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1 Introduction

One of the themes of computable model theory is concerned with finding
computable models for first order theories. It is well known that if a consis-
tent theory 7' is decidable then 7" has a decidable model, that is one for which
the satisfaction predicate is decidable. On the other hand, if a theory T has
a computable model then 7" is computable in 0. For example, the theory
of arithmetic (w, S, +x, <,0) is Turing equivalent to 0. In this paper, for
any natural number n > 1, we present examples of X;—categorical computable
models whose theories are equivalent to 0”. The following are related results.
In [1] Baldwin and Lachlan showed that all models of any N;-categorical the-
ory T can be listed into the chain Ay < A; = Ay < ... A, of elementary
embeddings, where A is the prime model, A, is the saturated model, and
each A;;1 is a minimal proper elementary extension of A;. Let SCM(T)
be the spectrum of computable models of T, that is SCM(T) = {i | A;
has a computable presentation }. If T"is N;—categorical and decidable then,
as proved by Harrington and Khisamiev in [4] [5], all countable models of
T have decidable presentations, that is SCM(T) = wU{w}. In [3] Gon-
charov showed that there exists an Nj-categorical theory 7" computable in

*This work was partially supported by the Marsden Fund of New Zealand. The paper
is to appear in Novosibirsk University Vestnik in Russian.
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0’ for which SCM(T) = {0}. Kudeiberganov extended this result by show-
ing that for every m > 0 there exists an Ni-categorical T' computable in 0’
such that SCM(T) = {0,1...,n} [7]. In [6] it is shown that there exist
N;-categorical theories T} and T» computable in 0” such that SCM(T}) = w
and SCM(T3) = wU{w} \ {0}. Thus, all the known R;—categorical theories
that have computable models are computable in 0”. Our examples show that
for each n > 1 there is an Ni-categorical computable model whose theory is
Turing equivalent to 0".

We now give basic definitions. We fix a computable language L. A
structure A of this language is computable if the domain, functions, and
predicates of the structure are uniformly computable. This is equivalent to
saying that the atomic diagram of A is computable. A structure B is com-
putably presentable if it is isomorphic to a computable structure. In this
case any isomorphism from B into A is called a computable presentation
of B. A complete theory T is N;—categorical if all models of T" of power ¥,
are isomorphic. A model M is N;—categorical if the theory Th(M) of the
model is N;—categorical. Typical examples of N;—categorical theories are the
theory of algebraically closed fields of fixed characteristic, the theory of vec-
tor spaces over a fixed countable field, the theory of the successor structure
(w,S). A theory T is almost strongly minimal if in every model of T
every element is in the algebraic closure of a strongly minimal set.

Now we briefly outline the paper. In the next section, Section 2, we
provide a model-theoretic construction of a model whose theory is an N;—
categorical theory. The construction of the model follows the ideas of Marker’s
construction from [8] but is carried out with an eye towards reducing the
computability-theoretic complexity of presentations of the model. In Section
3 we prove a representation lemma about Y:9-subsets of natural numbers.
Finally, in the last section we prove the following theorem:

Theorem For any natural number n > 1 there exists an Ni—categorical
theory T with a computable model so that T' is equivalent to 0. Moreover,
all (countable) models of T have computable presentations and T is almost
strongly minimal.

We assume that the reader is familiar with basics of model theory and
computability theory. We use some standard notions and notations, such
as < -,- >, [, r Cantor’s pairing functions, the concept of X-computable



sets (e.g. sets computable with an oracle for X), the jump operation X’ for
subsets X C w. Standard references are [2] [9].

2 Construction

In [8] Marker provided an example of non ,, axiomatizable almost strongly
minimal theory for n € w. We adapt that construction for our case. The
construction uses induction. We first provide the base case and then explain
the inductive step.

2.1 Basic 0-Structure

We construct theory Ty. The basic O-structure will be the model of T denoted
by My. The language of the structure My is Ly =< X, Y, Cy, Dy, Py, Ry >,
where X, Y, Cy, Dy are all unary predicate symbols, Fy is a binary predicate,
and Ry is a predicate of arity 4. Now we list axioms of the theory Tj.

1. Any model of Tj is a disjoint union of X, Y, Cy, and Dy.

2. If Py(z,y) holds then z € X and y € Y. Thus Py defines a bipartite
graph between X and Y.

3. Every element of X is connected either to every element of Y or all but
one element of Y, and there are infinitely many elements of each type.

4. Every element of Y is connected to all but one element of X.

Thus, —F, determines a one to one function from Y into z, that is
y € Y is mapped into z € X if —=Fy(z,y). Based on P we now define
the following two predicates. We say x € X is good if it is connected
to every element in Y, and we call x bad otherwise. Thus, we have the
unary predicates G and B:

G(z) = Vy(X(2)&Po(z,y)) and B(z) = Fy(X (2)&Y (y)&~Fo(z,y)).

What we have defined is not an N;-categorical theory because B and G
can realize different cardinalities. Therefore Ry will be used to remedy
this. Using Ry we define a permutation p: X — X so that u(B) = G,
w(G) = G and p(u(z)) = z for all z € X. Axioms for Ry are as follows:
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5. If Ry(z,y,c,d) then z € X,y € X, c € Cy, and d € D,.
6. Ro(z,y,c,d) if and only if Ry(y, z, ¢, d).

Define the predicate R*(z,y,c): R*(x,y,c¢) = VdRo(x,y,c,d). The
predicate R* will define a bipartite graph between the set X of all
unordered pairs of X and the set C'. Here are the axioms for R*:

7. For every unordered pair {z,y} in X there is at most one ¢ € Cy such
that R*(z,y, c).

8. For every element ¢ € Cj there is a unique pair {z,y} such that
R*(z,y,c).

9. If R*(z,y,c) then one element of the pair {z,y} is good and the other
is bad.

10. For every z € X there is unique y € X so that R*(x,y,c) for some
cc O().

Thus, R* determines a one to one function from Cp into X®. We
now define a function p : X — X as follows: u(z) = y if and only if
dcR*(z,y, c). Clearly, p is a definable permutation such that u(B) = G,
w(G) = G and p(p(x)) =z for all x € X.

11. Forall z € X,y € Y, ¢ € Cy either Vd € DyRy(z,y,c,d) or there is
a unique dy such that —Ry(z,y,c,dy). Moreover, there are infinitely
many elements of each type.

12. For each dy € Dq there are unique pair {z,y} and ¢y € C so that
_'RO(Iayac();dO)-

Thus, R, establishes a one to one mapping from Dy into X® x Cj.
This completes the description of Tj.

Here are some properties of the model M.

Claim 1 FEvery element of M is in definable closure of B.



Proof. We denote the closure of B by cl(B). Take any a € M. If a € G
then p(z) = a for some x € B. Hence a € cl(B). If a € Y then —Py(z,a)
for some x € B, and from the axioms for Py we see that a € ¢l(B). Assume
that a € Cy. Then there is a pair {z,y} in X such that R*(z,y,¢c). From
the axioms for R* we derive that a € cl(B). Similarly, if a € Dy then from
the fact that Ry is a one-to-one mapping from Dy into X x Cj, we obtain
that a € ¢l(B). The claim is proved.

Claim 2 The set B s strongly minimal.

Proof. Let ay,...,a, be elements of M. We need to prove that there is
no infinite and coinfinite subset of B definable with parameters a4, ..., a,.
We may assume, by the previous claim, that the parameters aq,...,a, are
in B. Let b; and ¢; be all elements such that u(b;) = a; and R*(a;, b;, ¢;) for
i=1,...,n. It is not hard to see that for all z,y € B if z,y & {a4,...,a,}
then there is an automorphism « of M, for which a(z) = y and a(a;) = a;,
a(b;) = b; and a(c;) = ¢; for all i = 1,...,n. This proves the claim.

2.2 n-Structure

Suppose that we have constructed the theory 7,_; for n > 1. The language
of the theory T, is < X, Y, Zl, ZQ, ceey Zgn, Co, Do, cey an, Dgn, Pn; R, >,
where X, Y, Z1, Zs, ..., Zo,, Co, Dy, ..., Co,, and Dy, are all unary predicate
symbols, P, is a (2n + 2)—ary predicate symbol, and R, is (2n + 4)-ary
predicate symbol. The model of T;, will be denoted by M,,. The idea is that
we want the previous structure M,,_; to be definable in M,,. The axioms of
T,, are the following:

1. Any model of T}, is a disjoint union of the unary predicates X, Y, 7,
Z2a R ZQn; COv D07 SRKY) C2na and DQn-

We now describe the predicate P,.
2. If Py(z,y,21,...,20,) holds then z € X,y €Y, 21 € Z3, ..., 29, € Zop.

We define the following predicate P**(z,vy, 21, . . ., 22(n-1)):

P**(l', Y, 215+, Z2(n—1)) = EIZ?n—lvzﬁnpn(wa Yy Z1y- - 7Z2n)-



. We postulate that the predicate P** satisfies all the axioms of the
predicate P, 1.

Now consider the following predicate P*(z,y, 21, ..., 2an-1):
P*(.’L‘, Y, 215+, ZQn—l)) = VZQnPn(-r, Y, 21y .-, 22n—1, ZQn)-

Here are the axioms for P*:

Forallz € X,y €Y, z1 € 21, ..., 2o(n-1) € Zan—1) there is at most
one 2o, 1 € Zo, 1 such that P*(x,y, z1,..., 220 1).
. For each 2o, 1 € Zs, 1 there exists a unique tuple (z,y, 21, ..., 2om-1))

such that P*(z,y, 21,. .., Z2n—1); Zon—1)-

Thus, the predicate P* determines a one-to-one function from Z,,_{
into X XY X Z; X ... X Zyy_1). The next two axioms finish the
description of P,. These axioms basically tell us that —P, establishes
a one-to-one mapping from Z,, into X XY X Z; X ... X Zg,_1.

.Forall x € X,y €Y, zy € Z1, ..., 291 € Zo, 1 either there is
a unique zs, € Z, for which —P,(z,y,21,..., 20, 1, 22,) 18 true or
P.(x,y,21,..., 20 1, 22,)) is true for all zo, € Zs,.

. For each 2y, € Zs, there is a unique tuple (z,y, 21, ..., 20, 1) such that
_'Pn(xa Y, 215 - -+ 2201, Z?n)-

Now we describe the predicate R,,. Here are the lists of axioms for R,,.

. If Ry(x,y,co,dp. .. Cnydy) then x € X, y € X, ¢; € Cy, and d; €
D; for all i < n. Moreover, R,(z,y,co,dg...,Cn,dy) if and only if
Rn(yaxvcmdo---acnadn)-

Define the predicate R*(z,y,co,do - - ., Cn_1,d,_1) as follows:
R™(z,y,..., o 1,dn_1) = Aep,Vdp Ry (2,Y, - - - Cre1, dp1, Cry d).
Define the predicate R*(xz,y,co,do, - .., Cn_1,dn_1,¢,) as follows:

R*(IL’, Y,...,Cn-1, dn—l; Cn) - Vann(ra Y,.--,Cn-1, dn—b Cn, dn)

Here are the axioms for R** and R*:



9.

10.

11.

12.

We postulate that the predicate R** satisfies all the axioms of the
predicate R, 1. For all {z,y} € X® ¢y eCy, ..., dyn 1 € D, there
is at most one ¢, € C,, such that R*(x,y,co,dy ..., Ch1,dn_1,Cpn)-

For each ¢, € C, there exist a unique tuple (co,...,cp—1,dn—1) and a
pair {z,y} such that R*(z,y,co,dy...,Cn1,dn_1,Cn)-

For all {z,y} € X®, ¢y € Cy, dy € Dy, ..., dy 1 € Dy 1, ¢y € Cp,
either R,(x,y,co,dy...,Cn 1,dn 1,Cn,dy) for all d,, € D,, or there is a
unique d € D,, for which =R, (z,y,co,do-..,Cn 1,dn 1,Cn,d).

For each d,, € D,, there is a unique tuple (co,dy. .., ch-1,dn—1,¢,) and
a pair {z,y} such that =R, (z,y,co,do...,Cn 1,dn 1, Cn,dp).

Now by induction on n one can prove the following lemma.

Lemma 1 For the theory T, the following are true:

3

1.

The unary predicate B(z) is definable by a ¥, formula in the language
of T,,.

The theory T, 1s Nq-categorical.
The predicate B(x) is strongly minimal.

The theory T,, is almost strongly minimal. O

On Presentations of Y)-Sets

In this section we prove a computability-theoretic lemma needed for the main
result of this paper. For the lemma we define the following notion.

Definition 1 A4 X9-set A is one-to-one representable if for some com-
putable predicate Q C w® each of the following properties is true:

1.

For each n € w, 3aVbQ(n, a,b) if and only if n € A.

2. For each n € w, 3aVbQ(n, a,b) if and only if 3=La¥bQ(n, a,b)!.

13=12P(z) means that there is a unique z satisfying P
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3. For every b there is a unique pair < n,a > such that =Q(n,a,b).
4. For every pair < n,a > either 3b—Q(n, a,b) or YbQ(n,a,b).
5. For every a there exists a unique n such that YbQ(n,a,b).

It is not hard to see that every infinite and coinfinite computable set A
has a one-to-one representation.

For a ¥.9-set A there is a computable H such that n € A «» JaVbH (n,a,b).
In fact, there is a computable Q for which JavbH (n, a,b) <> 3='a¥bQ(n, a, b).
To show this we describe the procedure which builds a predicate P,, n € w.
To build P, initially we set the values ag = 0, 79 = 0, hg = 0. At stage t
the predicate P, will be defined on all pairs (7, j) so that j < ¢, i <r;. The
intention for a; is that a; will be the unique witness for n to belong to A,
that is n € A if and only if VbP, (as,b). The intention for h; is that if n € A
then h; is the minimal h <t for which (Vb < t)H (n, h,b).

Stage ¢+ 1. Compute H(n,i,7) forall4,j <t + 1. If (Vi <t+1)(3j <
t + 1)-H(n,i,7) then set r,1y = r, + 1, hyyq and a1 be undefined, and
make P,(7,j) false on all (7, 7), with i < r;4q,7 <t+ 1, at which P, has not
been defined. If h; is undefined and Vj <t + 1H(n,t + 1, ) is true then set
hiy1 =t+1,rq =1+ 1, and az4q = r441. Make P,(asy1,7) to be true for all
j < t+1, and make P,(i, j) false on all (¢, j), with s < ;1,5 < t+1, at which
P, has not been defined. If h; is defined and Vj < t+1H (n, hy, j) is true then
set hyy1 = hy, agy1 = ag, and 111 = r; + 1, and make P,(asy1,7) to be true
for all j <t+ 1, and make P,(i,7) false on all (i,7), with i <ryyq,7 <t+1,
at which P, has not been defined.

Now define the predicate @ as follows: (n,a,b) € @ if and only if P, (i, ).
The construction above guarantees that the predicate () is desired.

Now we prove the following lemma which gives a sufficient condition for

Y9-sets to have one to one representations.

Lemma 2 Let A be a coinfinite X3—set that possesses an infinite computable
subset S such that A\ S is infinite. Then A has a one-to-one representation.

Proof. As noted above there is computable set H such that n € A
iff 3=1aVbH (n,a,b). Define the predicate Hy: H;(n,a,b) if and only if



a=<n,x> & H(n,z,b). It is easy to check that the formulas JaVbH (n, a, b)
and JaVbH{(n, a,b) are equivalent. Moreover, for every a there exists at most
one n such that VbH;(n,a,b). Let Hy be defined as follows: —Hs(n,a,b) if
and only if b =< n,a,x > &—Hi(n,a,z) & (Vz < z)H(n,a,z). Tt is not
hard to see that the predicate H, satisfies the following properties:

1. The formulas JaVbH;(n,a,b) and FaVbH(n,a,b) are equivalent.

2. The formulas VbH;(n,a,b) and VbHs(n, a,b) are equivalent.

3. For every pair n,a there exists at most one b such that =Hj(n, a,b).
4. For every a there exists at most one n such that VbHs(n, a,b).

5. For every b there exists at most one pair (n,a) such that =Hs(n, a,b).

Thus, we may assume that H satisfies the properties 3) — 5) above. Now,
using the predicate H, we build the desired predicate Q.

At stage t the predicate @Q; will be defined on [0, ¢] x [0, 72(t)] x [0, r3(t)],
where the functions r5(t), r3(t) are given effectively at stage t. The predicate
Q. will satisfy the following properties denoted by P:

Pi: For all n <t, a < ry(t) either Qy(n,a,b) holds true for all b < r3(t) or
I < r3(t)=Qq(n, a,b).

Po: If a < 1y(t) is a (Q, t)-witness for n < ¢, that is Vb < ro(t)Qy(n, a,b)
then it is a unique (Q,t)-witness for n.

P3: No two (Q, t)-witnesses (which may be for distinct n; and ng) coincide.
Py: For each b < r3(t) there is a unique pair (n,a) such that =Q;(n, a,b).

Let Hy C H; C ... be an approximation of H so that H = {J, H;, where
H, = HN[0,¢] x [0,t] x [0,b;] and b; is the minimal b > ¢ such that each of
the following is true:

1. If a < tisa (H,t)-witness for n < t, that is Vb < tH(n,a,b) then it
is a unique (H,t)-witness for n.

2. No two (H, t)-witnesses (which may be for distinct n; and ny) coincide.



3. For all n,a <t either (Vb < t)H(n,a,b) or (3715 < b)~H(n,a,b).

Note that b, is correctly defined. If for an n < ¢ there is an (H, t)-witness for
n then we denote the witness by h(n,t).

Without loss of generality, we assume that H(0,0,0) is true. In the
construction, at Stage t, we use functions r5(t), r3(t), h(n,t) and a(n,t).
The function r5(t) and r3(¢) tell us that the second and the third coordinates
of Q; do not exceed ro(t) and r3(t), respectively; h(n,t) is the (H,t)-witness
for n, and a(n,t) is a (Q,t) witness for n if they exist. The construction
guarantees that h(n,t) exists if and only if a(n,t) exists. Initially, we set
r(0) =0, ~(0,0) =0, and a(0,0) = 0. Some of the numbers a < r5(t) will be
marked by Og, where s € S. This will mean that the construction guarantees
that a is a Q-witness for s, that is VbQ(s, a, b).

We now describe stage t of the construction. We assume that @); ; has
been constructed so that all properties P, through P, hold. In addition, we
assume that each n < ro(t — 1) either is a (Q,t — 1)-witness of the form
a(n,t — 1) (for some n < t) or has been marked by a O for some s € S.

Stage t. If t € S and some a < ry(t — 1) is marked with O, then make a
a (Q,t)-witness for s, set ro(t) = ro(t — 1), r3(t) = r3(t — 1) + ¢, extend Q;—;
to @ in the [0,¢] x [0, ro(t)] x [0, r3(t)] keeping all the (Q,t — 1)-witnesses as
(Q, t)-witnesses so that Q; satisfies all properties P; through Pj%. Otherwise,
proceed as follows.

Compute H,. Let i1,...,7 <t be in increasing order such that h(i;,)
is defined and h(ij,t) # h(i;,t — 1), j = 1,...,k. Note that h(i;,t — 1)
could be undefined. Also note that k < 2. Take the least unused numbers
sy and sy € S, mark each a(ij,t — 1) with O,;, make sure that a(i;,t — 1)
is a (Q,t')-witness for s; at all stages t' > s;, j = 1,..., k. Further, take
numbers n; = ro(t — 1)+ 1, ..., ngp = ro(t — 1) + k, set a(i;,t) = n; for
j=1,...,k, ma(t) = ng, r3(t) = r3(t — 1) + (k + 1)¢t, and extend Q;_; to
Q: in the [0,¢] x [0,72(t)] x [0, r3(t)] making each a(i;,t) a (Q,t)-witness for
i;, keeping all the other (Q,t — 1)-witnesses as (Q,t)-witnesses so that @
satisfies all properties P, through P,. Note that P; can be satisfied as seen
from the definition of r3(t).

Suppose that the sequence iy, ..., <t stipulated above does not exist.
Take the first unused s € S and mark ¢ with O;,. Make sure that ¢ is a

2Note that property P, can be satisfied which is seen from the definition of 73(t).
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(Q,t')-witness for s at all stages t' > s. Set ra(t) = ro(t — 1) + 1, and
r3(t) = r3(t—1)+2t+1, and extend Q; ;1 to Q; in the [0, ] x [0, r2(¢)] x [0, r3(t)]
keeping all the (Q, ¢ — 1)-witnesses as (Q, t)-witnesses so that Q; satisfies all
properties P; through P;. This ends Stage t.

Set @ = U, @Q;. Now it is not hard to see that () is a one to one representa-
tion of A. Indeed, note that at every stage ¢, each a < ro(t) is either marked
by O or of the form a(n, t). If a is marked with O, then YbQ(s, a, b) because
ais a (Q,t')-witness for s at each stage ¢’ > s. Assume that a is not marked
with O,, s € S. Consider stage a. There is an n such that a = a(n, a). Then
for all ¢ > a we have a(n,t) = a(n,a). Therefore Y0Q(n,a,b). Thus, each
a € w is a Q-witness for some n € A. All the other desired properties of @)
follow from the fact that @, satisfies properties P; through P, at each stage
t. The lemma is proved.

Clearly the definition of one to one presentations of Y3-sets can be rela-
tivised with respect to any oracle X. The relativised version of the lemma
above is the following corollary which will be used in the next section.

Corollary 1 Let A be a coinfinite Eg’stet that possesses an infinite X -
computable subset S such that A\ S is infinite. Then there exists an X -
computable set Q C w? such that Q is a one-to-one representation of A.O

4 The Main Result

Consider the basic 0-structure My of the theory 7. The following lemma
shows that M, can have presentations of arbitrarily high complexity.

Lemma 3 For any set X C w there exists an X -computable presentation of
My such that the following properties hold:

1. The predicates X,Y, Cy, Dy are computable.

2. The predicate B(x) is T-equivalent to X'.
Proof. We prove the lemma for the case when X = (). The case when

X # () can essentially be repeated. Thus, we need to prove that there exists
a computable presentation of My such that the set B(x) is Turing equivalent
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to the halting set K. We build the model M, by stages. At stage t we will
have a finite model M}, with finite predicates X*, Y, Cf, D§, PL, R.

We may assume that w is the disjoint union of infinite computable sets
X, Y, Cy, Dy, and that K C X. At stage t the sequence of unordered pairs
{ag,bo}, ..., {as, bi} is called active if X! = {ag, bo,...,as b}, ag,...,a; €
K, and bg, by, ..., b & Ky, and ag < a1 < ... < a, by < by < ... < b, where
Ky C K; C Ky C ... is an approximation of K with K = |, K;. A pair
{a, b} is active if {a,b} = {a;,b;} for some i < t. It is clear that for any
unordered pair {a,b} in X there exists a stage t such that {a, b} is active at
stage t if and only if {a,b} is active at stages n > t. Now we describe the
construction of M, at stage t. At the initial stage, the model M is empty.

Stage t. We extend M} satisfying the following conditions:

1. If Ro(a,b,c,dp) is false then we guarantee that Ry(a,b,c,d) is true for
all d # dy with d € D},

2. For every pair {a, b} that was not active at the previous stage but which
has become active at stage ¢t we take an unused element c, put it into
C{, and then guarantee that Rg(a,b, ¢, d) holds for all d € Df. We call
the element c the t-witness for the pair {a, b}.

3. If (¢t — 1)-active pair {a,b} is still active then we guarantee that the
(t — 1)-witness for {a, b} is also a t-witness.

4. For every pair {a, b} that is not t-active but which was (¢t — 1)-active
with the (¢ — 1)-witness ¢, we enumerate an unused element dqy into D

and make Ry(a,b,c,dy) false.

5. We guarantee that for any t¢-active pair {a,b}, where b € K, we have
the following:
(a) Py(a,y) is true for all y € Y.
(b) There is a unique y € Y* such that Py(b,y) is false.

(c) For any y € Y there exists a unique t-active pair {a, b} such that
Py(a,b,y) is false.
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It is clear that the model M can be constructed effectively. Let My =
Ue Mf). It is not hard to see that M, is the desired model. We also note
that for the constructed model the permutation i : X — X is such that the
ith element of K is sent to the ith element in X \ K. Thus, we have proved
the lemma.

Now we are ready to prove our main theorem.

Theorem For any natural number n > 1 there exists an Ni—categorical
theory T with a computable model so that T is equivalent to ™. Moreover,
all (countable) models of T' have computable presentations and T is almost
strongly minimal.

Proof. By the previous lemma there exists a 0”-computable presentation
of My such that the predicate B(x) is equivalent to 0"™. From Corollary 1
we can construct the sequence {A;}i<, of models so that:

1. The model A; is isomorphic to the i-structure M;.

2. The sets X, Y; Zl, ZQ, ey Zgi, C(), D(), Ol, Dl, ey CZ', Dz in each model
A; are computable.

3. The model A; is 0" ‘-computable.

Thus, each of the models, in particular the model A,,, is R;-categorical. Now
expand the model A, by adding constant symbols ¢, for each x € X. Thus,

we have the model A = (A, ¢;)zex. Let T be the theory of A. The following
now can easily be verified:

1. A is computable.

2. The theory of A is Ni-categorical and is almost strongly minimal.
3. The set {B(c,) | A |E B(c,)} is a ¥.0-set and is c.e. in 0",

4. All models of T have computable presentations.

The theorem is proved.
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5

Future Work

We are currently working on improving or generalizing the main theorem
of this paper in the following directions. First of all, we hope to construct
an Nj-categorical model of a finite language for which the main result of
this paper holds true. Secondly, we plan to adapt the construction of this
paper to build Ng—categorical models whose theories are Turing equivalent to
0". Finally, we are investigating a possibility of constructing N;—categorical
or Np-categorical computable models whose theories have hyperarithmetical

degrees.
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