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1 Introduction

In this paper we develop a theory devoted to investigating issues of specifying
classes of regular languages over a given signature (alphabet). By a regular
language we mean one recognized by either a finite automaton or a tree
automaton. In the former case the underlying language consists of strings,
in the latter case the underlying language consists of trees, or generally,
ground terms. Two natural questions arise immediately. What classes of
regular languages do we want to specify? How can we specify a given class
of regular languages?

To answer the first question, we use (universal) algebra. It is well known
that finite deterministic automata can be viewed as finite unary algebras.
Similarly, tree automata can be viewed as finite universal algebras [2] [6].
This observation suggests the idea of considering those automata whose
underlying sets of states form natural algebraic structures. Thus, these
structures can, for example, be defined by universally quantified systems of
formulas of the first order or other logics. Examples of such structures are
groups, lattices, rings, boolean algebras or semigroups. When the formulas
are of the form of equations or conditional equations, the corresponding
classes of automata are well-behaved in the sense that they are closed under
known automata-theoretic and algebraic constructions such as Cartesian
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products, homomorphisms, complementations, etc. From a computational
point of view a given set of formulas can be thought of as algebraic and
logical constraints put on transitions of finite state systems. To illustrate
this, consider a run of a finite state system occurring during the execution
of program instructions. The run is simply a sequence of states. There are
usually certain constraints specified by the system software and hardware
that the run must satisfy. Some of these constraints are often of an algebraic
and logical nature. For example, during the run, two consecutive executions
of an instruction I can produce the same result obtained by an execution of
another instruction J. This can algebraically be presented as an equation
I1 = J. Constraints that force two instructions, say I and J, to be executed
in parallel, can be presented by an algebraic equation IJ = JI which is a
natural algebraic presentation of parallelism. More generally, an algebraic
(or logical) expression of the type I = J — T = S, can be understood as
a constraint with the following meaning. Whenever the executions of the
instructions I and J produce the same result then the results of executions of
instructions 7" and S coincide. All these considerations motivate the idea of
studying regular languages recognized by automata whose transitions satisfy
universally quantified sets of formulas, in particular sets equations or more
generally conditional equations. This view also suggests a fruitful ground for
the interplay between tree or finite automata and the concepts of algebra,
e.g. finitely presented algebra, free algebra, equations, conditional equations.

To answer the second question, suppose that we are given a class of
languages. In the theory of formal languages, a traditional question that
arises about the class is whether or not the class can be specified in an ap-
propriate terminology. For example, the class of all finite automata or tree
automata recognizable languages can be specified as the class of languages
determined by regular expressions of appropriate types. Similarly, the class
of all pushdown automata recognizable languages can be thought of as being
specified by context free grammars. There has also been research in charac-
terizing other known classes of languages, e.g. classes of problems decidable
in polynomial time, by using formal systems of the first order logic and its
extensions. Thus, the notion of specification is a general concept, and each
time when one talks about a specification this notion should be given a pre-
cise formalization. As our approach to defining classes of regular languages
is algebraic and uses the language of the first order logic (e.g. systems of
universally quantified equations or conditional equations), our specification
of classes of regular languages will also be of an algebraic and logical nature.



The basic idea is twofold. On the one hand, we will concentrate on speci-
fying the classes of regular languages by the isomorphism types of certain
algebras naturally induced by the classes. In particular, we will show the
uniqueness of such algebras. On the other hand, we will use the logical lan-
guage to investigate whether or not a given class of regular languages can
possess a first order definition in a certain precise sense.

Here is a brief outline of the paper. The paper consists of three parts. In
the first part, Section 2, we present basic definitions and results concerning
automata, their languages and introduce classes of regular languages defined
by conditional equations. The proofs of results in this part are relatively
easy, and generally follow classical automata theory. However, we provide
the proofs as we would like to give an intuition for the reader and make
the paper self-contained. In the second part, Section 3, we study algebras
naturally associated with the classes of regular languages. This will be done
by using well-known concepts in universal algebra, e.g. finitely presented
algebra and residually finite algebra. We will show that among all these
algebras there is one unique up to isomorphism induced by any given class
of regular languages. We call this algebra the canonical algebra of the class.
The idea here is that the canonical algebras can be thought of as purely
algebraic specifications of the classes of regular languages. The section ends
with a study of computability theoretic properties of canonical algebras. In
the last part, Section 4, we discuss issues related to specifying the classes
of regular languages by using conditional equations with an emphasis on
equations. This approach will lead us to natural interactions between the
equational specifications, formal languages and the theory of effective alge-
bras. Ideologically, our approach in this part of the paper is related to the
approach of Bergstra and Tucker on specifications of abstract data types
from [1]. However, our approach is based on the study of classes of regular
languages rather than abstract data types. As a consequence our defini-
tions, results and questions are obtained in rather different settings (see for
example Comment 1 and Comment 2 in Section 4.2). Finally, in the paper
we will discuss and motivate some of our definitions and theorems and relate
them to known results where possible.

We assume that the reader is familiar with the basics of finite automata,
tree automata, regular languages [9], view of finite automata and tree au-
tomata as finite algebras [2], basics of the theory of universal algebras, e.g.
finitely presented algebra, free algebra, congruence relations [7]. In addition,
we use notions from computability theory [15], e.g. computably enumerable



(c.e.) set, simple set, immune set; and computable algebra [14], e.g. 21—
algebra, II;—-algebra. Many of these notions will be defined as needed. A
related paper discussing complexity issues is [3].

2 Automata with Algebraic Constraints

This section is introductory and provides basic definitions and results. Some
of the results use standard constructions from automata theory but to our
knowledge not explicitly stated in the literature. We present short proofs of
these results to make the paper self-contained and give a basic intuition to
the reader.

2.1 Basic Definitions

In this section, using terminology from universal algebra, we recall defini-
tions of automata, regular languages, and introduce the concept of automata
with algebraic constraints. Throughout the paper we fix the signature
o =< fi,..., fn,C1,-..,¢yn >, where c1,...,c, are constant symbols ,
and fi,..., f, are function symbols. An algebra A of this signature is a
system < A, fi,..., fn,C1,...,¢m >, Where A is a non-empty set called the
domain of the algebra, each f; is an operation on A and each ¢; is a con-
stant that interpret the appropriate symbols of the signature?. The algebra
is finite if its domain A is finite. From now on all algebras we consider will
be assumed to be generated by constants ¢y, ..., ¢, unless explicitly stated
otherwise.

The terms of ¢ are defined by induction: each variable £ and constant
c¢; are terms; if ¢1,...,¢; are terms and f is a k—ary function symbol then
f(t1,...,tg) is a term. The set G of ground terms is the set of all terms
without variables. Each ground term g defines a finite labeled tree %, as
follows: the leaves of the tree are labeled with the constants, other nodes
are labeled with the function symbols, and any node labeled with symbol
f of arity k has exactly k immediate successors. Thus, if g = f(g1,...,9n)
then ¢, can be constructed as follows. The root of the tree is labeled with
f, the root has exactly n immediate successors ordered from left to right,
and each ith successor is the root of the tree ¢y, for i =1,...,n.

2We abuse notation and denote the function (constant) symbols and their interpreta-
tions with the same letters.



Definition 2.1 A language is a subset of the set G of ground terms.

If one identifies the ground terms g with trees ¢, then any language can
be thought as a set of trees. A basic notion of this paper is the following.

Definition 2.2 A finite automaton is a pair M = (A, F) consisting of a
finite algebra A and the set F C A. The elements of A are called states, F
is called the set of final states , and the constants ci,...,c, € A are the
initial states of M. The algebra associated with M is A.

If m =1 then M is of course a standard deterministic finite automaton
over the alphabet {fi,..., fn}-

From now on all automata will be assumed to be finite. Let g be a ground
term and M = (A, F) be an automaton. The automaton M evaluates g in
a natural way: it is simply the value of the term ¢ in A. Procedurally this
can be thought as follows. Think of g as the labeled tree ¢,. The leaves of
tg are values of the constants of the signature in the associated algebra A.
These are the initial states of M. If a node of the tree is labeled with f and
the values of the immediate successors of the node are states si,... s, then
label the node with the state f(s1,...,sx). Thus the automaton works from
the leaves to the root of ¢4, and labels the nodes with states of M. The root
is then labeled with the state which is the value of g in the algebra A.

Definition 2.3 The automaton M = (A, F) accepts the ground term g if
the value of g in A is in F. Let L(M) be the set of all ground terms accepted
by M. The language L(M) is called a regular language.

Any regular language is a decidable language. Moreover, it is known that
the class of all regular languages is a Boolean class, that is closed under the
set—theoretic operations of union, intersection, and the complementation.
Below, using the concept of algebraic constraint, we provide some other
examples of Boolean classes of regular languages.

Definition 2.4 A conditional constraint is the universal closure of a
formula of the type t1 = q¢1 & ... & t, = g, > t = q, where t;,q;,t and
q are terms of the signature. An equational constraint is the universal
closure of a formula of the type t = q, where t and q are terms.

Clearly, every equational constraint is also a conditional constraint. The
idea behind this definition is that we want to consider those automata whose
transitions satisfy constraints which are of algebraic nature. We formalize
this as follows.



Definition 2.5 Let C be a set of conditional constraints and let M = (A, F)
be an automaton. The algebra A is a C—algebra if it satisfies all the for-
mulas from C. The automaton M = (A, F) is a C—automaton if A is
a C-algebra. The language accepted by a C'—automaton is a C—language.
Define R to be the set of all C—-languages.

In order to explicitly distinguish conditional constraints from equational
ones, we use the letter E to denote sets of equational constraints. Thus, by
replacing C with F, one can naturally talk about F-algebras, F-automata,
E-languages, and the class Rg of all E-languages

2.2 Preliminary Results

Let C be a set of conditional constraints. Qur goal is to study the class R¢
of all C-languages. Note that C can be infinite, and moreover, every lan-
guage from R is regular. Also note that R¢ always contains G (the set of
all ground terms) and . We now prove that the class R¢ is a Boolean class.
The proof uses the standard constructions from automata theory for rec-
ognizing the union, intersection, and the complements of regular languages
(see for example [6]), and we present the proof to provide some intuition to
the reader. We also point out that the proof of this theorem uses a well-
known fact from universal algebra that states that any class of algebras that
satisfy a set C of conditional equations is closed under the Cartesian product
operation and subalgebras.

Theorem 2.1 The class Rc of all C-languages is closed under the opera-
tions of union, intersection, and complementation.

Proof. Let L; and Ly be C-languages. There exist finite C—automata
M = (A1, F1) and M, = (A,, Fy) that accept L; and Ly, respectively. Let

al,...,al, and a?,...,a2, be the values of the constant symbols ¢, ...,

"M
¢m in the algebras A; and As, respectively. Consider the Cartesian product
Aj x Ay of the two algebras. This algebra contains the subalgebra generated
by the pairs (a},a?),...,(a},,a?,). Denote this subalgebra by .A. Thus, the
algebra A is an algebra of the given signature. The algebra A satisfies all the
algebraic constraints from C because the algebras A; and A2 do so. Hence A
is a C—algebra. Now consider the following two automata, (A, AN (Fy X Fy))
and (A, AN (F; x A3 U Ay X F»)). Both automata are C-automata. The

first automaton accepts the language L1 () Lo, and the second one accepts



the language L1 |J L. The automaton (A;, A1 \ F1) accepts the complement
of L; and is clearly a C—automaton. The theorem is proved.

We present one more theorem that shows a difference between the classes
of Rc and Rg. The difference exploits the fact that, as opposed to con-
ditional constraints, equational constraints are preserved under homomor-
phisms. Let M = (A, F) be an automaton. A homomorphism of M onto
an automaton M; = (A, Fy) is a mapping h from A onto A; such that h
preserves the basic operations and for all states s € A, s € F if and only
if h(s) € Fy1. Note that in this case M and M; accept the same language.
Equational constraints are always preserved under homomorphisms. Recall
that a minimal automaton for a regular language L is the automaton
with the fewest states that accepts L.

Theorem 2.2 Let L be an E-language. Then a minimal automaton for L
is unique and is an E—automaton.

Proof. The following are known facts (see for example [6]). Any regular
language L has a minimal automaton accepting it. Moreover, the automaton
is unique up to isomorphism. Additionally, any automaton that accepts L
can be homomorphically mapped onto the minimal automaton. So let M;
be the minimal automaton for L. Since L is an E-language there exists an
E-automaton M that accepts L. Since M; is minimal, the automaton M; is
a homomorphic image of M. Thus, M; is an F—automaton since equational
constraints are preserved under homomorphisms. The theorem is proved.

The theorem can not be strengthen by replacing equations with con-
ditional equations. Here is a counterexample. Consider the signature
< fi,f2,¢ >, where f; and fo are unary function symbols. Consider the
language {f{'f3" | n,m € w}. The minimal automaton recognizing this lan-
guage is M = (A, F), where A ={0,1,2}, 0 is the initial state, F = {0, 1},
and f1(0) = 0, f2(0) = f2(1) =1, f1(1) = 2, f1(2) = f2(2) = 2. Let C be
the set consisting of the following conditional equations:

VaVy(f1(f2(0)) = f1(f1(f2(0)) = z =y)
VaVy(f1(f2(0)) = fa(f1(f2(0)) = =z =y).

Clearly M is not a C-automaton. However, the language L is a C-language
and there are two nonisomorphic minimal C-automaton M; = (A;, Fy)
and My = (A, F») accepting L. My = (A, F1) is defined as follows:



A = {0,1,2,3}, 0 is the initial state, F4 = {0,1}, and f1(0) = 0,
f200) =1, fi(1) =2, fo(1) =1, f1(2) = 2, f2(2) = 3, f1(3) = f2(3) = 2.
My = (Ag, F3) is defined as follows: Ay = {0,1,2,3}, 0 is the initial state,
F = {0,1}, and f1(0) = 0, f2(0) = 1, f1(1) = 2, fo(1) = 1, f1(2) = 3,
f2(2) =2, f1(3) = f2(3) = 2.

A natural relation defined by the the set C of conditional constraints is
the following. Ground terms t and g are C—equivalent if the equality ¢t = ¢
can be proved (in the first order logic) from C. We denote C—equivalent
terms ¢ and g by t ~¢ gq. We single out this equivalence relation in the
following definition:

Definition 2.6 For a set C of conditional constraints, define
~c=A{(p,q) | C proves p=q}.
The following lemma follows immediately.

Lemma 2.1 The relation ~¢ is a computably enumerable relation with
an oracle for C. In particular, if C is a decidable set then ~¢ is a c.e.
relation.O

For a set C' of algebraic constraints any C-language possesses a natural
C-closeness property with respect to the relation ~¢. Formally, a language
L is C—closed if for all {,q € G the condition ¢ € L and ¢t ~¢ ¢ implies
that ¢ € L. Thus, any C-closed language is a union of some ~c—equivalence
classes. These considerations now imply the following result.

Corollary 2.1 For any set C of conditional constraints all C-languages
are C'—complete. Similarly, for any set E of equational constraints all E-
languages are E—complete. O

2.3 The Global Structure of Rp—Classes

In this subsection we study the global structure of all Rg—classes, that is,
we investigate the set K = {Rp | F is a set of equational constraints}.
The set K forms a natural partially ordered set £ = (K, C). Informally,
Rg, C Rp, represents the fact that the computations with constraints Fs
are more powerful than those with constraints ;. Here is a simple lemma,
that states several properties of the partially ordered set K.

Lemma 2.2 1. The class Ry is the maximum element of K.



2. Let E = {Vz(t(x) = c1) | t(z) is a term}. Then Rg is the minimum
element of K.

3. If E1 C Ey then Rg, C Rpg, .

Proof. For the first part it suffices to note that the class Ry consists of
all regular languages. For the second part, note that any F-algebra consist
of one element only. Hence any F-automaton recognizes either the set G
of all ground terms or the empty . Thus, Rg = {0, G}. We have already
mentioned that any class R¢ contains () and G. This proves the second part.
For the last part note that any Fs-automaton is an Ej-automaton. Hence
any FEs-language is an Ei-language. The lemma, is proved.

It is not hard to see that it may be the case that E; (N Fo = 0 but
Rg, = Rg,. A trivial example would be Ey = and Ey = {Vz(z = z)}. So
the converse of the last part of the lemma above does not hold true. The
next lemma shows that K is a complete lower lattice, that is any subset of
K has the least upper bound.

Lemma 2.3 Let X be a set of reqular languages. Then there exists a min-
imal class R € K such that X C R.

Proof. Consider the set I = {E’' | X C Rpr}. The set I is not empty
since X C Ry. Let E = Uprc; E'. We want to show that Rg is the desired
class. It suffices to show that Rp = (g Rpr. From part 3 of the lemma
above we see that Ry C Ry for all E' € I. Hence Rg C (per Rer-
Now assume that L € Mgy Rpr. Hence for each E' € I there exists an
E'-automaton M (E') that recognizes L. By Theorem 2.2 we can assume
that M(E') is minimal. By the same theorem, all automata M (E') are
isomorphic to each other. Hence, M(E') is in fact an F—automaton. Hence
L € Rg. This proves the lemma.

From this lemma we conclude that for all Rg,, Rg, € K there exists a
minimal Rg such that Ry, C R and Rg, C Rg. To see this let X be equal
to Rg, U Rg,. We now combine these lemmas into the following theorem.

Theorem 2.3 The partially ordered set K forms a complete lattice, where
for all Rg,,Rg, € K the meet Rg, N Rg, coincides with Rg, (\Rg, and
equals to Rp,uE,, and the join Rg, V Rg, is the minimal Ry that contains
both R, and Rg,. O



3 Specifications by Isomorphism Types

The goal of this section is to provide a purely algebraic specification of the
classes of regular languages defined by equational constraints. We introduce
the notion of relative algebra for a given class Rg and study properties of
relative algebras in relation to the class Rr. We give a precise meaning
to the concept of specification by introducing the notion of character. The
subsection will also show that the class Rg can uniquely be specified by
the isomorphism type of a character called a canonical algebra. We will
also study algebraic and computability-theoretic properties of the canonical
algebras.

3.1 Characters and Canonical Algebras

The set G of all ground terms can naturally be transformed into the following
algebra: for any functional symbol f of arity £ and ground terms ¢4, ..., 1,
the value of f on (t1,...,%x) is f(t1,...,tx). The algebra F thus obtained
is called the absolutely free algebra with generators ci,...,c,. We
recall that an equivalence relation  on F is a congruence relation on F if
for all ay,...,ax,b1,...,br € G and a basic k—ary operation f, the condition
(a1,b1),- - (ag, bi) € 7 implies that (f(a1,.- -, ax), f(bi,- - ;b)) € 1.

Let E be a set of equational constraints. It is not hard to see that
the equivalence relation ~p induced by the equational constraints E (see
Definition 2.6) is a congruence relation of the absolutely free algebra F.
Factorizing F by ~p, we obtain the algebra called the free algebra Fpg
defined by E. The algebra Fp possesses several natural properties. Any
algebra that satisfies £ and whose generators are ci, ..., ¢y, is a homomor-
phic image of F g, and moreover this property defines F g uniquely up to an
isomorphism (see for example [7] and [13]).

Definition 3.1 The algebra F g is an initial algebra for the class Rg.

From the properties of Fr mentioned above, we obviously obtain the
following lemma:

Lemma 3.1 For any E-automaton M = (A, F), the algebra A is a ho-
momorphic image of Fg. Moreover, if Fg, is isomorphic to Fg, then
Rg, = Rg,. O

10



This lemma suggests the idea of specifying the class Rr by the isomor-
phism type of the initial algebra F . This idea does not work because there
are examples of nonisomorphic g, and Fg, such that Rg, = Rp,. In-
deed, take for example two infinite algebras A; and Ay with no nontrivial
congruence relations. Let E; and E5 be the set of all equations satisfied
by A; and Ajg, respectively. Now note that any (finite) E; or Es-algebra
contains exactly one element. Hence Rp, = Rp, = {0, G}. Now we refine
the idea of characterizing the class Rg by the isomorphism types of algebras
by introducing the following new notions.

Definition 3.2 For an algebra A define the set FH(A) to be the set con-
taining the isomorphism types of all finite homomorphic images of A.

For example, consider the algebra A = (w,0,S), where w = {0,1,2,...}
and S(z) = z + 1. Any homomorphic image of this algebra is of the form
Ak =({0,1,...,n,n+1,...,n+k}, ), where f(i) =i+1and f(n+k) =n
fori <n+k—1andn,k € w. Then FH(A) has infinitely many elements and
contains the isomorphism types of the algebras A, ;. The next definition
“identifies” those algebras that have the same finite homomorphic images.

Definition 3.3 Two algebras A and B are relative if FH(A) = FH(B).

Thus, relative algebras can not be distinguished from each other by their
finite homomorphic images. Relative algebras are not always isomorphic, as
for example, any two algebras with no nontrivial congruences are relative.
Now we prove the following theorem that shows usefulness of the notions
introduced.

Theorem 3.1 Two classes Rg, and Rg, coincide if and only if the initial
algebras Fg, and Fg, are relative.

Proof. Assume that the initial algebras g, and F g, are relative. Take
any language L € Rpg,. There exists an Ej—automaton M = (A, F) that
accepts the language. Then A is a homomorphic image of Fg,. Hence A
must be a homomorphic image of Fg, as well. We conclude that L is an Eo—
language. Assume now that Rg, = Rg,. We want to show that FH(Fg,) =
FH(Fpg,). Suppose, without loss of generality, that there exists a finite
homomorphic image A of Fg, which does not belong to the set FH(Fg,).
This implies that there exists an equation ¢(z1,...,xx) = q(z1,...,z) that
is not satisfied in A such that the equation belongs to Es. Let a1, ...,a; be

11



elements in A that make this equation false in \A. There exist ground terms
p1,---,pr such that a; equals to the value of the term p; in A. Let F =
{t(a1,...,an)}. Consider the automaton (A, F). This automaton accepts
the ground term ¢(py,...,px), but does not accept the term g(p1,...,pg)-
Let L be the language accepted by this automaton. Clearly, t(p1,...,px) € L
and q(p1,...,pk) € L. Since Rg, = R, it must be the case that L € R,
as L, by the choice of A, is accepted by an F;—automaton. By Corollary
2.1 the language L is Eo—complete. Therefore g(p1,...,px) must belong to
L since the equality t(z1,...,zx) = g(x1,...,2%) belongs to Fy. This is a
contradiction. The theorem is proved.

Definition 3.4 An algebra A is a character of the class Rg if FH(A)
consists of all E-algebras.

Thus, for example the algebra Fg and, by the theorem above, any al-
gebra Fpr that is relative to Fg are characters of the class Rg. We now
give an example of relative but not isomorphic g, and Fg,. Note that
for these algebras Fy # Es. Let A = (w,0,5,S!), where S(z) = z + 1
for all z € w, and S7}(z) =z -1 ifz > 1, and S™}(z) = 0 if z = 0.
Let Ay = (Z,0,5,57!), where S~! is the reverse of S in Z. Let E; and
E5 be the set of all equations satisfied in A; and Ay, respectively. Clearly
Ey # F3 as S71(0) = 0 holds in A; but not in As. However, both algebras
are relatives and are characters of the class Rg, where E = {VaVy(z = y)}.

The next lemma shows that the notion of a character is complete in the
sense that any algebra can be viewed as a character of some class Rg.

Lemma 3.2 Any algebra is a character for some class Rg.

Proof. Let A be an algebra. Consider the set E(A) of all equations satisfied
by A. Then the algebra A is the initial algebra defined by F(A). Therefore
the algebra A is a character of the class RE( A This proves the lemma.

Corollary 3.1 Any two relative algebras are characters of the same class
of regular languages. Particularly for any E, the initial algebra Fg and any
algebra relative to Fg are characters of the class Rg.

Proof. We note that no algebra can be a character of two distinct
classes Rg, and Rg,. Now in order to prove the corollary, let A and B be
relative algebras. Then A is a character for the class RE( Ay Therefore B

12



is a character of the class RE( A since B is relative to A. This proves the
corollary.

For a given set F of equational constraints, consider the set Ch(Rg) of all
isomorphism types of algebras relative to Fg. A natural question is whether
one can define an algebra in the set Ch(Rg) which, in certain sense, is a
canonical character for Rg. One way to do this is the following. On Ch(Rg)
introduce the relation <;: for all A,B € Ch(Rg), A <p B if and only if
there exists a homomorphism from B onto .A. This relation is a partial order
(because all algebras considered are generated by the constants). The next
theorem shows that (Ch(Rg), <p,) has a unique minimal element. Thus, one
can say that the minimal element is the canonical character of the class Rg.

Theorem 3.2 For any Rg there exists a character Cg of the class Rg such
that every character of the class Rg is homomorphically mapped onto Cg.

Proof. Consider the absolutely free algebra F. Consider the class of all
finite F-algebras. This class coincides with the class of all finite homomor-
phic images of Fg. Let

Ay, A1, Ag . ..

be a list of all these finite algebras from the class. Define the following
equivalence relation ~% on the set G' of ground terms:

Two terms ¢ and g are ~,—equivalent, written ¢ ~%, g, if in the
algebra A; the equality ¢ = ¢ holds for all i3.

One now checks that ~7, is a congruence relation on F. Hence factorizing
F by ~%, we obtain the algebra which we denote by Cr. We want to show
that Cg satisfies the properties stated by the theorem. First we show that
Cg is relative to the initial algebra Fgr. Let B be a finite algebra from
FH(FE). We define a mapping h from Cg to B as follows. Take an a € Cg.
There exists a ground term ¢ whose value in Cg equals to a. Let b be the
value of the ground term ¢ in the algebra B. Then, one can check that the
mapping h(a) = b is a homomorphism from Cg onto B. Now we want to
show that any finite homomorphic image of Cg is also a homomorphic image
of Fg. It suffices to show that Cg is is a homomorphic image of Fg. Since

3Note that this equivalence relation does not necessarily coincides with ~g defined in
Definition 2.6. For example, if Fr contains no nontrivial congruences and is infinite (see for
instance the algebra Fg, provided right after Definition 3.4) then ~%= {(p,q) | p,q € G}
and ~pg, is clearly not equal to ~%.
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F g is the initial algebra for F, it suffices to prove that any equality ¢ = ¢
between ground terms that is true in Fg is also true in Cg. Let t = ¢ be
an equality between ground terms that are true in Fg. Then t = ¢ holds
in every finite algebra A;. Hence, by the definition of ~%,, the terms ¢ and
q are ~'y—equivalent. Hence ¢ = q is true in Cg. Therefore Cg is, in fact, a
homomorphic image of Fg. Hence any finite homomorphic image of Cg is
also a homomorphic image of Fg. This shows that Cp and Fg are relative
algebras.

To prove the second part of the theorem we need to show that any algebra
B relative to Fg can be homomorphically mapped onto Cg. Let b be an
element of B. Take a term ¢ whose value in B is b. Map b onto the value of
the term ¢ in Cg. This mapping does not depend on the choice of t. Hence
there exists a homomorphism from B onto Cg. The theorem is proved.

The following definition is suggested by the theorem above:

Definition 3.5 The canonical character of the class Rg of regular lan-
guages is the algebra Cg which is the minimal element of (Ch(REg), <p).

The next section studies some computational properties of the canonical
characters for certain classes of Rg. The section provides a necessary and
sufficient condition for the canonical character of Rg to coincide with the
initial algebra Fg.

3.2 On Canonical Characters

All the characters of the class Rg of regular languages that satisfy F are
among homomorphic images of the algebra Fg. Thus, the partially ordered
set ({A| A<y Fgr},<p) has the minimal element Cx and the maximal
element Fg. In this section we find conditions when F g coincides with Cg,
and study some computability-theoretic properties of the canonical charac-
ters. To do this, we need to introduce a couple of notions from universal
and computable algebra.

Definition 3.6 An algebra A is residually finite if for all a,b€ A,a # b
there is a homomorphism h of A onto a finite algebra such that h(a) # h(b).

Residually finite algebras are fundamental in the study of universal algebra
and play an important role in classifying and studying algebraic and algo-
rithmic properties of algebraic structures (see for example [7], [8], [13]). We
also refer the reader to an excellent survey [11] that includes results related
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to residually finite algebras. A few results in this subsection will naturally
have an intersection with the results in the papers mentioned. However, in
our study the use of residually finite algebras arises in a different setting and
shows a new dimension of applications of residually finite algebras.

Now we introduce standard notions from computable algebra. Consider
an algebra A of the signature o generated by the constants c, ..., c,. There
is a congruence relation 1 on F such that A is isomorphic to the algebra
obtained by factorizing F by 7.

Definition 3.7 The algebra A is a I1;—algebra if the relation n is a com-
plement of a c.e. set. Similarly, an algebra A is a Yi—algebra if the
relation n is a c.e. set. If A is both a X1—algebra and I1;—algebra then A is
a computable algebra*

Examples of Yi—algebras are the initial algebras Fg for computably
enumerable sets of constraints E. In general, it is not hard to obtain natural
examples of Y;—algebras. These algebras have been studied in computable
algebra, logic as well as in computer science (see for example [14] or [4] or
[16]). We also point out that ¥;-objects (in one or another sense) often arise
in other areas of computer science, computability and logic. For example,
Herbrand models of logic programs are ¥j-objects, Lindenbaum Boolean
algebras of computably enumerable theories (e.g. Peano arithmetic) are
Y.1-objects. However, there has not been much study of II;—objects mainly
because of the small number of natural examples. It turns out that canonical
characters are the source of natural examples of I1;-algebras. Here is a simple
result.

Lemma 3.3 If the class of all finite homomorphic images of Fg is com-
putably enumerable then the canonical character Cg for the class Rg is a
11, —algebra.

Proof. By the assumption, there exists a sequence Ay, A1, As,... of
all finite homomorphic images of Fg such that the set {(z,y) | z,y € 4;}
is computably enumerable. Consider the congruence ~", (see Theorem 3.2)
that defines the canonical algebra Cg. By the definition, ¢t ~%, ¢ if and only
if for Vi(t = q in A;). Therefore 7 is a IIi-relation. We conclude that the
algebra Cg is a II;—algebra. The lemma is proved. O

“In the literature, ¥;-algebras are also called as computably enumerable, semicom-
putable or positive algebras.
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Corollary 3.2 For any finite set E, the canonical character Cg for the class
Rpg is a 1l -algebra.

Proof. The set E is finite. So, effectively list all finite algebras that
satisfy E. These algebras are homomorphic images of Fg. Hence the hy-
pothesis of the lemma above holds true. Therefore Cg is a II;-algebra. The
corollary is proved.

The next theorem gives a criteria as when the partially ordered set ({A |
A <p Fg},<p) has a unique element, that is when Fg = Cg.

Theorem 3.3 For a given class Rg of reqular languages, the initial algebra
F g is residually finite if and only if the algebras Fg and Cg coincide.

Proof. Consider the class Rg. Assume that Fg is a residually finite
algebra. We want to show that the minimal character Cg for the class Rg
is isomorphic to Fg. From the proof of Theorem 3.2, we know that Cg is a
homomorphic image of Fg. Let h be the homomorphism. We want to show
that h is a one to one mapping. Indeed, let a,b be two distinct elements in
Fg. Then, there exist ground terms ¢(p1,...,px) and ¢(r1,...,qs) such that
the values of these terms in the algebra F g are a and b, respectively. Since
F g is a residually finite algebra there exists a finite homomorphic image A;
of Fg in which the images of a and b are also distinct. Therefore the ground
terms t(p1,...,pk) and g(r1,...,rs) are not ~—equivalent, where ~7, is the
congruence relation that defines the algebra Cg (see the proof of Theorem
3.2). Hence the mapping h must be a one to one mapping since h(a) # h(b)
by the definition of ~7.

Assume now that Fg and the minimal character Cg coincide. For the
sake of contradiction, also assume that Fg is not residually finite. Hence
there exist two distinct elements a and b in F g such that in any finite homo-
morphic image of Fg the images of a and b are equal. Let t(p1,...,px) and
q(r1,...,7s) be ground terms whose values in F g are a and b, respectively.
Then the images of these elements in any finite homomorphic image of Fg
are equal. Therefore, by the definition of the equivalence relation ~7%, the
ground terms (p1,...,px) and g(rq,...,rs) must be equal in the algebra
Cg. But this is not possible because Cr and F g coincide. Contradiction.
The theorem is proved.

Corollary 3.3 For any finite set E, if the initial algebra Fg is residually
finite then the minimal character Cg of the class Rg is a computable algebra.
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Proof. The initial algebra Fr and the canonical character Cg are iso-
morphic. Since F is finite, Fg is a 31-algebra. By Corollary 3.2 the canon-
ical character Cg is a II;—algebra. So, the algebra F g is both a ¥;—-algebra
and II;-algebra. Hence Fg = Cg, and Cg is a computable algebra. The
corollary is proved.

4 Equational Specifications

In the previous two sections we introduced the notion of character as a tool
to specify a given class Rg. This is an algebraic approach to the specification
problem of the class Rg. As a dual to this algebraic approach, one can study
the specification problem from computational and logical points of view as
well. By its essence the isomorphism types of algebras are infinite objects.
Therefore from a computational point of view it is quite natural to ask
whether or not a given class of (regular) languages has some sort of finite
formal specification. This sections deals with the question related to finding
finite specifications for classes of regular languages from a logical point view.

4.1 Finite Equational Specifications

Let R be a class of regular languages. We would like to specify R by giving
a finite definition to R using a formal system (e.g first order logic). For
instance, assume that R consists of all languages recognized by automata
of signature < f1,..., f, >, where all f; are unary, so that the automata
can process the input symbols f; and f; at any given state with the same
result. This class of regular languages can then be specified by the formula
Vo (£i(£(2)) = £3(filx))-

There are two approaches in trying to find formal specifications of a
given class Rg. The first approach consists of finding an E’ such that E and
E' have the same proof-theoretic power, that is ~g=~ps. This essentially
corresponds to the algebraic specification problem of Bergstra and Tucker
[1] on specifying the algebra Fp without adding any additional sorts or
expanding the original language. Of course if an E’ is found such that
~p=~pg, then R = Rp. We single out such specifications in the following
definition.

Definition 4.1 The pair (Rg,E) has a a finite specification if there
exists a finite E' for which ~p=~pg.
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Clearly, this definition is primarily concerned with preserving the proof-
theoretic power of E by finite means. The second approach consists of
weakening this condition. Thus, for a given class Rg of regular languages
we would like to find a finite E' such that Ry = Rp. We formally define
this approach in the following definition.

Definition 4.2 The class Rg has a finite specification if for some finite
set E' of equational constraint we have Rgp = Rpr.

Thus, the former definition is essentially a definition that requires the
initial algebra F g to be finitely presented in the variety of algebras satisfying
the equation E. The latter definition weakens the former one and basically
requires some relative of Fg to be finitely presented. It is not hard to
find a pair (Rg, F) without any finite specification so that Rp has a finite
specification. For example, take a non Xji-algebra A without nontrivial
congruence relations. Let E be the set of all equations true in A. The pair
(Rg, E) does not have a specification (as Lemma 4.2 below shows) while Rg
has a finite specification, e.g. {VzVy(z = y)}.

We present one simple example. Let R be the class consisting of all
languages recognized by automata of the type M = (A, F'), where A is an
algebra of the form ({0,1,...,n —1},0,5,+, x) with the mod(n) addition
+ and the mod(n) product x operations. Then a finite specification E of
this class R consists of the following equations:

z+0=uz;
z+5(y) =Sz +y);
z x0=0;

zxSy)=z+zxy.

Below we provide a theorem that gives examples of classes that have
finite specifications. But first we need the following lemma. Recall from the
previous section that F(A) is the set of all equations true in A.

Lemma 4.1 Let A be a finite algebra, and E(A) be the set of all equations
satisfied by A. Then the pair (RE(_A),E(.A)) has a finite specification.

Proof. To prove the lemma we introduce the notion of height h(t) for

ground terms ¢. The height is inductively defined as follows. The height
of any constant term ¢, h(c), is 0. If the heights h(t1),. .., h(ty) have been
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defined, then A(f(t1,...,tm)) = maz{h(t;) | i =1,...,m} + 1. Since the
algebra A is finite, it is not hard to see that there exists a minimal s such
that every term of height s equals, in the algebra A, to a term whose height
is less than s. The number of terms of height < s is finite. Define

E' ={t=q| h(t),h(q) < s and the algebra A satisfies the universal closure
of the equality ¢t = g}.

Note that E’' is finite. Now F g is isomorphic to the algebra A. Therefore
~pA)yT B The lemma, is proved.

Theorem 4.1 For any finite set X of regular languages, the minimal class
R(X) € K that contains X has a finite specification.

Proof. Note that by Lemma 2.3 the class R(X) exists. Let X =
{L1,...,Lg}. Consider the minimal automaton M; = (A;, F;) that accepts
L;, 1 =1,... k. Consider the congruence relation nx on F defined as fol-
lows: (t,q) € nx iff t = g in A; for all ¢ = 1,...,k. Let F(X) be the
algebra obtained by factorizing F by nx. The algebra F(X) is the min-
imal algebra with respect to <; in the class of all algebras A such that
{Ai,..., A} C FH(A). Note that F(X) is isomorphic to the subalgebra B
generated by the constants of to the Cartesian product A; X...x A because
(t,q) € nx if and only if £ = ¢ holds in A; X ... X Ag. Hence F(X) is finite.
Thus, from the lemma above we conclude that the theorem is proved.

Now we provide some simple facts that give us necessary conditions for
a class Rp or pair (Rg, F) to have finite specifications.

Lemma 4.2 For a class Rg the following are true:

1. If the pair (Rg, E) has a finite specification E' then the algebra Fg
1§ a Xy—algebra. Moreover, if Fg is residually finite then Fg is a
computable algebra.

2. If Rg has a finite specification then the set { A | A is an E-algebra}
is decidable. Hence the canonical algebra of R is a Il1-algebra.

Proof. For part one, note that the algebras Fg and F g are isomorphic.
Since E' is finite, the congruence relation ~p is a c.e. relation. Hence the
algebra Fg is a Y1—algebra. If Fg is residually finite then, by Corollary 3.3,
the algebra Fg is computable.

19



For part two let Rg = Ry for some finite E'. Then a finite algebra is an
E-algebra if and only if it is an E’-algebra. Checking whether or not a finite
algebra satisfies E' is clearly decidable. The rest is proved in Corollary 3.2.
The lemma is proved.

Corollary 4.1 If (Rg,E) has a finite specification and Fg is not com-
putable then Fg is not residually finite. O

The results above lead us to the following question. Does the pair
(Rg, F) have a finite specification if the initial algebra Fg is computable
and residually finite? The theorem below answers the question.

Theorem 4.2 There exists an E such that Fg is computable and residually
finite but the pair (Rg, E) does not have a finite specification.

Proof. Consider the signature is < f1, f2,c >, where f1, fo are unary
function symbols. Define the congruence relation n on F as follows: itng
iff t = q or h(t) = h(q) = 2" for some n. It is not hard to see that the
algebra A, obtained by factorizing F by 7, is computable. Moreover, one
can check that A is a residually finite algebra. Consider £ = E(A), the
set of all equations true in A. We claim that the pair (Rg, E) does not
have a finite specification. To show this we analyze the equations true in
A. Let the universal closure of the equation ¢ = ¢ be true in A. Then, from
the definition of A, one can see that h(t) = h(g). Suppose t and g contain
variables z and y, respectively. So we write #(z) and ¢(y) instead of ¢ and q.
Then z = y, otherwise, as easily seen, the equation would not be true in A.
We claim that if z = y then the terms ¢ and ¢ are in fact (syntactically) equal
terms. There exists an n such that the height of ¢ and ¢ are equal to 2".
Otherwise, the equality ¢(c) = g(c) would not be true in the algebra. Let m
be any positive number less than 2"t!. Then, since the universal closure of
t(z) = q(z) is true in A, the equation t(f]"(c)) = ¢(fi"(c)) is also true in A.
By the definition of A, this is not possible. Also, it is not the case that only
one of the terms ¢, ¢ contains a variable. Now assume that for some finite E’
we have Fp = Fpgr. Then, as we have already proved, we can assume that
no equation ¢t = ¢ in E’ contains a variable. Set s = maz{h(t)|t = ¢ € E'}.
Let » = 2. Then the equality f](c) = f3(c) can not be derived from E’.
This is a contradiction. The theorem is proved.

It turns out that the class Rg constructed in the proof of the theorem
above gives us a stronger statement.
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Corollary 4.2 There exists a class Rg without a finite specification so that
the canonical character Cg is computable and residually finite.

Proof. Consider F defined in the theorem above. Assume that for some
finite £/, R = Rp/. Then it must be the case that ~p C~pg. Hence for
all (t,q) € E', the height of ¢ equals to the height of ¢q. Since E’ is finite
there exist two terms t,q such that (¢,q) ¢ E' but (¢,q) € E. Then there
exists a homomorphic finite image of F g in which ¢ and q are also distinct.
Hence F gy is not relative to Fg. Therefore Rg # Rp» by Theorem 3.1. The
corollary is proved.

4.2 Expansionary Specified Classes

Theorem 4.2 and its corollary show that it is not always possible to find
a finite specification for a class Rgr even when the initial algebra Fpg is
computable and residually finite. This motivates us to consider the idea
of refining the notion of finite specification. We do this by considering
expansions of the original language with the goal of increasing the expressive
power of our language®. An expansion of the signature o is obtained by
adding finitely many new function symbols to the signature. The goal here
is to have more powerful language than the original one and thus to attack
the specification problem by means of additional tools but within the first
order logic. These tools are new functional symbols and their interpretations
in algebras. If A is an algebra of o then by taking interpretations of the
new function symbols in the domain A, we obtain a new algebra B which is
called an expansion of A. Then the original algebra A is called a c—reduct
of the expansion. Thus, one can think of new functions as those that were
hidden from us when we used the original language

Definition 4.3 Let o1 be an expansion of the signature o. Let E, Ey be
sets of algebraic constraints of the signatures o, o1 respectively. Then Rpg,
is a refinement of Rg if R, s infinite and the o -reduct of any E;—algebra
is an E-algebra.

The basic motivation for this definition is to give a finite specification
for an infinite subset of Rp by using an expansion of the original signature

5We note that considering expansions of the original language is a standard and power-
ful method often used in classical model theory, modern finite model theory, computable
model theory and algebra, and the theory of algebraic specifications.
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in case when Rg can not be specified in its own language. In other words,
the aim is to weaken the original specification problem for classes of regular
languages in two ways. On the one hand, we allow to use expanded signature,
and hence to possess more syntactic and expressive power. On the other
hand, instead of trying to specify the whole class Rg we would like to choose
a non-trivial and sufficiently rich (that is infinite) subclass of Ry that can
be specified in some expanded signature. We now formalize this concept in
the following definition:

Definition 4.4 A class Rg of regular languages is expansionary spec-
ified if there exists a refinement Rg, of Rg such that Rg, has a finite
specification.

Thus, our specification problem asks whether or not a given class Rg of
regular languages possesses an expansionary specification. From this defini-
tion we obtain the following proposition that gives us a necessary condition
for a class Rg to have an expansionary specification.

Proposition 4.1 If Rg is expansionary specified then there exists a 31—
algebra which is initial for some refinement of Rg. O

In relation to the introduced concepts, we would like to make the follow-
ing two comments.

Comment 1. In [1] it is proved that for any computable algebra A there
exists an expansion A* of A so that A* is isomorphic to Fg for some finite
set F of equations of the expanded signature. We do not know whether or
not this result can be strengthen so that every algebra in FH(A) is a reduct
of some algebra in Fg. Such strengthening would require constructing ex-
pansions of A which preserve the structure of congruences of finite index
of the algebra A. This of course would show that any class Rg of regu-
lar languages which has a computable character can have an expansionary
specification.

Comment 2. In light of the result mentioned in the comment above,
in [1] Bergstra and Tucker pose the problem as to whether or not any ;-
algebra A can have an expansion A* so that A* is in fact the initial algebra
of some finite set E of equations in the expanded language. In [10] and [12]
this problem is solved negatively by using computability-theoretic arguments
and constructions. OQur specification problem for the class R is significantly
weaker than that of Bergstra-Tucker. Therefore a counterexample to our
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specification problem is harder to provide. In the next section, however, we
provide such a counterexample. The ideas used in the counterexample are
similar but more elaborate than those provided in [10] and [12].

4.3 A Counterexample

We fix the following signature ¢ =< fi, fo,c >, where fi, fo are unary
function symbols and c¢ is a constant. We now provide some notions from
computability theory. An infinite subset of the set G of ground terms (of
signature o) is immune if it contains no infinite c.e. subsets. A c.e. set
X C G with immune complement X is called simple. Simple sets exist, see
for example [15]. A subset X of the set G of all ground terms is a weak
subalgebra if fi(z), fo(x) € X for all z € X. Note that in case ¢ € X for
a weak subalgebra X then X = G.

Any weak subalgebra X of the algebra F = (G, f1, f2, ¢) of ground terms
defines a congruence relation 7(X) as follows:

(tl,tg) € ’f)(X) iff t1,t0 € X Vi1 = to.

We denote the factor algebra defined by this equivalence relation by Ax. A
weak subalgebra X is simple if X is a simple set.

The next lemma shows that simple weak subalgebras exist. In the proof
of the lemma we use the following notation. Let Y be a subset of the set
G. Consider CI(Y) which consists of all terms which have subterms from
Y. Thus, it is easy to see that

Cl(Y)={t(y) |y €Y andtis a term with one variable z}.
Clearly, CI(Y') is a weak subalgebra of F.

Lemma 4.3 There exists a simple weak subalgebra of F.

Proof. Let Wy, W1, ... be a standard enumeration of all c.e. subsets of
G. We construct the weak subalgebra X by stages. At stage s we define
a set X, then put X = |J, X;. In order to construct the desired weak
subalgebra we need to satisfy the following list of requirements:

Ri: W[\ X #0,

where i € w, W; is infinite and W; ¢ X. We say that the requirement R;
attracts the attention at stage s if

Wis[1Xs =0 and Wi, # 0.
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Here is now the construction of X. At the initial stage, Stage 0, we set
Xo = 0. At Stage s we proceed as follows. Assume that X;_; has been
constructed. Find the minimal R;, ¢ < s, that requires attention. Take the
first term t € W; 5 such that h(t) > i+ 1, and set X, = Cl(X,_; U{t}). Go
to the next stage. If no ¢ < s requires attention then go to the next stage.
This ends the construction at this stage.

Let X = J, X;. Clearly, X is computably enumerable.

It is not hard to see that for each 7 there is a term ¢ ¢ X of length ¢ + 1.
Therefore the complement X of the set X is infinite. If X is not simple,
then take the minimal ¢ for which W; C X and W; is infinite. Consider
the stage ¢, after which no r;, j < i, requires attention. Then there must
exist a stage s > ¢ at which r; requires attention. Hence W; ;| X # 0, and
therefore W; (X # () which is a contradiction. We conclude that the set
X is simple. By the construction, the set X forms a weak subalgebra. The
lemma, is proved.

No we are ready to prove a theorem that provides a counterexample to
our specification problem.

Theorem 4.3 There exists a class Ry which has the following properties:
1. The initial algebra Fg for the class is a ¥1-algebra.

2. The class Rg has no expansionary specification.

Proof. Consider the absolutely free algebra F of the signature o =<
f1, f2,¢ >. Let X be the weak subalgebra X constructed in the lemma.
Define the following c.e. congruence relation n = {(¢,q) |t =q or t,q € X}.
Take the algebra A obtained by factorizing F by 7. Define E = E(.A), where
E(A) is the set of all equations true in A. Now our goal is to show that Rg
is the required class.

Note that the congruence relation 7 that defines A is a c.e. relation.
Therefore F g is a ¥;1-algebra. This proves the first part of the theorem.

To prove the second part we need some notions. Let f be a basic n—
ary operation of an algebra B. A transition of B is any of the mappings
flar,...,apn—1,2), ..., f(z,a1,...,an—-1), where a1,...,an,—1 € B are fixed.
Let Tr(B) be the algebra whose basic operations are all transitions of B.
Then any binary relation « is a congruence relation of B if and only if « is
a congruence of the algebra T'r(B) (see for example [7]).
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Assume that there exists a refinement Rp, of Rg which has a finite
specification. Hence there exists a finite E’' such that Ry = Rp. Let
A" = (A, f1,..., fn) be the initial algebra Fpr defined by E'. Since E’
is finite, the algebra A’ is a ¥j-algebra. It is not hard to see that the
< f1, fa,¢ >-reduct A. of A’ is a homomorphic image of A because A/
satisfies all the equations from F. Let ¢ — ' be the homomorphism from
F into Al. Let X' be the image of the weak algebra X in A', and Y be
the preimage of X’ in the algebra F. The set Y is a c.e. superset of X and
therefore is simple. Thus, for any ¢ ¢ X' the set of all ground terms g equal
to ¢ in A’ is finite.

Our goal is to show that A’ is residually finite. This would lead to a
contradiction, as in this case by Corollary 3.3, the algebra A’ would be
computable.

In order to prove that A’ is residually finite consider an effective list
Fy, F1, ... of all transitions of the expanded algebra A’. Consider the tran-
sition algebra of Tr(A’). As noted above, it suffices to prove that T'r(A")
is residually finite.

Let ¢i,t, ¢ X' such that t| # t|. We will show that there exists a
finite set S’ in the complement of X' such that ¢},t, € S’ and the relation
eq(S") ={(«',y") | z,y € G\ S}U{(¢',v') | z = y} induces a congruence of
the transition algebra Tr(A’).

If such a set S’ exists, then the mapping h : t' — {s' | (', s) € eq(S")}
will be a homomorphism from A’ onto a finite algebra in which h(t}) # h(t}).

To prove that there exists a set S’ with the above properties we need to
make several notes. Fix a term u € Y, a transition F}, and a finite §’ C X".
Let S be the set of all ground terms ¢ such that ¢ € S’. Note that S is
finite. If F;(u') ¢ S’ then {t | F;(¢) € S’} C Y. This set of ground terms
is computable and hence, since Y is immune, is finite. If F;(u’) € S’ then
F;(q") = F;(u') for all ¢ € Y, and again the set {t | F;(t') # F;(u')} of ground
terms is computable and hence is finite.

Note the following fact. Let S’ be a subset of the complement of X'.
The equivalence relation eq(S’) = {(',v') | z,y € G\ S} U{(«, ) | z =y}
is a congruence for the transition F; if and only if for all ' ¢ S’ we have the
following: a) F;(u') € §' if and only if F;(¢') = F;(u'), and b) F;(u') ¢ S’
if and only if F;(¢') ¢ S'.

Now we give a stagewise construction of S'. At Stage 0 we let Sy =
{t|,ty}. Clearly Sy C Y and is finite. Stage j + 1 proceeds as follows.
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Suppose that S} has been constructed and S; C X'. Consider the transitions
Fy,...,Fjy1. For each i < j + 1, consider Fj(u'). If Fi(u') ¢ S, then let
Siv1s = S;U{t' | Fi(t') € 8j}. Otherwise, let S7,,,; = S;U{t' | Fi(t') #
Fi(u')}. Define S}y = Siq0U...USj;q 41 Clearly Sj11 C Y, and at
this stage we can effectively contract an algorithm to decide S;11.

By the remarks given before the construction, the set S = (J;S; is a
finite subset of Y. There exists a stage jo such that S = S;;. The terms
t1 and t2 belong to S. We have to show that eq(S’) induces a congruence
relation for every transition F;. It suffices to prove that if ¢ does not belong
to §', then (F;(u'), F;(t')) € eq(S’). Consider any stage j > jo. Suppose
that Fj(u') ¢ Sj. Then Fj(u') ¢ S}, otherwise v’ € S} and hence Sj, # Sj.
Similarly, if F;(u') € S7, then F;(t') = Fj(u'), otherwise t' € S} and hence
S, # Sj. Thus, the homomorphism % defined by h : ¢t — {s' | (¢,s') €
eq(S")} maps A’ onto a finite algebra in which h(t}) # h(t}). Thus, A’ is
residually finite. The theorem is proved.
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