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Abstract

We consider disjunctive sequences, that is, infinite sequences(ds)
having all finite words as infixes. It is shown that the set of all disjunctive
sequences can be described in an easy way using recursive languages and,
besides being a set of measure one, is a residual set in Cantor space.

Moreover, we consider the subword complexity of sequences: here dis-
junctive sequences are shown to be sequences of maximal complexity.

Along with disjunctive sequences we consider the set of real numbers
having disjunctive expansions with respect to some bases and to all bases.
The latter are called absolutely disjunctive real numbers. We show that the
set of absolutely disjunctive reals is also a residual set and has representa-
tions in terms of recursive languages similar to the ones in case of disjunc-
tive sequences. To this end we derive some fundamental properties of the
functions translating a baseexpansion of a reak € [0,1] into a.
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Following Jirgensen, Shyr and Thierriniyensen et al. 83dgensen and
Thierrin 83] we say that an infinite sequencdisjunctivelf it contains any (finite)
word, or, equivalently, if any word appears in the sequence infinitely many times.
“Disjunctivity” is a natural qualitative property; it is weaker, than the property of
“normality” (introduced by Borel; see, for instancé,q ‘ ]).

In this paper we derive some properties of the set of all disjunctive sequences
(w-words). Here we focus on the properties in relation to the Chomsky and
arithmetical hierarchies of sets @-words (@-languages) (see e.g’'lf (

) and also on topological and information theoretic properties.

As is well known (see( ]) a set is large in topological sense if is of
second Baire category, and it is large in measure theoretic sense if it has nonzero
measure. The latter implies also largeness in information theoretic sense.

Using a characterization of the set of disjunctwewords by means of so-
called regulamw-languages, that isy-languages definable by finite automata, we
show that the set of disjunctive-words is large as well in sense of category as in
sense of measure.

Disjunctivity can be carried over to real numbers interpretingranord & as
an expansion of the number&lin a certain positional system. It appears that,
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under this interpretation, a property (e.g. disjunctivity, Borel normality etc.) may
depend on the particular base chosen. It was showf g . ]
that Borel normality and, implicitly, disjunctivity are not invariant under changes
of the base. For detailed information seélf ]. In contrast to the preced-
ing cases, randomness and Kolmogorov complexity of real numbers, which are de-
fined also via expansions, are base invariant properties(saeq ;

) D.

Real numbers disjunctive with respect to all bases are calbsdlutely dis-
junctive Utilizing a specific translation technique based on considerations in
[ }we prove in a constructive way that the set of absolutely disjunctive
reals is large in the sense of Baire category.

The paper is organized as follows. After presenting the necessary background
on w-words andw-languages in Sectioh we derive in recursion theoretic prop-
erties of thew-language of disjunctive sequenc&s, Then, SectiorB is devoted
to topological and information theoretic properties of disjunctive sequences. Her
we show a close relationship between the subword complexity-afords and
the entropy of finite-state-languages, and we prove that the Bet large with
respect to category and measure.

In the fourth section we turn to the consideration of real numbers. We in-
vestigate in detail topological properties of the canonical mappitg) := 0.£
describing reals in terms ofary expansions. These properties allow us to trans-
late the results of the previous section to the case of real numbers.

The final section, on the one hand, deals with constructive results inrbase
to baseb conversion yielding a description of the set of absolutely disjunctive
real numbers in terms of recursive languages, and, on the other hand, presents an
example showing that the class of finite-statdanguages is not invariant under
base conversion.

1 Notation and Preliminaries

By IN ={0,1,2,...} we denote the set of natural numbers. In order to treat ar-
bitrary finite alphabets we let; := {0,...,r — 1} be our alphabet of cardinality
#X =r,r €IN,r > 2. If there is no danger of confusion we will omit the subscript
and simply writeX for alphabets.

By X* we denote the set of finite strings (words) ¥nincluding theempty
word e. We consider also the spa¥& of infinite sequencesuf-words) overx.
Forw € X* andn € X*UX? letw-n be theirconcatenationThis concatenation
product extends in an obvious way to subs#ts X* andB C X* U X?.

We extend the operatiorisand® to arbitrary subsetd/ C X* in the usual way
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w* = [JW" where W°:={e},and
nelN
W = {Wo-wi---Wi-...:i € INAW e W\ {e}}

is the set ofw-words inX® formed by concatenating members/if
We will refer to subsets ok* andX® as languages av-languages, respectively.

By “C” we denote the prefix relation, that is,C 7 if and only if there is am’
such thaw-n’=n, andA(n) = {w:we X*AwWLC n} andA(B) := UpcgA(B)
are the languages of finite prefixespindB, respectively.

The set of subwords (infixes) gf € X* UX® will be denoted byT (1) := {w:
we X*AIv(vwC n)}.

In the study ofw-languages it is useful to considéf’ as a metric space (Can-
tor space) with the following metric.

p(n,&) =inf {#X)" ™ :wCnAawr &} (1)

It is easily verified thajp is indeed a metric which, in addition it satisfies the
ultrametric inequality.

p(&,8) <max{p({,n),p(&,n)} 2

Open (in view of Eq. ?) they are simultaneously closed) balls in this space
(X? p) are the setsv- X®. Then open sets iK® are of the formW - X® where
W C X*. From this it follows that a subs€t C X is closedif and only if A(§) C
A(F) impliesé € F.

The closureof a subsefF C X® in Cantor space, that is, the smallest closed
subset ofX® containingF is denoted by’ (F). One hasg’(F) = {& : A(§) C

A(F)}.
Having defined open and closed setXif, we proceed to the next classes of
the Borel hierarchy (se€é| 1):

F. is the set of countable unions of closed subset$%f
G is the set of countable intersections of open subsexs’of
Fss is the set of countable intersectionsref-subsets oK?,

Gs. is the set of countable unions Gfs-subsets oK®, and so ort.

1Borel classes are also defined for larger countable ordinals than natural numbers, but since
we will not need higher level Borel classes, we refer the interested reader to some textbook on
topology, as e.g.{ ].
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ForW C X* the 8-limit of W, W9, consists of all infinite sequencesX® that
contain infinitely many prefixes iw,

WO = {€ € X? : #(A(E)NW) = oo}

For Gg-sets we have the following characterization via languages (see [Tho-
mas 90, Staiger 97]).

Theorem 1 In Cantor space, a subsetE X? is aGg-set if and only if there is a
language WC X* such that F=W?.

The preceding theorem explains also WH{ is called the5-limit of the language
W.

ForB C X*UX® we define thestate B'w of B generated by the wond € X* as
B/w={b:wbe B}. A setBis calledfinite-statef its set of state§B/w:we X*}
is finite.

A finite-state languag®/ C X* is also calledregular.’ An w-languageF is
calledregular provided there is an € IN and regular languagé¥, V; (1 <i <n)
such that .

F=Jwve. ©)
i=1

Along with the Cantor spaces{®,p), r € IN, r > 2, we consider the unit
interval [0, 1] with the usual metric. Fon € X UX® we denote by, (n) :=
0.n the real number with (finite or infinite) baseexpansionn. The surjective
mappingv; : X® — [0,1] is continuous and nearly one-to-dnén particular, all
mappingsv, are one-to-one outside the set of all ultimately periogdigvords,
Ult ;= {w-v® :wve X5}

2 The w-Language of Disjunctive Sequences

In this section we will present a few simple properties of éndanguage of all
disjunctive sequences ovir, D = {& : T(§) = X*}. Some of the results in this
section are reported irC| I/

2.1 Basic Properties

From the very definition of disjunctive sequences we obtain
D= (] X*wX®. (4)

weX*

2In fact, regularity oW C X* is usually defined in a different way, but it is well known that a
languagew is regular if and only if it is finite state.
30nly real numbers of the formr~—1, 1 <i < rl have two base expansions.
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Our next lemma shows th&Xis an example of a finite-state-language which is
not a regular one.

Lemma 2 ([ ]) The w-language D is finite-state but
not regular.

Proof. Sincené € D if and only if £ € D, the w-languageD satisfiedD /w = D,
for all w € X*. ThusD has only a single state. NeXd,is nonempty and does not
contain an ultimately periodic sequene&®. Following Eq. @) the w-language
D cannot be regular. O

The representation of Egd)verifies thatD is aGg-set in Cantor space. Next
we are going to show that its topological complexity cannot be decreased. To this
end we quote Theorem 21 froraif k

Theorem 3 If F C X is finite-state and simultaneously &- and aGs-set,
then F is regular.

Combining Theoren3 with Lemma2 and Eq. {) we get:

Proposition 4 In Cantor space, D is not aR-set.

2.2 Recursion Theoretic Properties oD

We turn our attention to recursion theoretic propertieB oo this end we intro-
duce the first classes of the arithmetical hierarchwdinguages. As usual we
say that anw-languageée C X© is N1-definableprovidedE is representable in the
form

E={eX?:VWWwWLCE&=weW)}, (5)

whereWe C X* is a recursive language, and we say thatmlanguagea= C X?
is Mo-definableprovidedF is representable in the form

F={&ecX?:ywwe X" —FuuC &A(wu) € Mp))}, (6)

whereME is a recursive subset o x X*.
It is well-known that in Cantor spacé];-definablew-languages are closed
sets andl,-definablew-languages aré s-sets.

Lemma 5 Thew-language of all disjunctive sequences lis-definable.

Proof. We haveD = {£ € X? : Vw3av(vw C &)}. So it suffices to puMp =
{(w,vw) : w,v e X*} in EQ. (). 0

In[ I, Lemma 2.12, it is shown that am-languageE C X© is M-
definable if and only if there is a recursive langu&ge- X* such thatr = W?.
In case oD we construct\p explicitly.
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Proposition 6 Let
Wh = {wx:we X*Axe XAIn(n< |w|+L1AT(wx) 2 X"AT(w) 2 X"}
Then W is a recursive language and B WS.

Proof. Itis obvious that\p is recursive. Lef be a sequence such tHa ) = X*.
Then for everyn > 1 there is a shortest prefix, C & such thafl (w,) D X". Thus
{wn : n> 1} is an infinite subset d\p. The converse implication follows from
the observation that ifi,v € Wp andu CC v, thenX™ C T(u) impliesX™ C T(v),
and there is an € IN satisfyingT (u) 2 X" C T(v). O

3 Complexity and Density

In this section we relate disjunctivity to an information theoretic size measure
called entropy and to (topological) density in Cantor space.

3.1 Density and Baire Category

We first introduce the concept of topological density and Baire category for com-
plete metric spaces?’, p) such as the Cantor spak& or the unit intervalO, 1].

A subsetM C 2" is calleddensen 2 provided its closurel(M) is the whole
spaceZ’. A setM C 2" is nowhere densim provided its closurel(M) does not
contain a nonempty open subset.

As for any nonempty open subs@tC 2" such thaty’ Z cl(My) the inclusion
cl(Mp) ucl(Mz) = cl(MpUMy) 2 ¢ impliescl(M;) 2 &'\ cl(My), whered'\
cl(Mz) # 0 is open, the family of nowhere dense sets is closed under finite union.

A setM is of first Baire categoryff it is a countable union of nowhere dense
sets, otherwise it is odecond Baire categoryThe complements of sets of first
Baire category are callegsidual

It holds the Baire category theorem.

Theorem 7 (Baire category theorem)If a subset M of 27, p) is of first category
then. 2™\ M is dense.

This theorem has several consequences (See] 3 D.

Property 8 If &' is a nonempty open subset @2",p) and MC 2" is of first
category then
cl(c\M)D 0. (7)

Particular properties hold also f@s-sets.



How Large is the Set of Disjunctive Sequences ? 7

Property 9 1. A Ggs-set MC 2" of first Baire category is already nowhere
dense.

2. A subset MC 2" is residual iff it contains a dend8 5-set.

3.2 Subword Complexity

Next we investigate a concept of complexity of infinite sequedcesbich is inti-
mately related to disjunctive-words. This concept is based solely on the sets of
subwordsT (§). It turns out that the subword complexityé) of a word§ € X©
is also closely related to the entropy and density ofdAanguages containing.

For a languag®/ C X* let

Sw(n) =#WnX"
be itsstructure functior(cf. [ ]), and

| 1
Hw = limsup 0%y (1w (1)

NnN—oo n

be itsentropy Definesg = spr) andHg = Ha(r), for F C X©.
The entropy of languages is monotone with respectdt ‘Moreover, it has
the following properties.

Hwov = Hwyv = max{Hw,Hy} wheneveW -V #£ 0, (8)
Hww < Hw,and 9
Her) = He. (10)

We call 7(§) = Hy (¢ the subword complexitypf the wordé € X®. From the
obvious relation#(T () NX™™) < #(T(&)NX") - #(T (&) N X™M) we obtain the
following property ofz(&).
lo n
(€)= lim %@)() —inf

Nn—oo

lo n
{m:nelNAnzl} (11)
The subword complexity of am-word & is closely connected to the entropy of
finite-statew-languages containing).

Proposition 10 Let F be a finite-staten-language. Therr(&) < Hg, for every
EeF.

Proof.  SincelUyear)F/W is a finite union andT (§) = Unze A({S}/W) C

Uwear) F/wfor & € F, in view of Egs. §) and ) we haver(§) < max He .
weA(F)

The assertion follows frorhlg ,, < He. O

Consequently, i€ € F, He < 1 andF is finite-state the is not disjunctive.
We are going to prove that the converse is also true.
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Theorem 11 Anw-word & € X? is disjunctive iff§ € F impliesHg = 1 for every
finite-statew-language FC X®

Proof. One direction is explained above. ®t) < 1. Then there is a word
w¢ T (). Consequentlyé € X@\ X*-w-X® C (XW\ {w})®. Now the assertion

log,,x (#X M 1) 1 0

follows from H(X\W\\{W})“’ = #XIW

3.3 Entropy and Density in X

The final part of this section brings together all three introduced concepts, density,
entropy and subword complexity.

We start with special properties af-languages nowhere denseX#. Here,
in particular, a nowhere dense set contains no subset of thevotth This
condition can be reformulated as follows.

Property 12 A set FC X is nowhere dense if and only if for everyanK* there
is a \y € X* such that wyX® N F = 0.

Remark 1 If the w-language FC X® satisfies the conditiodw(F /wCF) then,
apparently, we may choose all wordgto coincide with v.= ve.

For finite-stataw-languages we obtain the following connection between entropy
an density.

Lemma 13 (] ]) A finite-statew-language FC X® is nowhere dense iff
He < 1.

Proof. Clearly, aHyxe = 1, Eq. (LO) shows thatHg = 1 if F is not nowhere
dense.

Conversely, leF be nowhere dense and finite-state. Then all stajes and
alsoF’ :=Jex+ F /W (as a finite union of nowhere dense sets) are nowhere dense.
SinceF’ O F’/wis satisfied for allv € X*, according to Remark there is a word
v e X* such thafF C F/ C X?\ X*vX® C (XM\ {v})®. Now, as in the proof of
Theoreml1 one obtaindig < 1. O

The final theorem of this section summarizes properties relating (topological)
density, entropy and disjunctivity. For a more detailed expositionseegder Of.

Theorem 14 Let F C X be closed and finite-state. Then the following properties
are equivalent.

1. He <1

2. F is nowhere dense.
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3. 7(&) < 1forall £ eF.

Proof. The equivalence of 1 and 2 is Lemffa and Propositiorl 0 shows that 1
implies 3.

In order to prove that 3 implies 2, we observe that in view of Prop@ray
closed set is nowhere dense iff it is of first Baire category. Then this implication
is a part of Theorem 3 in k O

Our theorem shows thXt® \ D is the union of all finite-state nowhere dense
language$§ Utilizing Eq. (4) and the proof of Theorerhl we obtain the following
representation dD in terms of special regular nowhere demséanguages.

XO\D= [ J (X°\X'WX?) = | J (XM {w})®. (12)

weX* weX*

3.4 Measure

We add a short consideration of the measurB .oT he representation of EdLZ)
yields the following short proof thad has measure one for all non-vanishing
product measures, thus establishing has also a large set in sense of measure.
Here, as usual, we refer to a measpren X® as anon-vanishing product
measurederived from a measune : X — (0,1), wherey ,.x u(a) = 1, provided
n(waxX®) = u(a) - u(wx®) for all w e X* anda € X. We obtain immediately

E((XMN fw})®) =0 (13)

for all non-vanishing product measures. This yields the announced result via
Eq (12

Lemma 15 Letu be a non-vanishing product measure ofi. XThen(D) = 1.

4 Disjunctive Real Numbers

So far we considered only disjunctive-words. In this section we consider the
real numbers which have in a positional system a notation which is disjunctive. In
particular, we are interested in the set of absolutely disjunctive reals,

From the considerations in the preceding sections we know that for a partic-
ular base the set of disjunctiveno-words Dy is residual, moreover, its comple-
ment X.» \ D, is the countable union of all (closed) nowhere dense finite-state
w-languages.

4Since the closure of a nowhere denrsdéanguageF, ¢ (F), is again nowhere dense, we can
drop the requirement “closed”.
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We translate these results by the natural interpretatienabrds inX® as the
r-ary positional notation of real numbers to the unit intef@al]. As a result we
obtain that the se¥ of real numbers having disjunctive expansions with respect
to all basesdh € IN,b > 2 is also a large set in the sense of category, although
its complement has not the nice characterization as developed inHdof Dy.
Similar results were obtained in’{ J/but
without using the results on d|SJunctmewords and the translatlon results derived
below.

4.1 w-Words as Expansions of Real Numbers

First we investigate in more detail some fundamental properties of the mapping
vr 1 X® — [0,1]. A simple property is

Ve (&) = ve(m) < p(§,1M) (14)

Thusyv; is a continuous mapping. Since the spa¥f@sand|0, 1] are compact, we
have also the following.

Property 16 The mapping, satisfies the identity
vie(%(F)) = cl(vie(F)), (15)
where FC X and cM) denotes the closure of the seti0, 1].

Next, consider theambiguity seof v, Ay, :={& :In(n#EAWw(E) =w(n))}.
It holds

Lemma 17 A,, is of first Baire category.

Another property deals with the images of bail¥® in X®. To this end let¥ (F)
be the interior (largest open subset)fofc X® and letint(M) be the interior of
M C [0,1]. Here the identityl (int (v, (WX?))) = v, (WX®) is obvious. Moreover,
we have the following.

Lemma 18 If F C X thenv,(.#(F)) C cl(int(v¢(F))).

Proof. We have# (F) =W -X? for W := {w:wX?® C F}. Thenv;(.#(F)) =

Vr (Uwew WX?) = Uwew Vr (WX?), whence, in view o€l (int (v, (WX?))) = vr (WX?),
the inclusion

vi(Z(F)) = ( | el(int(ve(wX®)))) C el (int(ve ( | wX®))) Ccl(int(F)))

wew weW

follows. O
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It should be mentioned that Propefit§, Lemmal7 and Lemmal8 hold like-
wise for thed-dimensional version of, mapping the spaceX x --- x X;)® to
————

d times
the d-dimensional unit cubg, 1]¢ considered in | I-
Observe that fow € (X x --- x X )* the setv,(w- (X x --- x X)?) is a so-
N e’ e’
d times d times
called mesh cube in arrW-coordinate mesh of the unit cubi@ 1]¢ (see Sec-
tion 3.1in| 1. An r~W-coordinate mesh in the unit interval is simply

the collection of all intervals; (wWX®) where|w| = n. These observations will
turn out to be useful in Section 2.

4.2 Translation Results for General Metric Spaces

Next, we consider the relative density of a suiset X orM C [0,1]. Our aim is
to show thaF andv,(F) are either both nowhere dense or both not. In contrast to
the preliminary versiong ] we are going to show this in the more general
context of complete metric spaceg’,p).

To this end letf : (27,p) — (Z”,p’) be a mapping between the spacg&s
and 2", and letes := {x:x € Z AJy(x#AyA f(x) = f(y))} be the ambiguity
set of f.

Lemma 19 Let (27, p) be a complete metric space; 2" — 2" and let«; be
of first Baire category. Thew C f~1o f(.%) implies& C .# wheneveww C 2
is open and# C 2 is closed.

Proof. Sincef is one-to-one o2" \ <7 we haved' \ o/s C .%. Then, in view of
Eq. (7), cl(€'\ «/;) 2 0, and the assertion follows. 0
We get our first result for mappings satisfying an identity analogous talBy. (
cl(f(M)) = f(cl(M)), wherecl denotes the closure as well(i", p) asin(Z2”,p’).
Such functions are referred to @lessed mappingsClosed mappings are also con-
tinuous, hence the preimade(¢”) of an open subset’ C 2" is again open.

Theorem 20 Let f: 2" — 2" be a closed mapping and let; be of first Baire
category. If.# is nowhere dense, ther{.#) is also nowhere dense.

Proof. Assumef (%) to be not nowhere dense f{.2”'). Then there is an open

seto’ C 27 such thattl(f(.#)) D f(27)N 6" # 0. Hence,f~1(cl(f(F))) =

f=1(f(cl(#))) 2 f~1(0") #0. According to Lemma9we havecl (%) D f~1(¢"),

and.# contains a nonempty open subset. O
Similar tocl letint denote the interior operation in both spaces.
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Theorem 21 If f : 2" — 2" is closed and satisfies the inequalityint(M)) C
cl(int(f(M))) for arbitrary M C 2" then the preimage f-(.#’) of a nowhere
dense set#’ C 2" is nowhere dense i®".

Proof. AssumeZ := f~1(.#’) to be not nowhere dense. Then there is a nonempty
open set C cl(f~1(.#")). Hence, 8% int(cl(f~(.#"))). Applying the inequal-
ity and the fact thaf is closed yields (int(cl(f~X(.Z"))))Ccl(int(cl(f (f~1(.Z"))))).
But cl(int(cl(f(f~1(.Z"))))) C cl(.F"), and thuscl(.#') contains the nonempty
open setnt(cl(f(f~1(F")))). O

In the previous Sectiod.1 we have seen that the function satisfies the
hypotheses of Theoren2® and21. Thus we obtain the following.

Theorem 22 Let F C X. Then F is nowhere dense, #f(F ) is nowhere dense.

4.3 Absolutely Disjunctive Reals

Now, we use our translation results to show that the set of absolutely disjunctive
reals is residual.
As a corollary to Theorerfi2 we obtain immediately the following.

Lemma 23 The set of all absolutely disjunctive real numbers is a residygbket
in [0,1], and for every rc IN, r > 2 the setv,(2) is a residualG-set in X®.

Proof. SinceZ = ,~,Vvr(Dy), it suffices to show that evemy (Dy) is a residual
Gs-set in[0,1]. Following Eq. (2), X \ D; is anFs-set of first Baire category
and the ambiguity set of;, A,,, satisfiesA,, C X \ D,. Thus we have; (Dy) =
[0, 1]\ v (X®\Dy). Inview of Theoren?2and Propertyl 6, the imagev; (X \ Dr)
is also arfFs-set of first Baire category.

The second assertion follows from the fact tivais continuous and’ is a
residualGs-set. O

5 Base conversion

In the previous sections we have seen that the Betsf disjunctive sequences
in X® as well as the preimages 1(2) of the set of absolutely disjunctive reals
are residualGs-sets. From the papers{ L ]itis
known that the property to be disjunctive is not invariant under base conversion
VbOVr er\Ar—>wa

ThusDy D v, 1(2), and the constructive description of the Bgtobtained in
Propositions cannot be carried over directly 1g-1(2). The aim of this section
is to give a constructive description of the set @fry expansions of all absolutely
disjunctive realsy; 1(2).



How Large is the Set of Disjunctive Sequences ? 13

We conclude this section using Theorérmand the non-invariance of disjunc-
tive reals under base conversion to show that the class of finiteestiieguages
Is also not invariant under base conversion.

5.1 The Constructivity of &

It is known that, in general, it is not possible to continuously (as a mapping from
Cantor spacg¢X”,p) to (X, p)) convert base expansions of real numbers to
baseb expansions. Even, if we exclude the set of ultimately perieghaords,
Ult, from this conversion. More specifically, the size of the smallest\baX®’
for which vp(v- X®) 2 vy (w-X®) does not only depend on the lengthvaf For
instance, ibb=10,r =2 andw _ & with v»(&) = % we havev| = 0 independently
of w.

In[ }itis explained that admitting a small ambiguity in our conver-
sion we can solve the problem in the following way:
For everyw € X we find in a constructive way at most two words v, € X both
of length | |w|-logy,r| such thawy(v_ - X©) Uvp(vy - X$) D vr (W-X?). Moreover,
if two words are really necessary, then,v, € X; can be chosen in such a way
thatv, is the successor of in the quasilexicographical ordering Xf .

Thus we define the following computable mappirgs™®, h™—P : X* — X
such thah™P(w) := v_ andh="®(w) := v, where the computation of andv,
is carried out as described above or it }.

The following lemma shows that the sets of infixes of successors in quasilexi-
cographical ordering do not deviate too much from each other.

Lemma 24 Let ww € X, and let W be the successor of w in the quasilexico-
graphical ordering of X. Then|(T(w)\T(W))NX" <n+1and |[(T(W)\
T(w))NX <n+1foralln<iw|.

Proof. In caséw| < |w/|we havew = (r — 1) andw’ = 0+ whence (T (w) N
XD = |(T(w)NX| = 1, and the assertion is trivially satisfied.

Assuméw| = |w| =1. Sincew is the successor ¥, there is a common prefix
uC w, uC W such thawv=u-x- (r — 1)U~ andw = u- (x+1)-0'-u-1,

The infixes ofw andw’ can be estimated as

TwNX" € (TWnNXMu{uxr—1)"1:0<i<ntu{(r—1"},
TW)NX" € (TuynXMu{u(x+1)0""t:0<i<nju{0"}

wherey; is the suffix of length of u. O

Now we state our main theorem proving the constructivity of theZetdf
absolutely disjunctive reals in recursion theoretic terms analogous to the one of
D, given in Sectior?.2.
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Theorem 25 For every re IN, r > 2 there is a recursive language,Wuch that
(W) = 2.

Proof. The following explicit construction of the languadk is similar to the
one in the proof of Propositiof.

W = {szwexr*/\xexrAEln<n§ lw| A
Vb (2 <b<n— T wx) 2 XDV T (N P(wx) D xg) A
ab(z <b<n A T(M7Pw)) 2 XPAT(HP(w)) 2 xg))}

Let& € W2 and letn, := v, 1(w (€)). It suffices to show thaty, € X2 is disjunc-
tive. By construction, for all sufficiently large € IN there is a prefixw, C &
such thath’,~P(wy) or h'=P(wy) is a prefix of n, and T(h"P(w,)) = X or
T(h—P(wy)) = X0

In view of Lemma24 this implies#T (h"P(w)) N X' > b" — (n+ 1) and
#T(hP(w)) N XD > b — (n+1). Accordingly, #(T(np) N X)) > 'O%(b%”_l)
for infinitely manyn € IN, and Eq. (1) provest(ny) = 1.

Conversely, le€ € X® and v, (£) € 2. Then everyny := v, 1(vi(€)) is dis-
junctive. It suffices to prove that for eveme IN there is a prefixw, = & such that
Yb(2<b<n— T(hP(w)) D X!V T(h—P(w)) D X"). (Thenw, has a prefix
in vp € W which haslvy| > n, thusW, NA(&) is infinite.)

Choosen € IN and for everyny,,2 < b <n, a prefixvy C 1y such thafl (v,) O
X0 If unp C & has lengthun p| > |vp|-log, b thenhﬁr—’b(un7b) Jvpor h[*b(un,b) 3
Vp. Now definew; to be the longest of the wordg ,,2 <b <n. a

5.2 Non-invariance of Finite-Statew-Languages

This last part uses results of the non-invariance of disjunctivity under base conver-
sion to show that the class of finite-stadelanguages is also not invariant under
base conversion.

In order to achieve this goal we introduce the concept of box-counting dimen-
sion in[0,1] (see [ . To this end let 4z (M) be the smallest number
of intervals of lengthe (balls of diametek) which coverm C [0,1]. Theupper
box-counting dimensioof M C [0,1] is defined as

baimM = lim sup 2% 2 (M)
e—0 - Iogl’ €

This formula, in some sense, resembles the definition of the entropylah-
guages. If we defines’,(M) as the smallest number of intervals of the form
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r
1

[, L] (mesh cubes in ar"-coordinate mesh as if

i+
r r—
M, we observe that

) which cover

1
L

A (v (F)) < sp(n) <3+ A (v (F)). (16)

Proof. On the one hand, the intervalgwX®), |w| = n wherewX® NF # 0
coverv,(F) and are of the required form. Thus the first inequality is evident.
On the other hand, i € A(F) and|w| = nthere are at most three intervals of
the form|[ 15, 'r%,ﬂ not disjoint tov; (WX®). Thus at Ieas% -sg(n) mesh cubes are
necessary to cover, (F), which yields the second inequality. 0
Eq. (16) yields

log, A4, F
He = limsup O rn(Vr( )

N—oo

for F C X°. (17)

From the results of Section 3.1 ¢f4 Pwe have the following.

log, 4" n(M)

Lemma 26 bdimM = limsup,_,., o

As a consequence of Eql{) and Lemma26 we obtain that the entropy ab-
languages is invariant under base conversion.

Lemma 27 Let F C X, EC X{ andv;(F) = v,(E). ThenHg = HE.
Now Theorem 6 of ff ] and Theoreni4yield the announced example.

Example 28 Let F := {0,1}* C Xp>. ThenHf = % Hencet(&) < 5 for all
EeF.

Consider&y € F wherevs(&) = Siew4 "', Theorem 6 of | ]
shows thatyg € X with v4(&o) = ve(no) is disjunctive. Hence(no) = 1.

Now assumee := vgl(V4(F)) to be finite-state. Sincgg € E, this implies
He = 1, contradicting Lemmay. O

NI

Remark 2 Unfortunately, the example presented above does not represent a “nice

subset of the unit intervdd, 1]. In contrast to the situation of the previous exam-

ple, it is shown ir{ Jthat the class of finite-state (in fact,

regular) m-languages FC (X x --- x X )® encoding geometric figures is invari-
—————

) d times
ant under base conversion.
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