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Abstract

In this paper we study structures defined by finite automata, called auto-
matic structures. We provide a method that reduces the study of automatic
structures to the study of automatic graphs. We investigate isomorphism
invariants of automatic structures with an emphasis to equivalence relation
structures, linearly ordered sets, and permutation structures.

1 Introduction

In this paper we investigate those structures that can be defined, in a certain precise
sense, by means of finite automata. The general idea is to code elements of a given
structure in such away that all the atomic first order queries about the structure
can be decided by finite automata. We call these structures automatic structures.
In this paper we will be interested in the classes of automatic graphs, equivalence
structures, linear orderings and permutation structures. Our basic motivation lies in
trying to characterise, in an appropriate terminology, isomorphism invariants of au-
tomatic structures. In [5] Blumensath and Grädel characterised automatic structures
in terms of an important concept of logic, namely interpretability. They proved that
a structure A is automatic if and only if it is first order interpretable in the structure
Np = (N,+, |p), where x|py iff x = pn and y = kx for some n, k ∈ N . However, it
seems that the problem of characterising the isomorphism invariants of automatic
structures is a challenging task. We will show that even for simple cases such as
equivalence structures and permutation structures the situation is quite complex.

There are several reasons to be interested in understanding isomorphism invari-
ants of automatic structures. One is that we would like to understand the interplay
between automata-theoretic and model-theoretic (or algebraic) concepts, e.g. rec-
ognizability and definability. The other reason is of complexity-theoretic nature. It
is known that the first order theory of any automatic structure is decidable [12]. A
natural question arises as to which automatic structures are feasible and which are
not. Blumensath and Grädel [3] [5] show that there are automatic structures whose
theories are non-elementary. In other words, the expression complexity of the model
checking problem in automatic structures can be an intractable problem. On the
other hand, there are examples of automatic structures, e.g. structures presented
by finite automata over unary alphabet or the rational numbers with the natural
ordering, for which the expression complexity of the model checking is polynomial.
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These and other results on automatic structures implicitly tell us that there are inti-
mate interactions between studying isomorphism invariants of automatic structures
and the expression complexity of the model checking problem. The more we know
about isomorphism invariants of automatic structures, the more the theory of this
structure is computationally accessible.

We now give an overview of this paper. The next section is an introductory sec-
tion where we give basic definitions and state some known results in the area. The
section on automatic graphs is devoted to showing that there is a functor from the
class of all automatic structures into the class of all automatic graphs. We will show
that this functor preserves not only model-theoretic but also automata-theoretic
properties of structures. The section on automatic equivalence structures is devoted
to constructing automatic equivalence relations with different types of isomorphism
invariants. The main goal is to show that some isomorphism invariants of auto-
matic equivalence structures possess complicated complexity-theoretic and algebraic
behaviour. The next section reduces the study of automatic equivalence relations to
that of automatic linear orderings. Finally, in the last section we study automatic
permutations. We show how to construct automatic permutations from automatic
equivalence structures. The basic result of the section concerns the relationship be-
tween permutation structures and the running times of reversible Turing machines.
As a consequence of this we will prove that the isomorphism problem for permutation
structures is undecidable.

Here are some notes on related literature. A systematic study of interactions
between automata and algebraic structures began from the work of Cannon and
Thurston on automatic groups [9]. This was generalised by Khoussainov and Nerode
in [12] but motivated from a point of view of computable model theory. A significant
work in understanding of automatic structures has been done by Blumensath and
Grädel [3] [5]. A recent paper by Benedikt and et al. [1] investigates model-theoretic
properties of automatic structures, e.g. questions related to quantifier elimination.
In recent work Delhomme, et al. [6] show that the minimal ordinal without automatic
presentations is ωω.

2 Basic Notions

A finite automaton (FA) A over an alphabet Σ is a tuple (S, I,∆, F ), where S is a
finite set of states, I ⊂ S is the set of initial states, ∆ ⊂ S ×Σ× S is the transition
table and F ⊂ S is the set of final states. A computation of A on a word σ1σ2 . . . σn
(σi ∈ Σ) is a sequence of states q0, q1, . . . , qn such that q0 ∈ I and (qi, σi+1, qi+1) ∈ ∆
for all 0 ≤ i ≤ n − 1. If qn ∈ F , then the computation is successful and automaton
A accepts the word. The language, L(A) ⊂ Σ∗ , accepted by the automaton A is the
set of all words accepted by A. A set D ⊂ Σ� is finite automaton (FA) recognisable,
or regular, if D = L(A) for some finite automaton A. We assume that the reader is
familiar with the basics in finite automata theory.

Automata that recognise n–ary relations are synchronous n–tape automata. The
following description is based on Eilenberg et al. [7]. A synchronous n–tape au-
tomaton is a one-way Turing machine with n input tapes. Each tape is regarded as
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semi-infinite having written on it a word in the alphabet Σ followed by an infinite
succession of blanks, 	 symbols. The automaton starts in an initial state, reads si-
multaneously the first symbol of each tape, changes state, reads simultaneously the
second symbol of each tape, changes state, etc., until it reads a blank on each tape.
The automaton then stops and accepts the n–tuple of words if it is in a final state.
The set of all n–tuples accepted by the automaton is the relation recognised by the
automaton.

Definition 1 Consider the alphabet Σn� , with Σ� = Σ ∪ {3}, 3 ∈ Σ. The convo-
lution of a tuple (w1, · · · , wn) ∈ Σ∗n is the word (w1, · · · , wn)

� ∈ (Σn� )
� formed by

concatenating the least number of 	 symbol to the right ends of the wi, 1 ≤ i ≤ n, so
that the resulting words have equal length. The convolution of a relation R ⊂ Σ∗n is
the language R� ⊂ (Σn� )

� formed as the set of convolutions of the tuples in R.

Definition 2 An n–tape automaton on Σ is a finite automaton over the alphabet
(Σ�)

n. An n–ary relation R ⊂ Σ�n is FA recognisable if its convolution R� is recog-
nisable by an n–tape automaton.

We now relate n–tape automata to structures. A structure A consists of a
set A called the domain and some constants, relations and operations on A. We
may assume that A only contains relational and constant predicates as the opera-
tions can be replaced with their graphs. We write A = (A, RA1 , . . . , RAk , cA0 , . . . , cAt )
where RAi is an ni–ary relation on A and cAj is a constant element of A. Then
(Rn11 , . . . , Rnkk , c0, . . . , ct) is called the signature of A. In the sequel, all structures are
relational, have finite or countable domains and finite signatures.

Definition 3 A structure A = (A, RA1 , . . . , RAk , cA0 , . . . , cAt ) is automatic over Σ if its
domain A ⊂ Σ� and the relations RAi ⊂ Σ∗ni all are FA recognisable. An isomorphism
from a structure B to an automatic structure A is an automatic presentation of B in
which case B is called automatically presentable (over Σ). A structure will be called
automatic if it is automatic over some alphabet.

The following result makes automatic structures objects of study from a complexity-
theoretic point of view:

Theorem 1 [12] There exists an algorithm that given an automatic structure A
and a first order definition of a relation R in A produces a finite automaton that
recognises R. In particular, the first order theory of A is decidable. 2

Blumensath and Grädel extended this result in [3] by showing that the theorem
holds even if one considers the first order logic extended by the quantifier “there
exist infinitely many”, denoted by FO(∃∞), and combined this with an important
concept in model theory, – interpretability.

Definition 4 Let A and B be structures of signatures L and K, respectively. An n-
dimensional interpretation Γ of A in B consists of a FO(∃∞)-formula δ(x1, · · · , xn)
of K, for each symbol S of L, a FO(∃∞)-formula φS(x̄1, · · · , x̄m) of K where each
x̄i is an n-tuple of distinct variables and m is the arity of S, and a surjective
map f : δ(Bn) → A such that for all b̄i ∈ δ(Bn), B |= φS(b̄1, · · · , b̄m) ⇐⇒

(f b̄1, · · · , f b̄m) ∈ SA.
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We give an example from [3]. For a non-unary alphabet Σ with p symbolsconsider
the structures W(Σ) = (Σ�, (σa)a∈Σ,�, el) and Np = (N,+, |p), where σa(x) = xa,
x � y if x is a prefix of y, el(x, y) if x and y have the same length, x|py if x divides
y and x is a power of p, and + is addition. Then Np and W(Σ) are mutually
interpretable.

Theorem 2 [5] If B is automatic and A is interpretable in B then A is automatic.

3 On Automatic Graphs

In this section we provide a procedure that given an automatic structure A produces
an automatic graph G(A) = (V (A), E(A)), with set of vertcies V (A) and edges
E(A), so that A and G(A) can be recovered from each other. The transformation of
A into G(A), denoted by Γ, is described in Hodges [11] (Theorem 5.5.1) and possesses
natural algebraic and model-theoretic properties. To investigate properties of Γ we
need to explicitly define it with an eye towards automata-theoretic considerations.

An n-tag, where n > 1, is a symmetric graph isomorphic to the graph {0, 1, . . . , n, c}, E),
where the set E of edges consists of all pairs {i, i + 1} for 0 < i < n, {n, 1} and
{2, c}. The vertex 0 is the start of the n-tag. The element c is needed to make the
tag rigid, that is a structure without nontrivial automorphisms. Further, c will not
be mentioned explicitly.

Let v be a new symbol. With each element a ∈ A we associate a 5-tag denoted
by T (a) so that the vertices of T (a) are the words va, va1, . . . , va5 and the edges are
{va, va1}, {vai, vai+ 1}, {va5, va1}, where i = 1, . . . , 5. Thus, the start vertex va of
the tag T (a) can be associated with the element a of the structure A.

We now code the predicate Pi. Firstly, with each tuple ā = (a1, . . . , ami) for
which Pi(ā) we associate a (5+ i)-tag T (i, ā) with vertices vā, vā1, . . ., vā(i+5) and
edges {vā, vā1}, {vāk, vā(k + 1)}, {vā(i+ 5), vā}, where k = 1, . . . , i+ 4. Secondly,
with the tuple ā = (a1, . . . , ami) and the kth element of this tuple ak we associate the
graph L(i, ā, k) consisting of the k vertices vak, vāk1, āk2, āk3, . . ., āk(k−2), vā and
edges appearing between any consecutive pair in this list. Thus, L(i, ā, k) establishes
a path of length k between vak and vā in case ak is indeed the kth element of the
tuple ā. The proof of the following lemma is left to the reader.

Lemma 1 If the domain A and the predicate Pi of the structure A are regular lan-
guages then:

1. The language T (A) =
⋃
a∈A T (a) and the binary relation E1(A) = {(x, y) |

there is an a ∈ A so that {x, y} is an edge in T (a)} are regular.

2. The language T (Pi) =
⋃
ā∈Pi

T (i, ā) and the binary relation E2(Pi) = {(x, y) |
there is an ā ∈ Pi so that {x, y} is an edge in T (i, ā)} are regular.

3. The language L(i) =
⋃
ā∈Pi,1≤k≤mi

L(i, ā, k) and the binary relation E3(Pi) =
{(x, y) | {x, y} is an edge in some L(i, ā, k)} are regular. 2
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Define G(A) = (V (A), E(A)), where V (A) and E(A) respectively are:

T (A) ∪
⋃

1≤i≤n

T (Pi) ∪
⋃

1≤i≤n

L(i) and E1(A) ∪
⋃

1≤i≤n

E2(Pi) ∪
⋃

1≤i≤n

E3(Pi).

Theorem 3 For the structure A and the graph G(A) the following are true:

1. A is automatic if and only if G(A) is automatic.

2. There is an isomorphism α between the group Aut(A) of automorphisms of A
and the group Aut(G(A)) of automorphisms of G(A). Moreover, f ∈ Aut(A)
is automatic if and only if α(f) is automatic.

3. A substructure B of A is automatic if and only if the subgraph G(B) of G(A)
is automatic.

4. A structure B is automatically isomorphic to A if and only if the graph G(B)
is automatically isomorphic to G(A).

5. From any automatic presentation of A an automatic presentation of G(A) can
be constructed in linear time.

Proof. Part 1). Lemma 1 shows that if A is automatic then so is G(A). Assume
that G(A) is automatic. The set D = {x | x is the start of a 5-tag } is FA recognisable
because it is FO-definable in G(A). For each i, i = 1, . . . , n, consider the relation
Ri = {(x1, . . . , xn) | there is an x such that the distance between xk and x is k and x
is the start of a 5+ i–tag }. This relation is FA recognisable. From the construction
of G(A) we see that A and (D, R1, . . . , Rn) are isomorphic.

Part 2). Let f be an automorphism of A. Define α(f) : G(A)→ G(A) as follows.
If f(a) = b then set α(f)(va) = vb. Take a tuple ā = (a1, . . . , an) so that Pi(ā) is
true. Let b̄ = (f(a1), . . . , f(ami)). Set α(f)(vā) = vb̄. Now extend this partial map
to an automorphism α(f) of G(A). This automorphism is unique. The fact that α is
an isomorphism can be checked by using the definition of G(A). Assume that α is an
automatic isomorphism. We want to show that f(α) is an automatic automorphism
of G(A). Take an x ∈ V (A). Then either x ∈ T (a) or T (i, ā) or x ∈ L(i, ā, k) for
appropriate a, ā, i and k. Say, for instance x ∈ T (a) and hence x = vai for some
i = 0, . . . , 5 (in case i = 0 we assume that va0 is va). From the definition of α(f) we
see that α(f)(x) = y iff y ∈ T (α(a)) and y = vα(a)i. This can be can be recognised
by a finite automaton since α is automatic. We leave the other cases and the rest of
the proof to the reader.

Part 3) follows from Part 1) and Part 4) from Part 2).

The sizes of the automata that recognise the languages T (A) and T (Pi) are pro-
portional to the sizes of the automata recognising A and Pi. To recognise the language
L(i) we need to recognise words on L(i, ā, k) paths, use the automaton recognizing
Pi, and use the automaton that tells us if any given b is equal to the kth coordinate
of ā. The size of the automaton that recognises L(i) is thus proportional to the sizes
of the automata presenting A. Similarly, the size of the automaton recognising E(A)
is linear in the size of the presentation of A. 2
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Note: Results of this section can be obtained from the fact that all automatic
structures are interpretable in Np [3]. We, however, provided a direct method of
transforming structures into graphs rather than doing this indirectly by using inter-
pretations in Np.

4 On Automatic Equivalence Relations

Here we study automatic equivalence structures and provide several methods of con-
structing automatic equivalence structures with different types of isomorphism invari-
ants. An equivalence structure is E = (E, ρ), where ρ is an equivalence relation
on E. For E define the following two isomorphism invariants: I1(E) = {n | there is
an equivalence class of size n}, and I2(E) = {(n, m) | there are exactly m equivalence
classes of size n}. Clearly, I2(E) is a full isomorphism invariant in the sense that E
and E ′ are isomorphic iff I2(E) = I2(E

′). Also, I1(E) can be expressed in terms of
I2(E). Our goal is to understand how these invariants behave in case E is an auto-
matic structure. In [13] and [3] it is shown that E has an automatic presentation over
a unary alphabet iff I1(E) is finite and there are finitely many infinite equivalence
classes. The situation in general non-unary case is complex as the results of this
section show.

For an equivalence structure E we define Eω and Ef as the restriction of E to all
elements in infinite and finite equivalence classes, respectively.

Lemma 2 If the equivalence structure E is automatic then so are Ef and Eω. More-
over, E has an automatic presentation iff Ef does.

Proof. Follows from the fact that Ef is definable by a FO(∃∞)-formula and that
Eω has always an automatic presentation. 2

Thus, in characterising automatic equivalence structures E , we can always assume
that each equivalence class is finite. Therefore, from now on I1(E) does not contain
ω, and if (n, m) ∈ I2(E) then n is finite.

Lemma 3 If E is an automatic then it has an automatic presentation satisfying the
property that if (x, y) ∈ ρ then |x| = |y|.

Proof. Suppose E is automatic over Σ. Consider an automatic linear order ≤
on E of type ω so that if x ≤ y then |x| ≤ |y|. The set {x | x is the longest element
in its equivalence class } is regular. Define a new domain E′ over ((Σ ∪ {1})�)2 as
the set of pairs (x, 1n) where x is in the domain of E and n is the longest word
in the ρ-equivalence class containing x. The set E′ is FA-recognisable. Define the
equivalence relation ρ′ containing pairs ((x, 1n), (y, 1m)) iff (x, y) ∈ ρ and n = m.
Then (E′, ρ′) is a desired automatic equivalence relation isomorphic to E . 2

Corollary 1 (also see [3]) Let E be an infinite automatic equivalence relation where
|Σ| ≥ 2, and ni be an increasing enumeration of the sizes of its equivalence classes.
Then ni ≤ 20(i). 2
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Next we build equivalence structure from languages. Let L be a language. Define
an equivalence structure E(L) = (E,∼L) with E = L. Two strings x and y are
∼L-equivalent if |x| = |y| and x, y ∈ L. Here is an easy lemma:

Lemma 4 If L is regular then E(L) is an automatic structure. 2

The next series of results provide several examples and constructions for building
automatic equivalence structures whose isomorphism invariant I1(E) exhibits non-
trivial behaviour.

Let L be a language over Σ. The growth of L is the function gL defined as
gL(n) = |Σn ∩ L| for n ∈ ω. The following is implicit in [15].

Lemma 5 For any polynomial function p whose coefficients are positive integers
there is a regular language Lp whose growth function is p.

Proof. Note that if L1 and L2 have growth rates p1 and p2, respectively, and
L1
⋂

L2 = ∅ then their union has growth rate p1 + p2. So it is sufficient to exhibit
for each k ∈ N a language Lnk with growth rate nk.

For w ∈ Σ�, write w+ for ww�. Note that Ak = 0+1+ · · ·k+ has growth
(
n−1
k

)
.

Consider the languages Bk = 0+1+ · · · (k− = 1)+k∗. Then Bk = Ak−1 ∪ Ak. Hence
the growth of Bk is

(
n−1
k

)
+
(
n−1
k−1

)
=
(
n
k

)
. Consider the languages Ck defined as

the disjoint union of k! copies of Bk. Then Ck has growth n(n − 1) · · · (n − k + 1)
which we write as nk. We now make use of the standard identity xk = Σki=0S(k, i)xi

where the S(k, i) are Stirling numbers of the first kind; that is the number of ways
of partitioning a set of size k into i non-empty subsets. So Lnk = ∪

n
k=0 ∪S(n,k) Ck,

where the unions are taken to be disjoint, has the required growth. 2

Lemma 6 For any exponential function e(n) of the form kan+b, where 2 ≤ k and
a, b are positive integers, there exists a regular language whose growth function is
exactly e.

Proof. Let Σ = {1, 2, · · · , ka}. Then L = Σ∗ has growth kan. The disjoint union
of kb many copies of L has growth kan+b. 2

It is worth to note that the growth level of any relular language is bounded by
either a polynomial or an exponential (see [1]).

Theorem 4 For any function f which is either a polynomial p whose coefficients
are positive integers or exponential function kan+b, where k ≥ 2 and a, b are fixed
positive integers, there exists an automatic equivalence relation E such that I1(E) =
{f(n) | n ≥ 1} and I2(E) = {(f(n), c) | n ≥ 1}, with c ≤ ω being a constant.

Proof. From Lemma 5 and Lemma 6 there exists a regular language L whose
growth function is identical to f . By Lemma 4 the automatic equivalence structure
E(L) is a desired one. The theorem for case c = 1 is proved. Now note that disjoint
union of automatic equivalence structures are automatic. 2

The next result shows that the second invariant I2(E) of automatic equivalence
structures can also exhibit a complex behaviour. The invariant I2(E) defines the
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height function hE as follows: hE (n) = m if and only if (n, m) ∈ I2(E). Finally,
for two functions f, g with domains N , their Dirichlet convolution is (f / g)(n) =∑
ab=n f(a)g(b).

Proposition 1 Let H be the class of height functions of automatic equivalence struc-
tures. Then H is closed under addition and Dirichlet convolution.

Proof. For addition consider the disjoint union, and for convolution the direct
product E1 × E2 = (E, ρ), where E = E1 × E2 and ρ = {((x, y), (a, b)) | (x, a) ∈
ρ1 & (y, b) ∈ ρ2}. 2

Thus, for instance there is an automatic equivalence structure E so that I1(E) =
ω \ {0} and hE (n) is the number of all pairs (i, j) such that i · j = n.

We now give an automata-theoretic characterisation of automatic equivalence
structures (with finite equivalence classes).

Definition 5 An automatic binary relation R is a regular enumeration of a
family F of regular sets if F = {Rx | x ∈ dom(R)}, where Rx is the projection
{u | (x, u) ∈ R}.

We think of R as a mapping from dom(R) onto F . If R is a regular enumeration
then one can always construct a regular one to one enumeration of F since the
relation {(x, y) | Rx = Ry} is FA-recognisable.

Let R be a one to one regular enumeration of F such that Rx
⋂

Ry = ∅ for
x = y. Consider the structure E(R) with domain

⋃
x∈dom(R)Rx and binary relation

{(u, v) | ∃x ∈ dom(R) : u, v ∈ Rx & |u| = |v|}. Then E(R) is an equivalence
structure. The proof of the following is immediate.

Proposition 2 The structure E(R) is an automatic equivalence structure. 2

Example 1 Let X and Y be nonempty regular languages such that no two words in
Y are prefixes of each other. Consider the family F = {yX | y ∈ Y }. The mapping
R : y → yX is a one to one and regular enumeration of F . Hence E(R) is automatic.

The construction of E(R) is as general as possible because one can reverse the
construction as follows. Let E = (E, ρ) be an automatic equivalence structure. We
may assume that (u, v) ∈ ρ implies that |u| = |v|. Form the set W of all the minimal
elements (with respect to an automatic order ≤ of type ω on the set of all words)
from each equivalence class. Consider R = {(w, v) | w ∈ W and (w, v) ∈ ρ}. Clearly,
R is a regular one to one enumeration of ρ-equivalence classes and E(R) is isomorphic
to E .

5 On Automatic Linearly Ordered Sets

Here we explain how to convert automatic equivalence structures E into a certain
type of linearly ordered (lo) sets LE so that LE and E can be recovered from each
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other. This will show that the study of automatic lo sets is at least as complex as
automatic equivalence structures.

Let L = (L,≤) be a lo set. For x, y ∈ L define the interval [x, y] = {z | x ≤ z ≤
y} if x ≤ y and [x, y] = {z | y ≤ z ≤ x} if y < x. We say that the elements x, y ∈ L
are in the same block if [x, y] is finite, and we write B for this equivalence relation
on L. Having the relation B, define a new lo set LB by factorizing L by B as follows.
The elements of LB are the equivalence classes; and xB ≤B yB if x ≤ y, where xB is
the equivalence class containing x.

Lemma 7 If L is an automatic lo set then the block relation B is FA recognizable.
Hence the factor LB is an automatic linear order. 2

The idea of factorization suggests relating automatic equivalence relations with
lo sets. We need a definition.

Definition 6 We denote Q the type of the lo set of rationals. We say that a lo set
L has Q-rank 1 if LB is isomorphic to either Q or 1 + Q or Q + 1, where 1 + Q
(Q+ 1) is the the linearly ordered set of rationals with the least (greatest) element.

Let L be a linearly ordered set of Q-rank 1. Define the set I(L) = {(n, m) | L
has m blocks of size n ≥ 2}. Write D(x) for the unary relation on L stating that
x is in some dense interval. Define E(L) as the equivalence structure with domain
L and relation B ∪ (D ×D). Thus, any lo set L of Q-rank 1 naturally induces an
equivalence structure E(L). The following proposition thus follows:

Proposition 3 If L is an automatic lo set of Q-rank 1 then E(L) is an automatic
equivalence structure. 2

The next theorem shows how to construct automatic lo sets of Q-rank 1 given an
automatic equivalence structure thus conversing the proposition above.

Theorem 5 From any automatic equivalence structure E it is possible to construct
an automatic lo set LE of Q-rank 1 so that I(LE ) = I2(E).

Proof. Let E = (E, ρ) be automatic, and ≺ be an automatic well order of type
ω on E. Write ≺A for ≺ restricted to set A. Order the equivalence classes of E by ≺′

as follows. We write xρ ≺′ yρ iff the ≺–minimal element in xρ (the equivalence class
containing x) is less than the ≺–minimal element in yρ. List the equivalence classes
of E as {Bi} for i ∈ ω where i ≤ j iff Bi ≺′ Bj. The required linear ordering LE
is then Σi(Bi + D), where Bi = (Bi,≺Bi) and D is a linear ordering of type Q of
rationals. The lo set L has Q-rank 1. This lo set possesses an automatic presentation
which can be shown by using the fact that the linearly ordered set of rationals has
one [12]. 2

Corollary 2 For any function g which is either a polynomial p whose coefficients
are positive integers or exponential function kan+b, where k ≥ 2 and a, b are fixed
positive integers, there exists an automatic linear order L of Q-rank 1 such that
I(L) = {(g(n), 1) | n < ω} ∪ {(ω, 1)}. 2
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6 On Automatic Permutation Structures

A permutation structure is A = (A, f), where f is a bijection on A. For an a ∈
A, the set {f i(a) | i ∈ ω} is an orbit of f . As for the equivalence structures,
define two isomorphism invariants I1(A) = {n | there is an orbit of size n}, and
I2(A) = {(n, m) | there are exactly m orbits of size n}. Then I2 is a full isomorphism
invariant. In [14] and in [3] it is shown that A has an automatic presentation over
a unary alphabet if and only if I1(A) is finite and there are finitely many infinite
orbits.

Any automatic equivalence structure E over Σ� can be turned into an automatic
permutation structure A(E) as follows. Let ≤ be an automatic well order of type ω
on Σ�. For each x ∈ E we proceed as follows. If x is in Ef and is not the maximal
element in its equivalence class then f(x) is the minimal y ≥ x which is ρ-equivalent
to x. Otherwise, f(x) is the minimal element in the equivalence class containing x.
If x ∈ Eω then f transforms the equivalence class containing x into Z-type chain,
namely the structure isomorphic to (Z, S) where S is the successor function on Z.
Note that I2(E) = I2(A(E)). Hence, the result similar to Theorem 4 holds true for
automatic permutation structures.

We now show that the isomorphism invariants I1(A) of automatic permutations
can be related to the running times of Turing machines (TMs). Let T be a TM
and C(T ) be the graph consisting of all configurations of T , with an edge from
configuration c to d if T can move from c to d in a single transition.

Lemma 8 For any TM T the configuration graph C(T ) is automatic. Further, the
set of all vertices with with outdegree (indegree) 0 is FA-recognisable. 2

Definition 7 A TM T is reversible if every vertex in C(T ) has indegree and out-
degree at most one.

Bennett [2] showed that any deterministic TM T can be simulated by a reversible
TM R. Furthermore, running times of these machines differ by a constant factor.
For the sake of completeness, we sketch the proof.

A transition of T is a quintuple (σ, q, δ, d, s) ∈ ∆ where σ, δ ∈ Σ, q, s ∈ Q and
d ∈ {L, R}. On input w, R runs as T would, but also saves each of T ’s transitions
on a separate ‘history’ tape. Once the simulated T has halted, R copies the output
to another tape. It then retraces the steps that T took, in reverse, deleting the
saved transitions one at a time, resulting in R having the original input w printed
on one tape, a blank ‘history’ tape, and the output T (w) on the third tape. This
three tape TM R is itself simulated by a single tape machine. So, the reason that
R is reversible is that if a configuration c of T has indegree greater than 1, then the
transitions corresponding to each edge into c are distinct. Since the corresponding
configuration of R codes these transitions, the particular configuration of T which
preceded c is uniquely determined.

Let TimeT (w) be the number of steps T takes to halt on w. We assume that the
unique initial state of T is not a final one, and that for any non-final configuration c
there is a d such that (c, d) is an edge in C(T ).
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Theorem 6 For every reversible TM T , there is an automatic permutation structure
A(T ) for which I1(A(T )) = {TimeT (w) | w ∈ Σ�}.

Proof. Let Q be the set of states of T . Consider the set Q̃ = {q̃ | q ∈ Q}. We
may assume that Q ∩ Q̃ = ∅. Let the configuration graph of T be C(T ) = (C, E).
Consider X = {c | c is not initial and there is no d for which (d, c) ∈ E}. Clearly X

is FA recognizable. For each x ∈ X consider the set {xoi | i ∈ ω}, where o is a new
symbol.

Now we define a new graph G1 = (V1, E1), with V1 = C(T )∪{xoi | i ∈ ω, x ∈ X},
and E1 = E ∪{(xoi+1, xoi | x ∈ X, i ∈ ω}. This graph is clearly automatic. For each
c ∈ V1 let c̃ be obtained by replacing the state q appearing in c with q̃. Define the
following set Ṽ1 = {c̃ | c ∈ V1}.

On V1∪Ṽ1 we now define the following permutation g. If (c, d) ∈ E1 then g(c) = d
and g̃(d̃) = c̃. If c is a final configuration then g(c) = c̃. If c is an initial configuration
then g(c̃) = c. Thus, (V1 ∪ Ṽ1, g) is an automatic permutation structure. Moreover,
T (w) = n if and only if the structure (V1 ∪ Ṽ1, g) has an orbit of size 2n. Let f = g2.
Then it is not hard to check that the structure (V1 ∪ Ṽ1, f) is a desired automatic
permutation structure. 2

As a corollary of the theorem we obtain the following undecidability result.

Theorem 7 It is undecidable whether two automatic permutation structures are iso-
morphic.

Proof. For a deterministic TM T ′, construct an equivalent reversible TM T and
the structure A(T ). T halts on no word iff A is isomorphic to the permutation
structure with only infinitely many infinite chains of type Z. 2

Blumensath [4] also proved undecidability of the isomorphism problem for auto-
matic structures by an implicit construction of reversible TMs.

7 Conclusion

We would like to have a characterisation of natural isomorphism invariants of auto-
matic structures. Ideally, we would like these characterizations to give us some useful
information about the complexity-theoretic nature of the structures from logical and
algebraic points of view. When the structures are automatic over a unary alphabet,
characterization for some common structures are known [3],[13]. These characteriza-
tions imply that theories of these structures are computationally accessible and show
the algebraic nature of the structures. In this paper our aim was to show difficulties
involved in the non-unary case. Theorem 3 reduces the study of automatic structures
to automatic graphs. Theorem 4 and Theorem 5 are initial steps in understanding
the isomorphism invariants of some simple structures. Finally, Theorem 6 exhibits
a nontrivial relationship between running times of TMs and automatic structures.
Clearly, more work remains to be done in understanding automatic structures and
their complexities. We deal with some of them in upcoming papers.
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