
CDMTCS
Research
Report
Series

How Large is the Set of
Disjunctive Sequences ?

Ludwig Staiger
Martin-Luther-Universiẗat
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Abstract

We consider disjunctive sequences, that is, infinite sequences (ω-words)
having all finite words as infixes. It is shown that the set of all disjunctive
sequences can be described in an easy way using recursive languages and,
besides being a set of measure one, is a residual set in Cantor space.

Moreover, we consider the subword complexity of sequences: here dis-
junctive sequences are shown to be sequences of maximal complexity.

Along with disjunctive sequences we consider the set of real numbers
having disjunctive expansions with respect to some bases and to all bases.
The latter are called absolutely disjunctive real numbers. We show that the
set of absolutely disjunctive reals is also a residual set and has representa-
tions in terms of recursive languages similar to the ones in case of disjunc-
tive sequences. To this end we derive some fundamental properties of the
functions translating a baser-expansion of a realα ∈ [0,1] into α.
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Following J̈urgensen, Shyr and Thierrin [Jürgensen et al. 83, Jürgensen and
Thierrin 83] we say that an infinite sequence isdisjunctiveif it contains any (finite)
word, or, equivalently, if any word appears in the sequence infinitely many times.
“Disjunctivity” is a natural qualitative property; it is weaker, than the property of
“normality” (introduced by Borel; see, for instance, [Calude 94, Hertling 96]).

In this paper we derive some properties of the set of all disjunctive sequences
(ω-words). Here we focus on the properties in relation to the Chomsky and
arithmetical hierarchies of sets ofω-words (ω-languages) (see e.g. [Thomas 90,
Staiger 97]) and also on topological and information theoretic properties.

As is well known (see [Oxtoby 71]) a set is large in topological sense if is of
second Baire category, and it is large in measure theoretic sense if it has nonzero
measure. The latter implies also largeness in information theoretic sense.

Using a characterization of the set of disjunctiveω-words by means of so-
called regularω-languages, that is,ω-languages definable by finite automata, we
show that the set of disjunctiveω-words is large as well in sense of category as in
sense of measure.

Disjunctivity can be carried over to real numbers interpreting anω-word ξ as
an expansion of the number 0.ξ in a certain positional system. It appears that,
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under this interpretation, a property (e.g. disjunctivity, Borel normality etc.) may
depend on the particular base chosen. It was shown in [Cassels 59, Schmidt 60]
that Borel normality and, implicitly, disjunctivity are not invariant under changes
of the baser. For detailed information see [Hertling 96]. In contrast to the preced-
ing cases, randomness and Kolmogorov complexity of real numbers, which are de-
fined also via expansions, are base invariant properties (see [Calude and J̈urgensen 94,
Hertling and Weihrauch 98, Staiger 02]).

Real numbers disjunctive with respect to all bases are calledabsolutely dis-
junctive. Utilizing a specific translation technique based on considerations in
[Staiger 02] we prove in a constructive way that the set of absolutely disjunctive
reals is large in the sense of Baire category.

The paper is organized as follows. After presenting the necessary background
on ω-words andω-languages in Section1, we derive in recursion theoretic prop-
erties of theω-language of disjunctive sequences,D. Then, Section3 is devoted
to topological and information theoretic properties of disjunctive sequences. Her
we show a close relationship between the subword complexity ofω-words and
the entropy of finite-stateω-languages, and we prove that the setD is large with
respect to category and measure.

In the fourth section we turn to the consideration of real numbers. We in-
vestigate in detail topological properties of the canonical mappingνr(ξ ) := 0.ξ
describing reals in terms ofr-ary expansions. These properties allow us to trans-
late the results of the previous section to the case of real numbers.

The final section, on the one hand, deals with constructive results in baser
to baseb conversion yielding a description of the set of absolutely disjunctive
real numbers in terms of recursive languages, and, on the other hand, presents an
example showing that the class of finite-stateω-languages is not invariant under
base conversion.

1 Notation and Preliminaries

By IN = {0,1,2, . . .} we denote the set of natural numbers. In order to treat ar-
bitrary finite alphabets we letXr := {0, . . . , r −1} be our alphabet of cardinality
#Xr = r, r ∈ IN, r ≥ 2. If there is no danger of confusion we will omit the subscript
and simply writeX for alphabets.

By X∗ we denote the set of finite strings (words) onX, including theempty
word e. We consider also the spaceXω of infinite sequences (ω-words) overX.
For w∈ X∗ andη ∈ X∗∪Xω let w ·η be theirconcatenation. This concatenation
product extends in an obvious way to subsetsW ⊆ X∗ andB⊆ X∗∪Xω .

We extend the operations∗ andω to arbitrary subsetsW⊆X∗ in the usual way
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:

W∗ :=
⋃

n∈IN

Wn where W0 := {e} , and

Wω :=
{

w0 ·w1 · · ·wi · . . . : i ∈ IN∧wi ∈W \{e}
}

is the set ofω-words inXω formed by concatenating members ofW.
We will refer to subsets ofX∗ andXω as languages orω-languages, respectively.

By “v” we denote the prefix relation, that is,wv η if and only if there is anη ′

such thatw·η ′ = η , andA(η) := {w : w∈ X∗∧wv η} andA(B) :=
⋃

η∈BA(B)
are the languages of finite prefixes ofη andB, respectively.

The set of subwords (infixes) ofη ∈ X∗∪Xω will be denoted byT(η) := {w :
w∈ X∗∧∃v(vwv η)}.

In the study ofω-languages it is useful to considerXω as a metric space (Can-
tor space) with the following metric.

ρ(η ,ξ ) = inf {(#X)−|w| : w@ η ∧w@ ξ} (1)

It is easily verified thatρ is indeed a metric which, in addition it satisfies the
ultrametric inequality.

ρ(ζ ,ξ )≤max{ρ(ζ ,η),ρ(ξ ,η)} (2)

Open (in view of Eq. (2) they are simultaneously closed) balls in this space
(Xω ,ρ) are the setsw ·Xω . Then open sets inXω are of the formW ·Xω where
W⊆ X∗. From this it follows that a subsetF ⊆ Xω is closedif and only if A(ξ )⊆
A(F) impliesξ ∈ F .

The closureof a subsetF ⊆ Xω in Cantor space, that is, the smallest closed
subset ofXω containingF is denoted byC (F). One hasC (F) = {ξ : A(ξ ) ⊆
A(F)}.

Having defined open and closed sets inXω , we proceed to the next classes of
the Borel hierarchy (see [Kuratowski 66]):

Fσ is the set of countable unions of closed subsets ofXω ,

G
δ

is the set of countable intersections of open subsets ofXω .

F
σδ

is the set of countable intersections ofFσ -subsets ofXω ,

G
δσ

is the set of countable unions ofG
δ
-subsets ofXω , and so on.1

1Borel classes are also defined for larger countable ordinals than natural numbers, but since
we will not need higher level Borel classes, we refer the interested reader to some textbook on
topology, as e.g. [Kuratowski 66].
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ForW⊆ X∗ theδ -limit of W, Wδ , consists of all infinite sequences ofXω that
contain infinitely many prefixes inW,

Wδ = {ξ ∈ Xω : #(A(ξ )∩W) = ∞}.

For G
δ
-sets we have the following characterization via languages (see [Tho-

mas 90, Staiger 97]).

Theorem 1 In Cantor space, a subset F⊆ Xω is aG
δ
-set if and only if there is a

language W⊆ X∗ such that F= Wδ .

The preceding theorem explains also whyWδ is called theδ -limit of the language
W.

ForB⊆X∗∪Xω we define thestate B/w of B generated by the wordw∈X∗ as
B/w= {b : wb∈B}. A setB is calledfinite-stateif its set of states{B/w : w∈X∗}
is finite.

A finite-state languageW ⊆ X∗ is also calledregular.2 An ω-languageF is
calledregularprovided there is ann∈ IN and regular languagesWi ,Vi (1≤ i ≤ n)
such that

F =
n⋃

i=1

WiV
ω

i . (3)

Along with the Cantor spaces(Xω

r ,ρ), r ∈ IN, r ≥ 2, we consider the unit
interval [0,1] with the usual metric. Forη ∈ X∗r ∪Xω

r we denote byνr(η) :=
0.η the real number with (finite or infinite) baser expansionη . The surjective
mappingνr : Xω

r → [0,1] is continuous and nearly one-to-one3. In particular, all
mappingsνb are one-to-one outside the set of all ultimately periodicω-words,
Ult := {w ·vω : w,v∈ X∗b}.

2 The ω-Language of Disjunctive Sequences

In this section we will present a few simple properties of theω-language of all
disjunctive sequences overX, D = {ξ : T(ξ ) = X∗}. Some of the results in this
section are reported in [Calude et al. 97].

2.1 Basic Properties

From the very definition of disjunctive sequences we obtain

D =
⋂

w∈X∗
X∗wXω . (4)

2In fact, regularity ofW ⊆ X∗ is usually defined in a different way, but it is well known that a
languageW is regular if and only if it is finite state.

3Only real numbers of the formi · r− j , 1≤ i < r j have two baser expansions.
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Our next lemma shows thatD is an example of a finite-stateω-language which is
not a regular one.

Lemma 2 ([Jürgensen and Thierrin 83]) The ω-language D is finite-state but
not regular.

Proof. Sincewξ ∈ D if and only if ξ ∈ D, theω-languageD satisfiesD/w = D,
for all w∈ X∗. ThusD has only a single state. Next,D is nonempty and does not
contain an ultimately periodic sequencewvω . Following Eq. (3) theω-language
D cannot be regular. ❏

The representation of Eq. (4) verifies thatD is aG
δ
-set in Cantor space. Next

we are going to show that its topological complexity cannot be decreased. To this
end we quote Theorem 21 from [Staiger 83].

Theorem 3 If F ⊆ Xω is finite-state and simultaneously anFσ - and aG
δ
-set,

then F is regular.

Combining Theorem3 with Lemma2 and Eq. (4) we get:

Proposition 4 In Cantor space, D is not anFσ -set.

2.2 Recursion Theoretic Properties ofD

We turn our attention to recursion theoretic properties ofD. To this end we intro-
duce the first classes of the arithmetical hierarchy ofω-languages. As usual we
say that anω-languageE⊆ Xω is Π1-definableprovidedE is representable in the
form

E = {ξ ∈ Xω : ∀w(wv ξ ⇒ w∈WE)}, (5)

whereWE ⊆ X∗ is a recursive language, and we say that anω-languageF ⊆ Xω

is Π2-definableprovidedF is representable in the form

F = {ξ ∈ Xω : ∀w(w∈ X∗→∃u(uv ξ ∧ (w,u) ∈MF))}, (6)

whereMF is a recursive subset ofX∗×X∗.
It is well-known that in Cantor space,Π1-definableω-languages are closed

sets andΠ2-definableω-languages areG
δ
-sets.

Lemma 5 Theω-language of all disjunctive sequences D isΠ2-definable.

Proof. We haveD = {ξ ∈ Xω : ∀w∃v(vwv ξ )}. So it suffices to putMD =
{(w,vw) : w,v∈ X∗} in Eq. (6). ❏

In [Staiger 97], Lemma 2.12, it is shown that anω-languageF ⊆ Xω is Π2-
definable if and only if there is a recursive languageW ⊆ X∗ such thatF = Wδ .
In case ofD we constructWD explicitly.
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Proposition 6 Let

WD = {wx : w∈ X∗∧x∈ X∧∃n(n≤ |w|+1∧T(wx)⊇ Xn∧T(w) 6⊇ Xn)}.

Then WD is a recursive language and D= Wδ

D .

Proof. It is obvious thatWD is recursive. Letξ be a sequence such thatT(ξ ) = X∗.
Then for everyn≥ 1 there is a shortest prefixwnv ξ such thatT(wn)⊇ Xn. Thus
{wn : n≥ 1} is an infinite subset ofWD. The converse implication follows from
the observation that ifu,v∈WD andu@ v, thenXm⊆ T(u) impliesXm⊆ T(v),
and there is ann∈ IN satisfyingT(u) 6⊇ Xn⊆ T(v). ❏

3 Complexity and Density

In this section we relate disjunctivity to an information theoretic size measure
called entropy and to (topological) density in Cantor space.

3.1 Density and Baire Category

We first introduce the concept of topological density and Baire category for com-
plete metric spaces(X ,ρ) such as the Cantor spaceXω or the unit interval[0,1].

A subsetM ⊆X is calleddensein X provided its closurecl(M) is the whole
spaceX . A setM ⊆X is nowhere densein provided its closurecl(M) does not
contain a nonempty open subset.

As for any nonempty open subsetO ⊆X such thatO 6⊆ cl(M2) the inclusion
cl(M1)∪ cl(M2) = cl(M1∪M2) ⊇ O implies cl(M1) ⊇ O \ cl(M2), whereO \
cl(M2) 6= /0 is open, the family of nowhere dense sets is closed under finite union.

A setM is of first Baire categoryiff it is a countable union of nowhere dense
sets, otherwise it is ofsecond Baire category. The complements of sets of first
Baire category are calledresidual.

It holds the Baire category theorem.

Theorem 7 (Baire category theorem)If a subset M of(X ,ρ) is of first category
thenX \M is dense.

This theorem has several consequences (see [Kuratowski 66, Oxtoby 71]).

Property 8 If O is a nonempty open subset of(X ,ρ) and M⊆ X is of first
category then

cl(O \M)⊇O . (7)

Particular properties hold also forG
δ
-sets.
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Property 9 1. A G
δ
-set M⊆X of first Baire category is already nowhere

dense.

2. A subset M⊆X is residual iff it contains a denseG
δ
-set.

3.2 Subword Complexity

Next we investigate a concept of complexity of infinite sequencesξ which is inti-
mately related to disjunctiveω-words. This concept is based solely on the sets of
subwordsT(ξ ). It turns out that the subword complexityτ(ξ ) of a wordξ ∈ Xω

is also closely related to the entropy and density of theω-languages containingξ .
For a languageW ⊆ X∗ let

sW(n) = #W∩Xn

be itsstructure function(cf. [Kuich 70]), and

HW = limsup
n→∞

log#X(1+ sW(n))
n

be itsentropy. DefinesF = sA(F) andHF = HA(F), for F ⊆ Xω .
The entropy of languages is monotone with respect to “⊆”. Moreover, it has

the following properties.

HW∪V = HW·V = max{HW,HV} wheneverW ·V 6= /0 , (8)

HW/w ≤ HW, and (9)

HC (F) = HF . (10)

We call τ(ξ ) = HT(ξ ) the subword complexityof the wordξ ∈ Xω . From the
obvious relation#(T(ξ )∩Xn+m) ≤ #(T(ξ )∩Xn) · #(T(ξ )∩Xm) we obtain the
following property ofτ(ξ ).

τ(ξ ) = lim
n→∞

log#X sT(ξ )(n)
n

= inf
{ log#X sT(ξ )(n)

n
: n∈ IN∧n≥ 1

}
(11)

The subword complexity of anω-word ξ is closely connected to the entropy of
finite-stateω-languages containingξ .

Proposition 10 Let F be a finite-stateω-language. Thenτ(ξ ) ≤ HF , for every
ξ ∈ F.

Proof. Since
⋃

w∈A(F) F/w is a finite union andT(ξ ) =
⋃

wvξ
A({ξ}/w) ⊆⋃

w∈A(F) F/w for ξ ∈ F , in view of Eqs. (8) and (9) we haveτ(ξ )≤ max
w∈A(F)

HF/w.

The assertion follows fromHF/w≤ HF . ❏

Consequently, ifξ ∈ F , HF < 1 andF is finite-state thenξ is not disjunctive.
We are going to prove that the converse is also true.
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Theorem 11 Anω-wordξ ∈ Xω is disjunctive iffξ ∈ F impliesHF = 1 for every
finite-stateω-language F⊆ Xω

Proof. One direction is explained above. Letτ(ξ ) < 1. Then there is a word
w /∈ T(ξ ). Consequently,ξ ∈ Xω \X∗ ·w·Xω ⊆ (X|w| \{w})ω . Now the assertion

follows from H(X|w|\{w})ω = log#X(#X|w|−1)
#X|w|

< 1. ❏

3.3 Entropy and Density inXω

The final part of this section brings together all three introduced concepts, density,
entropy and subword complexity.

We start with special properties ofω-languages nowhere dense inXω . Here,
in particular, a nowhere dense set contains no subset of the formwXω . This
condition can be reformulated as follows.

Property 12 A set F⊆ Xω is nowhere dense if and only if for every w∈ X∗ there
is a vw ∈ X∗ such that wvwXω ∩ F = /0.

Remark 1 If the ω-language F⊆ Xω satisfies the condition∀w(F/w⊆F) then,
apparently, we may choose all words vw to coincide with v:= ve.

For finite-stateω-languages we obtain the following connection between entropy
an density.

Lemma 13 ([Staiger 85]) A finite-stateω-language F⊆Xω is nowhere dense iff
HF < 1.

Proof. Clearly, asHwXω = 1, Eq. (10) shows thatHF = 1 if F is not nowhere
dense.

Conversely, letF be nowhere dense and finite-state. Then all statesF/w and
alsoF ′ :=

⋃
w∈X∗ F/w (as a finite union of nowhere dense sets) are nowhere dense.

SinceF ′ ⊇ F ′/w is satisfied for allw∈ X∗, according to Remark1 there is a word
v∈ X∗ such thatF ⊆ F ′ ⊆ Xω \X∗vXω ⊆ (X|v| \ {v})ω . Now, as in the proof of
Theorem11one obtainsHF < 1. ❏

The final theorem of this section summarizes properties relating (topological)
density, entropy and disjunctivity. For a more detailed exposition see [Staiger 98].

Theorem 14 Let F⊆Xω be closed and finite-state. Then the following properties
are equivalent.

1. HF < 1

2. F is nowhere dense.
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3. τ(ξ )< 1 for all ξ ∈ F.

Proof. The equivalence of 1 and 2 is Lemma13, and Proposition10shows that 1
implies 3.

In order to prove that 3 implies 2, we observe that in view of Property9 a
closed set is nowhere dense iff it is of first Baire category. Then this implication
is a part of Theorem 3 in [Staiger 98]. ❏

Our theorem shows thatXω \D is the union of all finite-state nowhere denseω-
languages4. Utilizing Eq. (4) and the proof of Theorem11we obtain the following
representation ofD in terms of special regular nowhere denseω-languages.

Xω \D =
⋃

w∈X∗
(Xω \X∗wXω) =

⋃
w∈X∗

(X|w| \{w})ω . (12)

3.4 Measure

We add a short consideration of the measure ofD. The representation of Eq. (12)
yields the following short proof thatD has measure one for all non-vanishing
product measures, thus establishing thatD is also a large set in sense of measure.

Here, as usual, we refer to a measureµ on Xω as anon-vanishing product
measurederived from a measureµ : X→ (0,1), where∑a∈X µ(a) = 1, provided
µ(waXω) = µ(a) ·µ(wXω) for all w∈ X∗ anda∈ X. We obtain immediately

µ((X|w| \{w})ω) = 0 (13)

for all non-vanishing product measures. This yields the announced result via
Eq (12)

Lemma 15 Let µ be a non-vanishing product measure on Xω . Thenµ(D) = 1.

4 Disjunctive Real Numbers

So far we considered only disjunctiveω-words. In this section we consider the
real numbers which have in a positional system a notation which is disjunctive. In
particular, we are interested in the set of absolutely disjunctive reals,

From the considerations in the preceding sections we know that for a partic-
ular baser the set of disjunctiveω-wordsDr is residual, moreover, its comple-
ment Xrω \Dr is the countable union of all (closed) nowhere dense finite-state
ω-languages.

4Since the closure of a nowhere denseω-languageF , C (F), is again nowhere dense, we can
drop the requirement “closed”.
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We translate these results by the natural interpretation ofω-words inXω

r as the
r-ary positional notation of real numbers to the unit interval[0,1]. As a result we
obtain that the setD of real numbers having disjunctive expansions with respect
to all basesb ∈ IN,b≥ 2 is also a large set in the sense of category, although
its complement has not the nice characterization as developed in Eq. (12) for Dr .
Similar results were obtained in [Calude and Zamfirescu 95, Calude et al. 97] but
without using the results on disjunctiveω-words and the translation results derived
below.

4.1 ω-Words as Expansions of Real Numbers

First we investigate in more detail some fundamental properties of the mapping
νr : Xω

r → [0,1]. A simple property is

|νr(ξ )−νr(η)| ≤ ρ(ξ ,η) (14)

Thusνr is a continuous mapping. Since the spacesXω

r and[0,1] are compact, we
have also the following.

Property 16 The mappingνr satisfies the identity

νr(C (F)) = cl(νr(F)) , (15)

where F⊆ Xω

r and cl(M) denotes the closure of the set M⊆ [0,1].

Next, consider theambiguity setof νr , Aνr := {ξ : ∃η(η 6= ξ ∧νr(ξ ) = νr(η))}.
It holds

Lemma 17 Aνr is of first Baire category.

Another property deals with the images of ballswXω in Xω . To this end letI (F)
be the interior (largest open subset) ofF ⊆ Xω and letint(M) be the interior of
M ⊆ [0,1]. Here the identitycl(int(νr(wXω))) = νr(wXω) is obvious. Moreover,
we have the following.

Lemma 18 If F ⊆ Xω

r thenνr(I (F))⊆ cl(int(νr(F))).

Proof. We haveI (F) = W ·Xω

r for W := {w : wXω

r ⊆ F}. Thenνr(I (F)) =
νr (

⋃
w∈W wXω

r ) =
⋃

w∈W νr(wXω

r ), whence, in view ofcl(int(νr(wXω

r ))) = νr(wXω

r ),
the inclusion

νr(I (F)) =
( ⋃

w∈W

cl(int(νr(wXω

r )))
)
⊆ cl

(
int
(
νr
( ⋃

w∈W

wXω

r

)))
⊆ cl(int(F)))

follows. ❏
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It should be mentioned that Property16, Lemma17and Lemma18hold like-
wise for thed-dimensional version ofνr mapping the space(Xr ×·· ·×Xr︸ ︷︷ ︸

d times

)ω to

thed-dimensional unit cube[0,1]d considered in [Jürgensen and Staiger 01].
Observe that forw ∈ (Xr ×·· ·×Xr︸ ︷︷ ︸

d times

)∗ the setνr(w · (Xr ×·· ·×Xr︸ ︷︷ ︸
d times

)ω) is a so-

called mesh cube in anr−|w|-coordinate mesh of the unit cube[0,1]d (see Sec-
tion 3.1 in [Falconer 90]). An r−|w|-coordinate mesh in the unit interval is simply
the collection of all intervalsνr(wXω

r ) where|w| = n. These observations will
turn out to be useful in Section5.2.

4.2 Translation Results for General Metric Spaces

Next, we consider the relative density of a subsetF ⊆Xω

r or M⊆ [0,1]. Our aim is
to show thatF andνr(F) are either both nowhere dense or both not. In contrast to
the preliminary version [Staiger 01] we are going to show this in the more general
context of complete metric spaces(X ,ρ).

To this end letf : (X ,ρ)→ (X ′,ρ ′) be a mapping between the spacesX
andX ′, and letA f := {x : x ∈X ∧∃y(x 6= y∧ f (x) = f (y))} be the ambiguity
set of f .

Lemma 19 Let (X ,ρ) be a complete metric space, f: X →X ′ and letA f be
of first Baire category. ThenO ⊆ f−1◦ f (F ) impliesO ⊆F wheneverO ⊆X
is open andF ⊆X is closed.

Proof. Sincef is one-to-one onX \A f we haveO \A f ⊆F . Then, in view of
Eq. (7), cl(O \A f )⊇O, and the assertion follows. ❏

We get our first result for mappings satisfying an identity analogous to Eq. (15),
cl( f (M)) = f (cl(M)), wherecl denotes the closure as well in(X ,ρ) as in(X ′,ρ ′).
Such functions are referred to asclosed mappings. Closed mappings are also con-
tinuous, hence the preimagef−1(O ′) of an open subsetO ′ ⊆X ′ is again open.

Theorem 20 Let f : X →X ′ be a closed mapping and letA f be of first Baire
category. IfF is nowhere dense, then f(F ) is also nowhere dense.

Proof. Assumef (F ) to be not nowhere dense inf (X ′). Then there is an open
setO ′ ⊆X ′ such thatcl( f (F )) ⊇ f (X ′)∩O ′ 6= /0. Hence,f−1(cl( f (F ))) =
f−1( f (cl(F )))⊇ f−1(O ′) 6= /0. According to Lemma19we havecl(F )⊇ f−1(O ′),
andF contains a nonempty open subset. ❏

Similar tocl let int denote the interior operation in both spaces.
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Theorem 21 If f : X →X ′ is closed and satisfies the inequality f(int(M)) ⊆
cl(int( f (M))) for arbitrary M ⊆ X then the preimage f−1(F ′) of a nowhere
dense setF ′ ⊆X ′ is nowhere dense inX .

Proof. AssumeF := f−1(F ′) to be not nowhere dense. Then there is a nonempty
open setO ⊆ cl( f−1(F ′)). Hence, /06= int(cl( f−1(F ′))). Applying the inequal-
ity and the fact thatf is closed yieldsf (int(cl( f−1(F ′))))⊆cl(int(cl( f ( f−1(F ′))))).
But cl(int(cl( f ( f−1(F ′))))) ⊆ cl(F ′), and thuscl(F ′) contains the nonempty
open setint(cl( f ( f−1(F ′)))). ❏

In the previous Section4.1 we have seen that the functionνr satisfies the
hypotheses of Theorems20and21. Thus we obtain the following.

Theorem 22 Let F⊆ Xω

r . Then F is nowhere dense, iffνr(F) is nowhere dense.

4.3 Absolutely Disjunctive Reals

Now, we use our translation results to show that the set of absolutely disjunctive
reals is residual.

As a corollary to Theorem22we obtain immediately the following.

Lemma 23 The set of all absolutely disjunctive real numbers is a residualG
δ
-set

in [0,1], and for every r∈ IN, r ≥ 2 the setν−1
r (D) is a residualG

δ
-set in Xω

r .

Proof. SinceD =
⋂

r≥2νr(Dr), it suffices to show that everyνr(Dr) is a residual
G

δ
-set in[0,1]. Following Eq. (12), Xω

r \Dr is anFσ -set of first Baire category
and the ambiguity set ofνr , Aνr , satisfiesAνr ⊆ Xω

r \Dr . Thus we haveνr(Dr) =
[0,1]\νr(Xω

r \Dr). In view of Theorem22and Property16, the imageνr(Xω

r \Dr)
is also anFσ -set of first Baire category.

The second assertion follows from the fact thatνr is continuous andD is a
residualG

δ
-set. ❏

5 Base conversion

In the previous sections we have seen that the setsDr of disjunctive sequences
in Xω

r as well as the preimagesν
−1
r (D) of the set of absolutely disjunctive reals

are residualG
δ
-sets. From the papers [Cassels 59, Schmidt 60, Hertling 96] it is

known that the property to be disjunctive is not invariant under base conversion
νb◦ν

−1
r : Xω

r \Aνr → Xω

b .
ThusDr ⊃ ν

−1
r (D), and the constructive description of the setDr obtained in

Proposition6 cannot be carried over directly toν−1
r (D). The aim of this section

is to give a constructive description of the set ofr-ary expansions of all absolutely
disjunctive reals,ν−1

r (D).
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We conclude this section using Theorem14and the non-invariance of disjunc-
tive reals under base conversion to show that the class of finite-stateω-languages
is also not invariant under base conversion.

5.1 The Constructivity of D

It is known that, in general, it is not possible to continuously (as a mapping from
Cantor space(Xω

r ,ρ) to (Xω

b ,ρ)) convert baser expansions of real numbers to
baseb expansions. Even, if we exclude the set of ultimately periodicω-words,
Ult, from this conversion. More specifically, the size of the smallest ballv ·Xω

b
for which νb(v ·Xω

b ) ⊇ νr(w ·Xω

r ) does not only depend on the length ofw. For
instance, ifb= 10,r = 2 andw@ ξ with ν2(ξ ) = 1

5 we have|v|= 0 independently
of w.

In [Staiger 02] it is explained that admitting a small ambiguity in our conver-
sion we can solve the problem in the following way:
For everyw∈X∗r we find in a constructive way at most two wordsv−,v+ ∈X∗b both
of lengthb|w| · logb rc such thatνb(v− ·Xω

b )∪νb(v+ ·Xω

b )⊇ νr(w·Xω

r ). Moreover,
if two words are really necessary, thenv−,v+ ∈ X∗b can be chosen in such a way
thatv+ is the successor ofv− in the quasilexicographical ordering ofX∗b .

Thus we define the following computable mappingshr→b
+ ,hr→b

− : X∗r → X∗b
such thathr→b

− (w) := v− andhr→b
+ (w) := v+ where the computation ofv− andv+

is carried out as described above or in [Staiger 02].
The following lemma shows that the sets of infixes of successors in quasilexi-

cographical ordering do not deviate too much from each other.

Lemma 24 Let w,w′ ∈ Xr and let w′ be the successor of w in the quasilexico-
graphical ordering of X∗r . Then |(T(w) \ T(w′))∩Xn

r | ≤ n + 1 and |(T(w′) \
T(w))∩Xn

r | ≤ n+1 for all n≤ |w|.

Proof. In case|w|< |w′| we havew = (r−1)|w| andw′ = 0|w|+1 whence|(T(w)∩
Xn

r |= |(T(w′)∩Xn
r |= 1, and the assertion is trivially satisfied.

Assume|w|= |w′|= l . Sincew′ is the successor ofw, there is a common prefix
u@ w, u@ w′ such thatw = u·x · (r−1)l−|u|−1 andw′ = u· (x+1) ·0l−|u|−1.

The infixes ofw andw′ can be estimated as

T(w)∩Xn
r ⊆ (T(u)∩Xn

r )∪{uix(r−1)n−i−1 : 0≤ i < n}∪{(r−1)n} ,
T(w′)∩Xn

r ⊆ (T(u)∩Xn
r )∪{ui(x+1)0n−i−1 : 0≤ i < n}∪{0n}

whereui is the suffix of lengthi of u. ❏

Now we state our main theorem proving the constructivity of the setD of
absolutely disjunctive reals in recursion theoretic terms analogous to the one of
Dr given in Section2.2.
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Theorem 25 For every r∈ IN, r ≥ 2 there is a recursive language Wr such that
νr(Wδ

r ) = D .

Proof. The following explicit construction of the languageWr is similar to the
one in the proof of Proposition6.

Wr :=
{

wx : w∈ X∗r ∧x∈ Xr ∧∃n
(

n≤ |w|∧

∀b
(

2≤ b≤ n→ T(hr→b
+ (wx))⊇ Xn

b ∨T(hr→b
− (wx))⊇ Xn

b

)
∧

∃b
(

2≤ b≤ n ∧ T(hr→b
+ (w)) 6⊇ Xn

b ∧T(hr→b
− (w)) 6⊇ Xn

b

))}
Let ξ ∈Wδ

r and letηb := ν
−1
b (νr(ξ )). It suffices to show thatηb ∈ Xω

b is disjunc-
tive. By construction, for all sufficiently largen ∈ IN there is a prefixwn @ ξ

such thathr→b
+ (wn) or hr→b

− (wn) is a prefix of ηb and T(hr→b
+ (wn)) = Xn

b or
T(hr→b

− (wn)) = Xn
b .

In view of Lemma24 this implies #T(hr→b
+ (w)) ∩ Xn

b ≥ bn− (n + 1) and

#T(hr→b
− (w))∩Xn

b ≥ bn− (n+ 1). Accordingly, #(T(ηb)∩Xn
b ) ≥ logb(bn−n−1)

n
for infinitely manyn∈ IN, and Eq. (11) provesτ(ηb) = 1.

Conversely, letξ ∈ Xω

r andνr(ξ ) ∈ D . Then everyηb := ν
−1
b (νr(ξ )) is dis-

junctive. It suffices to prove that for everyn∈ IN there is a prefixwn@ ξ such that
∀b
(
2≤ b≤ n→ T(hr→b

+ (w))⊇ Xn
b ∨T(hr→b

− (w))⊇ Xn
b

)
. (Thenwn has a prefix

in vn ∈Wr which has|vn| ≥ n, thusWr ∩A(ξ ) is infinite.)
Choosen∈ IN and for everyηb ,2≤ b≤ n, a prefixvb@ ηb such thatT(vb)⊇

Xn
b . If un,b@ ξ has length|un,b| ≥ |vb| · logr b thenhr→b

+ (un,b)w vb or hr→b
− (un,b)w

vb. Now definewr to be the longest of the wordsun,b ,2≤ b≤ n. ❏

5.2 Non-invariance of Finite-Stateω-Languages

This last part uses results of the non-invariance of disjunctivity under base conver-
sion to show that the class of finite-stateω-languages is also not invariant under
base conversion.

In order to achieve this goal we introduce the concept of box-counting dimen-
sion in [0,1] (see [Falconer 90]). To this end letNε(M) be the smallest number
of intervals of lengthε (balls of diameterε) which coverm⊆ [0,1]. Theupper
box-counting dimensionof M ⊆ [0,1] is defined as

bdimM := limsup
ε→0

logr Nε(M)
− logr ε

.

This formula, in some sense, resembles the definition of the entropy ofω-lan-
guages. If we defineN ′

r−n(M) as the smallest number of intervals of the form
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[ i
r−n ,

i+1
r−n ] (mesh cubes in anr−n-coordinate mesh as in [Falconer 90]) which cover

M, we observe that

N ′
r−n(νr(F))≤ sF(n)≤ 3·N ′

r−n(νr(F)) . (16)

Proof. On the one hand, the intervalsνr(wXω

r ), |w| = n wherewXω

r ∩F 6= /0
coverνr(F) and are of the required form. Thus the first inequality is evident.

On the other hand, ifw∈ A(F) and|w|= n there are at most three intervals of
the form[ i

r−n ,
i+1
r−n ] not disjoint toνr(wXω

r ). Thus at least13 · sF(n) mesh cubes are
necessary to coverνr(F), which yields the second inequality. ❏

Eq. (16) yields

HF = limsup
n→∞

logr N
′

r−n(νr(F))
n

for F ⊆ Xω

r . (17)

From the results of Section 3.1 of [Falconer 90] we have the following.

Lemma 26 bdimM = limsupn→∞
logr N ′

r−n(M)
n

As a consequence of Eq. (17) and Lemma26 we obtain that the entropy ofω-
languages is invariant under base conversion.

Lemma 27 Let F⊆ Xω

r , E⊆ Xω

b andνr(F) = νb(E). ThenHF = HE.

Now Theorem 6 of [Hertling 96] and Theorem14yield the announced example.

Example 28 Let F := {0,1}ω ⊆ Xω

4 . Then HF = 1
2. Henceτ(ξ ) ≤ 1

2 for all
ξ ∈ F .

Considerξ0 ∈ F whereν4(ξ0) = ∑i∈IN 4−i!−i . Theorem 6 of [Hertling 96]
shows thatη0 ∈ Xω

6 with ν4(ξ0) = ν6(η0) is disjunctive. Henceτ(η0) = 1.

Now assumeE := ν
−1
6 (ν4(F)) to be finite-state. Sinceη0 ∈ E, this implies

HE = 1, contradicting Lemma27. ❏

Remark 2 Unfortunately, the example presented above does not represent a “nice”
subset of the unit interval[0,1]. In contrast to the situation of the previous exam-
ple, it is shown in[Jürgensen and Staiger 01] that the class of finite-state (in fact,
regular) ω-languages F⊆ (Xr ×·· ·×Xr︸ ︷︷ ︸

d times

)ω encoding geometric figures is invari-

ant under base conversion.
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