if for some computable predicate $Q \subset \omega^3$ each of the following properties is true:

- 1. For each $n \in \omega$, $\exists a \forall b Q(n, a, b)$ if and only if $n \in A$.
- 2. For each $n \in \omega$, $\exists a \forall b Q(n, a, b)$ if and only if $\exists = 1 a \forall b Q(n, a, b)^{1}$.

 $^{{}^{1}\}exists^{=1}xP(x)$ means that there is a unique x satisfying P

- 3. For every b there is a unique pair < n, a > such that $\neg Q(n, a, b)$.
- 4. For every pair < n, a > either $\exists b \neg Q(n, a, b)$ or $\forall b Q(n, a, b)$.
- 5. For every a there exists a unique n such that $\forall bQ(n, a, b)$.

It is not hard to see that every infinite and coinfinite computable set A has a one-to-one representation.

For a Σ_2^0 -set A there is a computable H such that $n \in A \leftrightarrow \exists a \forall b H(n, a, b)$. In fact, there is a computable Q for which $\exists a \forall b H(n, a, b) \leftrightarrow \exists^{-1} a \forall b Q(n, a, b)$. To show this we describe the procedure which builds a predicate P_n , $n \in \omega$. To build P_n initially we set the values $a_0 = 0$, $r_0 = 0$, $h_0 = 0$. At stage t the predicate P_n will be defined on all pairs (i,j) so that $j \leq t$, $i \leq r_t$. The intention for a_t is that a_t will be the unique witness for n to belong to A, that is $n \in A$ if and only if $\forall b P_n(a_t, b)$. The intention for h_t is that if $n \in A$ then h_t is the minimal $h \leq t$ for which $(\forall b \leq t) H(n, h, b)$.

Stage t+1. Compute H(n,i,j) for all $i,j \leq t+1$. If $(\forall i \leq t+1)(\exists j \leq t+1) \neg H(n,i,j)$ then set $r_{t+1} = r_t+1$, h_{t+1} and a_{t+1} be undefined, and make $P_n(i,j)$ false on all (i,j), with $i \leq r_{t+1}, j \leq t+1$, at which P_n has not been defined. If h_t is undefined and $\forall j \leq t+1 H(n,t+1,j)$ is true then set $h_{t+1} = t+1$, $r_{t+1} = r_t+1$, and $a_{t+1} = r_{t+1}$. Make $P_n(a_{t+1},j)$ to be true for all $j \leq t+1$, and make $P_n(i,j)$ false on all (i,j), with $i \leq r_{t+1}, j \leq t+1$, at which P_n has not been defined. If h_t is defined and $\forall j \leq t+1 H(n,h_t,j)$ is true then set $h_{t+1} = h_t$, $a_{t+1} = a_t$, and $r_{t+1} = r_t+1$, and make $P_n(a_{t+1},j)$ to be true for all $j \leq t+1$, and make $P_n(i,j)$ false on all (i,j), with $i \leq r_{t+1}, j \leq t+1$, at which P_n has not been defined.

Now define the predicate Q as follows: $(n, a, b) \in Q$ if and only if $P_n(i, j)$. The construction above guarantees that the predicate Q is desired.

Now we prove the following lemma which gives a sufficient condition for Σ_2^0 -sets to have one to one representations.

Lemma 2 Let A be a coinfinite Σ_2^0 -set that possesses an infinite computable subset S such that $A \setminus S$ is infinite. Then A has a one-to-one representation.

Proof. As noted above there is computable set H such that $n \in A$ iff $\exists^{=1}a \forall b H(n,a,b)$. Define the predicate H_1 : $H_1(n,a,b)$ if and only if

 $a = \langle n, x \rangle \& H(n, x, b)$. It is easy to check that the formulas $\exists a \forall b H(n, a, b)$ and $\exists a \forall b H_1(n, a, b)$ are equivalent. Moreover, for every a there exists at most one n such that $\forall b H_1(n, a, b)$. Let H_2 be defined as follows: $\neg H_2(n, a, b)$ if and only if $b = \langle n, a, x \rangle \& \neg H_1(n, a, x) \& (\forall z < x) H_1(n, a, z)$. It is not hard to see that the predicate H_2 satisfies the following properties:

- 1. The formulas $\exists a \forall b H_1(n, a, b)$ and $\exists a \forall b H_2(n, a, b)$ are equivalent.
- 2. The formulas $\forall bH_1(n,a,b)$ and $\forall bH_2(n,a,b)$ are equivalent.
- 3. For every pair n, a there exists at most one b such that $\neg H_2(n, a, b)$.
- 4. For every a there exists at most one n such that $\forall b H_2(n, a, b)$.
- 5. For every b there exists at most one pair (n, a) such that $\neg H_2(n, a, b)$.

Thus, we may assume that H satisfies the properties 3) - 5) above. Now, using the predicate H, we build the desired predicate Q.

At stage t the predicate Q_t will be defined on $[0, t] \times [0, r_2(t)] \times [0, r_3(t)]$, where the functions $r_2(t)$, $r_3(t)$ are given effectively at stage t. The predicate Q_t will satisfy the following properties denoted by P:

- P_1 : For all $n \le t$, $a \le r_2(t)$ either $Q_t(n, a, b)$ holds true for all $b \le r_3(t)$ or $\exists^{-1}b \le r_3(t) \neg Q_t(n, a, b)$.
- P_2 : If $a \leq r_2(t)$ is a (Q, t)-witness for $n \leq t$, that is $\forall b \leq r_2(t)Q_t(n, a, b)$ then it is a unique (Q, t)-witness for n.
- P_3 : No two (Q, t)-witnesses (which may be for distinct n_1 and n_2) coincide.
- P_4 : For each $b \leq r_3(t)$ there is a unique pair (n,a) such that $\neg Q_t(n,a,b)$.

Let $H_0 \subset H_1 \subset ...$ be an approximation of H so that $H = \bigcup_t H_t$, where $H_t = H \cap [0, t] \times [0, t] \times [0, b_t]$ and b_t is the minimal $b \geq t$ such that each of the following is true:

- 1. If $a \le t$ is a (H, t)-witness for $n \le t$, that is $\forall b \le tH(n, a, b)$ then it is a unique (H, t)-witness for n.
- 2. No two (H, t)-witnesses (which may be for distinct n_1 and n_2) coincide.

3. For all $n, a \leq t$ either $(\forall b \leq t) H(n, a, b)$ or $(\exists^{=1} j \leq b) \neg H(n, a, b)$.

Note that b_t is correctly defined. If for an $n \leq t$ there is an (H, t)-witness for n then we denote the witness by h(n, t).

Without loss of generality, we assume that H(0,0,0) is true. In the construction, at Stage t, we use functions $r_2(t)$, $r_3(t)$, h(n,t) and a(n,t). The function $r_2(t)$ and $r_3(t)$ tell us that the second and the third coordinates of Q_t do not exceed $r_2(t)$ and $r_3(t)$, respectively; h(n,t) is the (H,t)-witness for n, and a(n,t) is a (Q,t) witness for n if they exist. The construction guarantees that h(n,t) exists if and only if a(n,t) exists. Initially, we set r(0) = 0, h(0,0) = 0, and a(0,0) = 0. Some of the numbers $a \le r_2(t)$ will be marked by \square_s , where $s \in S$. This will mean that the construction guarantees that a is a Q-witness for s, that is $\forall bQ(s,a,b)$.

We now describe stage t of the construction. We assume that Q_{t-1} has been constructed so that all properties P_1 through P_4 hold. In addition, we assume that each $n \leq r_2(t-1)$ either is a (Q, t-1)-witness of the form a(n, t-1) (for some $n \leq t$) or has been marked by a \square_s for some $s \in S$.

Stage t. If $t \in S$ and some $a \leq r_2(t-1)$ is marked with \Box_t then make a a (Q,t)-witness for s, set $r_2(t) = r_2(t-1)$, $r_3(t) = r_3(t-1) + t$, extend Q_{t-1} to Q_t in the $[0,t] \times [0,r_2(t)] \times [0,r_3(t)]$ keeping all the (Q,t-1)-witnesses as (Q,t)-witnesses so that Q_t satisfies all properties P_1 through P_4 . Otherwise, proceed as follows.

Compute H_t . Let $i_1, \ldots, i_k \leq t$ be in increasing order such that $h(i_j, t)$ is defined and $h(i_j, t) \neq h(i_j, t-1)$, $j=1,\ldots,k$. Note that $h(i_j, t-1)$ could be undefined. Also note that $k \leq 2$. Take the least unused numbers s_1 and $s_2 \in S$, mark each $a(i_j, t-1)$ with \square_{s_j} , make sure that $a(i_j, t-1)$ is a (Q, t')-witness for s_j at all stages $t' \geq s_j$, $j=1,\ldots,k$. Further, take numbers $n_1 = r_2(t-1) + 1, \ldots, n_k = r_2(t-1) + k$, set $a(i_j, t) = n_j$ for $j=1,\ldots,k$, $r_2(t)=n_k$, $r_3(t)=r_3(t-1)+(k+1)t$, and extend Q_{t-1} to Q_t in the $[0,t] \times [0,r_2(t)] \times [0,r_3(t)]$ making each $a(i_j,t)$ a (Q,t)-witness for i_j , keeping all the other (Q,t-1)-witnesses as (Q,t)-witnesses so that Q_t satisfies all properties P_1 through P_4 . Note that P_4 can be satisfied as seen from the definition of $r_3(t)$.

Suppose that the sequence $i_1, \ldots, i_k \leq t$ stipulated above does not exist. Take the first unused $s \in S$ and mark t with \square_s . Make sure that t is a

²Note that property P_4 can be satisfied which is seen from the definition of $r_3(t)$.

(Q,t')-witness for s at all stages $t' \geq s$. Set $r_2(t) = r_2(t-1) + 1$, and $r_3(t) = r_3(t-1) + 2t + 1$, and extend Q_{t-1} to Q_t in the $[0,t] \times [0,r_2(t)] \times [0,r_3(t)]$ keeping all the (Q,t-1)-witnesses as (Q,t)-witnesses so that Q_t satisfies all properties P_1 through P_4 . This ends Stage t.

Set $Q = \bigcup_t Q_t$. Now it is not hard to see that Q is a one to one representation of A. Indeed, note that at every stage t, each $a \leq r_2(t)$ is either marked by \square_s or of the form a(n,t). If a is marked with \square_s then $\forall bQ(s,a,b)$ because a is a (Q,t')-witness for s at each stage $t' \geq s$. Assume that a is not marked with \square_s , $s \in S$. Consider stage a. There is an n such that a = a(n,a). Then for all $t \geq a$ we have a(n,t) = a(n,a). Therefore $\forall bQ(n,a,b)$. Thus, each $a \in \omega$ is a Q-witness for some $n \in A$. All the other desired properties of Q follow from the fact that Q_t satisfies properties P_1 through P_4 at each stage t. The lemma is proved.

Clearly the definition of one to one presentations of Σ_2^0 -sets can be relativised with respect to any oracle X. The relativised version of the lemma above is the following corollary which will be used in the next section.

Corollary 1 Let A be a coinfinite $\Sigma_2^{0,X}$ -set that possesses an infinite X-computable subset S such that $A \setminus S$ is infinite. Then there exists an X-computable set $Q \subset \omega^3$ such that Q is a one-to-one representation of $A.\square$

4 The Main Result

Consider the basic 0-structure \mathcal{M}_0 of the theory T_0 . The following lemma shows that \mathcal{M}_0 can have presentations of arbitrarily high complexity.

Lemma 3 For any set $X \subset \omega$ there exists an X-computable presentation of \mathcal{M}_0 such that the following properties hold:

- 1. The predicates X, Y, C_0, D_0 are computable.
- 2. The predicate B(x) is T-equivalent to X'.

Proof. We prove the lemma for the case when $X = \emptyset$. The case when $X \neq \emptyset$ can essentially be repeated. Thus, we need to prove that there exists a computable presentation of \mathcal{M}_0 such that the set B(x) is Turing equivalent

to the halting set K. We build the model \mathcal{M}_0 by stages. At stage t we will have a finite model \mathcal{M}_0^t with finite predicates $X^t, Y^t, C_0^t, D_0^t, P_0^t, R_0^t$.

We may assume that ω is the disjoint union of infinite computable sets X, Y, C_0, D_0 , and that $K \subset X$. At stage t the sequence of unordered pairs $\{a_0, b_0\}, \ldots, \{a_t, b_t\}$ is called **active** if $X^t = \{a_0, b_0, \ldots, a_t, b_t\}, a_0, \ldots, a_t \in K_t$, and $b_0, b_1, \ldots, b_t \notin K_t$, and $a_0 < a_1 < \ldots < a_t, b_0 < b_1 < \ldots < b_t$, where $K_0 \subset K_1 \subset K_2 \subset \ldots$ is an approximation of K with $K = \bigcup_t K_t$. A pair $\{a, b\}$ is **active** if $\{a, b\} = \{a_i, b_i\}$ for some $i \leq t$. It is clear that for any unordered pair $\{a, b\}$ in K there exists a stage K such that K is active at stage K if and only if K is active at stages K is active at stage, the model K is empty.

Stage t. We extend \mathcal{M}_0^{t-1} satisfying the following conditions:

- 1. If $R_0(a, b, c, d_0)$ is false then we guarantee that $R_0(a, b, c, d)$ is true for all $d \neq d_0$ with $d \in D_0^t$.
- 2. For every pair $\{a,b\}$ that was not active at the previous stage but which has become active at stage t we take an unused element c, put it into C_0^t , and then guarantee that $R_0(a,b,c,d)$ holds for all $d \in D_0^t$. We call the element c the t-witness for the pair $\{a,b\}$.
- 3. If (t-1)-active pair $\{a,b\}$ is still active then we guarantee that the (t-1)-witness for $\{a,b\}$ is also a t-witness.
- 4. For every pair $\{a,b\}$ that is not t-active but which was (t-1)-active with the (t-1)-witness c, we enumerate an unused element d_0 into D_0^t and make $R_0(a,b,c,d_0)$ false.
- 5. We guarantee that for any t-active pair $\{a,b\}$, where $b \in K_t$, we have the following:
 - (a) $P_0(a, y)$ is true for all $y \in Y^t$.
 - (b) There is a unique $y \in Y^t$ such that $P_0(b, y)$ is false.
 - (c) For any $y \in Y^t$ there exists a unique t-active pair $\{a, b\}$ such that $P_0(a, b, y)$ is false.

It is clear that the model \mathcal{M}_0^t can be constructed effectively. Let $\mathcal{M}_0 = \bigcup_t \mathcal{M}_0^t$. It is not hard to see that \mathcal{M}_0 is the desired model. We also note that for the constructed model the permutation $\mu: X \to X$ is such that the *i*th element of K is sent to the *i*th element in $X \setminus K$. Thus, we have proved the lemma.

Now we are ready to prove our main theorem.

Theorem For any natural number $n \ge 1$ there exists an \aleph_1 -categorical theory T with a computable model so that T is equivalent to $\mathbf{0}^n$. Moreover, all (countable) models of T have computable presentations and T is almost strongly minimal.

Proof. By the previous lemma there exists a $\mathbf{0}^n$ -computable presentation of \mathcal{M}_0 such that the predicate B(x) is equivalent to $\mathbf{0}^{n+1}$. From Corollary 1 we can construct the sequence $\{\mathcal{A}_i\}_{i\leq n}$ of models so that:

- 1. The model A_i is isomorphic to the *i*-structure M_i .
- 2. The sets $X, Y, Z_1, Z_2, \ldots, Z_{2i}, C_0, D_0, C_1, D_1, \ldots, C_i, D_i$ in each model A_i are computable.
- 3. The model A_i is $\mathbf{0}^{n-i}$ -computable.

Thus, each of the models, in particular the model \mathcal{A}_n , is \aleph_1 -categorical. Now expand the model \mathcal{A}_n by adding constant symbols c_x for each $x \in X$. Thus, we have the model $\mathcal{A} = (\mathcal{A}_n, c_x)_{x \in X}$. Let T be the theory of \mathcal{A} . The following now can easily be verified:

- 1. \mathcal{A} is computable.
- 2. The theory of A is \aleph_1 -categorical and is almost strongly minimal.
- 3. The set $\{B(c_x) \mid \mathcal{A} \models B(c_x)\}$ is a Σ_n^0 -set and is c.e. in $\mathbf{0}^n$.
- 4. All models of T have computable presentations.

The theorem is proved.

5 Future Work

We are currently working on improving or generalizing the main theorem of this paper in the following directions. First of all, we hope to construct an \aleph_1 -categorical model of a finite language for which the main result of this paper holds true. Secondly, we plan to adapt the construction of this paper to build \aleph_0 -categorical models whose theories are Turing equivalent to $\mathbf{0}^n$. Finally, we are investigating a possibility of constructing \aleph_1 -categorical or \aleph_0 -categorical computable models whose theories have hyperarithmetical degrees.

References

- [1] J. Baldwin, A. Lachlan, On Strongly Minimal Sets, Journal of Symbolic Logic, 36, 1971, 79-96.
- [2] C.C. Chang and H.J. Keisler. Model Theory, 3rd ed., Stud. Logic Found. Math., 73, 1990.
- [3] S.Goncharov, Constructive Models of ω_1 -categorical Theories, Matematicheskie Zametki, 23, 1978, 885-888.
- [4] L. Harrington. Recursively Presentable Prime Models, Journal of Symbolic Logic, 39, 1974, p. 305-309.
- [5] N.Khisamiev. Strongly Constructive Models of a Decidable Theory. Izv. Akad. Nauk Kazakh. SSR, Ser. Fiz.-Mat., 1, 1974, 83-84.
- [6] B. Khoussainov, A. Nies, R. Shore. On Recursive Models of Theories, Notre Dame Journal of Formal Logic 38, no 2, 1997, 165-178.
- [7] K.Kudeiberganov. On Constructive Models of Undecidable Theories. Siberian Mathematical Journal, v.21, no 5, 1980, 155-158.
- [8] D. Marker. Non- Σ_n -axiomatizable almost strongly minimal theories, J. Symbolic Logic 54, 1989, 921-927.
- [9] R. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, New York, 1987.