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Abstract

A classic area of application for variable-
length codes is data compression. This paper
looks at a class of variable-length codes, the
T-codes, that have been noted for their self-
synchronisation properties. While the coding
efficiency of T-codes is less than or equal to
that of Huffman codes, no simple algorithm
for the construction of T-codes from a given
set of source symbol probabilities has been de-
veloped so far. To date, the only approach
to finding the most efficient T-code set for a
given source seems to be an exhaustive search,
which to date has been too complex to be of
much practical value. This paper describes
some shortcuts for this search and presents
recent improvements that yield a much lower
computational complexity.

1 Introduction

This paper assumes the following situation: an in-
formation source emits a finite number N, of distinct
source symbols o;, where i = 1... N, in a continuous
stream. P(o;) denotes the probability that the next
source symbol emitted by the source is ¢;. Each o;
is assigned a unique variable-length codeword z(c;)
from a prefix-free code set C € S*, where S is an
alphabet and ST denotes the set of all finite, non-
empty strings formed over that alphabet.

The expected redundancy r of this encoding is
given by the difference between the weighted mean
of the codeword lengths of the encoded source and
the source’s entropy (cf. Shannon [1]):

r= ZP(O’,) [|.’L'(O'z)| + 1Og;!;ES P(Ui)] (1)

We further assume that P(o;) is independent of
previously emitted symbols — an assumption that
does not hold in many practical cases. Still, in many
cases this presents a fair approximation and signifi-
cant compression gains may be achieved by minimis-
ing r.

Huffman [2] introduced his now famous algorithm
for the construction of a prefix-free variable-length
code with minimal redundancy, assuming such a sim-
ple source coding model. His algorithm has found
many practical applications. It is used in the pack
command under UNIX and for the compression of
DCT coefficients in the popular JPEG image com-
pression algorithm.

The Huffman algorithm starts with given source
probabilities P(o;) and yields a variable-length code
set over S with minimal r. This code set is generally
not the only possible one that minimises . One of
the reasons for this is that r does not depend on the
code itself, but merely on the code length distribu-
tion, i.e., the histogram function of codeword lengths.
This is a result of the |z(o;)| term in Equation (1).
Codes that share the same code length distribution
are hence equivalent in the sense of Equation (1).



Capocelli, Giancarlo, and Taneja [5] presented
bounds on the redundancy of Huffman codes. Sim-
ilar work was also undertaken by Gallager [3] and
Johnsen [4].

Another class of variable-length codes, the T-
codes, are of particular interest under the aspect of
code self-synchronization.

2 T-Codes

Generalized T-codes [7, 8, 13] are a recursively con-
structed class of variable-length codes.

Depending on the source symbol probabilities, a
Huffman code may also be a T-Code. In fact, any T-
Code set could theoretically have been constructed as
a result of a Huffman code construction algorithm.

However, rather than letting the source symbol
probabilities determine the length of the codewords
and the structure of the decoding tree, T-Codes are
constructed with no regard to symbol probabilities.
Their construction focuses instead on a recursive tree
structure.

A T-Code set is constructed as follows:

1. Start with the alphabet S. Every finite alpha-
bet is a (trivial) T-Code set by default, with the
letters being primitive codewords.

2. Given a T-Code set, another T-Code set may
be derived from it by a process called “T-
augmentation”. This involves picking a code-
word from the existing T-Code set, which is
called the “T-prefix”, and a positive integer
called the “T-expansion parameter”. Any T-
Code set may thus be derived from an alpha-
bet in a series of n T-augmentations using a se-
ries of T-prefixes pi,po,...,p, and a series of
T-expansion parameters kq, ks, . .., k, (now also
called “copy factors”[14]). The resulting set is

denoted S ((ﬁll ’IIZ ’.'.'.";:")) and is said to be a T-Code

set at “T-augmentation level” n.
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Figure 1: T-augmentation as a copy-and-append pro-
cess of decoding trees

The T-augmentation itself is performed according
to the following equation:
(klkaa"'akn+1) —

(P1,p2,--sPnt1)
kn+1

i k1,k2,....kn kn
U {psrsls € SiekeF N\ {p, 13} U {pa'}
=0
2)
where 58 =8.

That is:

1. select a T-prefix p,4+1 from the existing set
((Iljll 71’;2 - ’,If:)) , which has been derived from an al-

phabet S by n > 0 T-augmentations.
2. select a T-expansion parameter k41 > 1.
3. make k, 41 additional copies of the decoding tree.

4. Successively concatenate the new copies and the
original of the tree via the T-prefix chosen, i.e.,
the root of the first copy attaches to p,41, that
of the second copy t0 pnp41Pn+1, €tc.

Figure 2 depicts the construction of the T-code set
S((i’ll())). In the first T-augmentation in this example,
two new copies of the tree for S are made, and the two
new copies are linked to each other and to the original
tree via the respective leaf nodes corresponding to the



codeword 1 in the original and the first of the two new
copies. The second T-augmentation links a new copy
of the tree for S((f)) to the original tree via the leaf
node 10.

Note that the above construction pays no attention
to coding efficiency, although the choice of T-prefixes
and T-expansion parameters permits the construc-
tion of a wide range of sets with varying code length
distributions.

3 T-Codes vs. Huffman Codes

Whereas the Huffman algorithm guarantees mini-
mal r and is constrained only by P(c;), the T-
augmentation algorithm makes no obvious provision
for P(o;) to influence the construction process and
gives no guarantee of a minimal r [13]. However, it
does guarantee good synchronisation performance of
the resulting code set. Thus, there is often a trade-
off between self-synchronisation and efficiency when
a T-code set is used for source coding.

If one wishes to use T-codes in a compression ap-
plication in order to exploit its synchronisation prop-
erties, one cannot use the Huffman algorithm in most
cases. Unfortunately, there is no known simple algo-
rithm for T-codes that permits the selection of the
T-code set with the lowest possible redundancy.

This poses the question as to how we may find a
T-code set with minimal r for a given source.

For many practical applications it may be sufficient
to simply soften the criterion somewhat and look for a
T-code set with a “small” r, rather than the smallest
r achievable.

Mark Titchener [15] suggested such an approach.
It exploits the fact that the largest efficiency gains
are made with the shortest codewords. He proposes
to encode the source as a Huffman code to obtain
an optimal codeword length distribution. Starting
with the shortest codewords in that distribution, one
must then try to construct a T-code set that matches

it closely.

This may be well justified in a number of practi-
cal situations, e.g., where only approximate source
statistics are known and the additional inefficiency
would be small compared to the errors in the symbol
probabilities.

In another approach, Gavin Higgie presented a
database of “best T-codes” in 1996 [9]. While it does
address the issue of coding efficiency, it restricts it-
self to simple T-codes, i.e., T-code sets for which all
T-expansion parameters are set to 1. However, the
generalized T-codes used here give rise to a much
greater range of code length distributions. Hence,
they can often provide a more efficient encoding for
a given source.

To date, the only strategy for finding a T-code set
minimal r that has been identified is to perform an
exhaustive search of all feasible code length distri-
butions. This approach was first presented by the
author in [8] and [13]. This paper presents a much
improved version of the algorithm in [13].

4 The Search Algorithm

The search algorithm presented here operates mainly
as a recursive “divide-and-conquer” algorithm. This
section discusses the general structure of the algo-
rithm, whereas the next section takes a detailed look
at the techniques used.

The basic idea behind the algorithm is the follow-
ing: each potential T-code set may be regarded as a
node in a tree. The tree’s root is the alphabet that
the sets in the tree are based on. Each branch in the
tree represents a particular T-augmentation of the
T-code set represented by the node the branch orig-
inates from. The T-augmentation that the branch
represents uses a distinct pair of T-prefix and T-
expansion parameter. Finding the most efficient (i.e.,
lowest redundancy) set in the tree requires us, in prin-
ciple, to traverse the tree exhaustively, i.e., we must
visit each node, calculate the redundancy of the as-



sociated T-code set with respect to the given source,
and keep a record of the set with the best redundancy
that we have found in the process.

This is only feasible if we have criteria that limit
the number of nodes in the tree, which would other-
wise be infinite. We will discuss these criteria in the
next section.

One simplification, however, is so important that
it deserves an immediate mention: Since the code
length distribution determines the redundancy, we
can simply use codeword length distributions as
nodes rather than full T-code sets. As a result, we
must also prescribe codeword lengths to use as T-
prefixes for each T-augmentation, rather than actual
codewords. As there is often more than one codeword
of a given length in a T-code set, several sets result-
ing from T-augmentations with these codewords map
to the same distribution. This reduces the number of
nodes in the tree significantly, especially since the
savings accumulate over several T-augmentations.

The basic algorithm is depicted as a flow chart in
Figure 2.

It is a “breadth-first” algorithm, i.e., it traverses
all distributions at a given T-augmentation level first
before it continues investigating the distributions at
the next higher level. In principle, it works as follows:

1. Initialisation: sets up global parameters such as
the variables for recording the best code length
distribution d; and best redundancy r(dy) = oo
found so far. It also sets the “seed” code length
distribution dg of the alphabet (i.e., #S code-
words of length 1, zero codewords for all other
lengths) and uses it as the base distribution for
the recursive generation and investigation of the
T-augmented distributions. The distribution dg
and all other code length distributions used in
the algorithm also include T-prefix length and
T-expansion factor vectors P and K, which are
empty in the case of §g. dg is then added as the
first element to a previously empty queue.

2. Recursive matching. While the queue is non-

( START )

!

Initialize empty queue with
alphabet distribution dg = (#5);
include T-prefix list P = () and
T-expansion factor list K = ()

Queue empty?

Fetch next job §
from front of the queue
¥
Calculate redundancy r(6) of &

Set rp := r(d);
and 5,, =4
as best set
¥
Loop through all feasible T-prefix
lengths from § and through
T-expansion parameters to find
feasible combinations < p, k >
¥
For each combination < p,k >,

“virtually T-augment” § with p
and k to get distribution §’. Add
¢’ to queue with new P and K.

[
—»@eturn dp and P, K for best se‘D

Figure 2: Outline of the breadth-first matching algo-
rithm




empty, the algorithm fetches the first element,
which we call 4, from the front of the queue. ¢
includes the codeword length distribution as well
as a T-prefix length vector P and a T-expansion
parameter vector K that describe how the dis-
tribution was arrived at. The procedure then
calculates the redundancy r(d) associated with
the element’s base distribution §. If #§ < N,
we may define r(§) := oo. If the redundancy
of §, r(d), is smaller than the best redundancy
r(dp) found so far, then § is the best match for
the source to date and we need to update the
global records on r(dp) and the best redundancy
set.

The algorithm must now investigate whether a
T-augmented version of § could yield an encod-
ing with lower redundancy. Starting with the
shortest available T-prefix length in §, the proce-
dure loops through all combinations of available
T-prefix lengths p and T-expansion parameters k
that meet the feasibility criteria that we have yet
to discuss (see below). For each feasible combi-
nation < p, k >, it creates a new code length dis-
tribution §' corresponding to a T-augmentation
from the base distribution §, with new T-prefix
length and T-expansion parameter vectors (P, p)
and (K, k). In order to adhere to the breadth-
first paradigm, ¢’ is added as a new element to
the back of the queue. Any distributions thus
obtained are used by the procedure as the base
distributions for recursive calls to itself. The al-
gorithm then proceeds to fetch the next element
from the front of the queue until the queue is
empty.

3. At the end of the algorithm’s run, all feasible
distributions have been generated, and the best
achievable redundancy is known. A set of T-
prefix lengths and T-expansion parameters for a
code set with this redundancy is also returned.

Why breadth-first? The above algorithm was
implemented initially both as a depth-first algo-
rithm [13], and as a breadth-first algorithm. In the
depth-first algorithm, any new candidate distribution

resulting from § is investigated immediately rather
than added to the end of a queue. Only once its
branch of the tree has been exhaustively investigated,
execution returns to the base distribution and the
next T-prefix length/T-expansion parameter combi-
nation for it is investigated. In its raw version, this
approach seemed to outperform the breadth-first al-
gorithm described above. However, recent improve-
ments to the latter have led to a breadth-first imple-
mentation that is significantly faster than the depth-
first algorithm in most cases. We will return to that
topic later in this paper.

5 Feasibility Criteria and Sim-
plifications

This section discusses the techniques that are used to
ensure that: (a) the search algorithm terminates, (b)
the search of multiple equivalent code length distri-
butions is avoided, (c) the code length distributions
are restricted to codeword lengths of interest, and
(d) that code length distributions that cannot yield
a minimum redundancy are avoided, if possible.

5.1 Virtual T-Augmentation

As mentioned before, rather than searching for a
“best set”, we may restrict ourselves to searching
for the best distribution and a “recipe” that permits
the construction of a set which features that distribu-
tion. For this purpose, the algorithm uses a technique
called “virtual T-augmentation”.

Let 6c denote the code length distribution function
of a code C, such that dc(l) denotes the number of
codewords of length [ in the code set C, and define
dc(l) =0 for I <0. Then

[ #S ifl=1
0s(l) = { 0 otherwise

3)



and

8 gk kanknin) (1) =
(P1,P2,-->Pn+1)

5S(k1,k2 ..... k,.)(l) -1 ifl = |pn+1|

4
Sggessnr s = Ky Ipgal)
(P1,P2:---> Pn)
otherwise

n+1:0

The last equation defines the virtual T-augmentation.
Note that only the length of the T-prefixes plays a

role here — if §k1:k2owkn)
(p17p27"'apn)

codeword of the intended T-prefix length |py, 41|, then
5S(k1,k2 ..... kn+1) (1) does not depend on which of these

contains more than one

is chosen as the T-prefix in a corresponding “real”
T-augmentation. On the other hand, the choice of
T-expansion parameters has a significant influence on
1) (k1,k2,..., En+1) (l)

(P1,P2,---> Pn41)

Virtual T-augmentation permits us to manipulate
T-code set code length distributions rather than full
sets, which is exactly what is required if we wish to
minimise the redundancy r.

5.2 Avoiding Multiple Equivalent T-
Prescriptions

As mentioned before, two code sets will have the
same redundancy r if they have the same code length
distribution. Hence, it is sufficient to generate the
code length distribution for just one such set to ob-
tain r for all sets having the same distribution. In
particular, two T-code sets share the same distribu-
tion if they have been generated by equivalent sets of
T-prefixes and T-expansion parameters. These sets
of T-prefixes and T-expansion parameters are called
T-prescriptions [6, 12, 13]. If we use different T-
prescriptions for the same set, we are also generating
the same distribution for the same set.

An obvious way of preventing this duplication of
distributions is to specify that all set T-prescriptions
must be in their anti-canonical form [6, 12, 13], i.e., to

demand that the T-expansion parameters used must
be one less than a prime number. Since the number of
primes in any larger finite interval of IN is significantly
less than the number of natural numbers in that in-
terval, this constraint saves a significant amount of
computation.

5.3 Non-Decreasing T-Prefix Lengths

A further way of eliminating duplicate code length
distributions is to use T-prefixes in ascending order
of length:

Consider the form of codewords in S((ﬁll ’;“22’.'.'."5")) as
presented in Theorem 4.2.3 in [13],
kl k! _ k'

xzpn pnfll“‘pllké)’ (5)

and the form of the associated pseudo-T codewords
from Theorem 6.1.2 in [13]:

K, Kk _ k!
Ty =Dy P oo D1 A,
with 0 <k} <k; fori=1,...,n.

(6)

Given a fixed set of T-prefix lengths and T-expansion
parameters for these two equations, neither of the
code length distributions that these two equations
give rise to is changed by “swapping” thelz order of any

two adjacent substrings of the form pfn”:f and pfn"‘

for 2 < m < n. Le., for “adjacent” T-augmentations,

65(’“1”“2 ..... Fp_1:kn) = 0 (kg koo 1) (7)
(P1,P25--+» Ppn—1:Pn) (P1,P2s--» PnsPn—1)
. Bt k2o kn_1,k
provided  that both  SFtkzeka—nka) g g

(P1,P2,---sPn—1,Pn)
(k1,k2seeskn kn—1)

exist.
(P1,P2,esPn P —1)

Here, we have two cases to consider:

. (k1 sk2yeeskn—2)
® |pn| < |pn—1l- In this case, pn € (1" " "2

and both sets exist. If we demand that T-
prefixes should be used in ascending order of
length for all virtual T-augmentations, we gener-
ate the distribution for the second set and hence,
by equivalence, cover the first set, too.



® |pn| > |pn—1]. In this case, the latter set may

not exist: if p, & S((sllv’ﬁ;”_'_'_',’::_‘;)) , then p, must
be generated as a result of the (n — 1)’th T-
augmentation and hence |pp| > |pn_1|- If we
demand non-decreasing T-prefix lengths for all
virtual T-augmentations, we will generate the
distribution for the first set. Whether the sec-
ond set exists or not is thus unimportant as its
possible code length distribution is covered by
default. m|

iFrom the above we may conclude that it is safe
to require that the T-prefix length should be non-
decreasing for all successive virtual T-augmentations.

5.4 Assignment of Codewords

When calculating the redundancy of a T-code set, one
must of course assign source symbols to codewords.
This is obviously done in rank order of probability,
i.e., the shortest codewords in the T-code set get as-
signed to the highest probabilities such that

P(oi) > P(ow) = |x(os)| < [z(ow)].  (8)
This implies that some of the longer codewords in the
T-code set may be unassigned. In turn, this yields a
feasibility criterion for the choice of T-prefix lengths
and T-expansion parameters.

5.5 Feasibility of a Virtual T-

Augmentation

Presume that the present distribution 55@1,;@2 ..... kn)
(p1,P2,---» Pn)
contains a sufficient number of codewords to enable

us to encode the source. Let L and ¢ be the length
of the longest and shortest assigned codewords in the
present distribution. Further let |p,41| be the T-
prefix length, and k,,; the T-expansion parameter
under consideration. Then we can require that

knt1|pny1]| + € < L.

(9)

The left hand side of this inequality is the length of
the shortest codeword that would be newly created
in this (virtual) T-augmentation. If this length is
not shorter than the longest codeword assigned so
far, then no source symbol can be assigned a shorter
codeword in the new distribution and hence r will
not decrease. Nor would any of the newly created
codewords in this distribution serve as sensible T-
prefixes. Consequently, it does not make sense to
further investigate this distribution.

As any codeword that is used as a T-prefix for
a virtual T-augmentation is no longer available in
the T-augmented set, the criterion may be tight-
ened further: we may require that at any new T-
augmentation produce at least two new codewords
shorter than L — one to compensate for the loss of
the T-prefix codeword, and one to achieve more ef-
ficient encoding as above. Hence, we define /5 as
the length for which there are at least two codewords
with length smaller than or equal to £2. The previous
equation thus becomes:

knt1|pny1] + €2 < L. (10)

Note that this requirement puts a bound on the
number of sets that need to be searched and hence
guarantees that the search algorithm will terminate.

5.6 Redundancy Criterion

The feasibility criteria presented so far are indepen-
dent of the probabilities of occurrence of the source
symbols that we wish to encode. Given a certain
number of source symbols and using only the feasi-
bility criteria above, the search algorithm would thus
always search the same number of distributions. The
criterion introduced here is used to determine the fea-
sibility of distributions on the basis of the source sym-
bol probabilities:

Presume that we have established an upper bound
for the redundancy of the most efficient T-code set,
e.g., from a set distribution whose redundancy we
have previously calculated. As we calculate the re-



dundancy for a newly generated distribution, we may
without loss of generality add the P(o;)|z(0;)| in or-
der of decreasing P(o;) and watch the sum’s value
after each addition. Once the sum exceeds the pre-
viously established bound, we know that the present
set is not a contender for the most efficient encoding.
This saves some work.

To improve on the previous bound, a T-
augmentation leading to a more efficient set must
change the code length distribution for codeword
lengths up to the length at which the initial set’s
redundancy summation exceeded the bound. This
requires a T-prefix of less than that length. In-
voking the results on the length order of T-prefixes
from above, we obtain a replacement value for L in
Equation (10) for further T-augmentations with the
present set distribution as the base distribution.

5.7 Applying the Redundancy Crite-
rion at Both Ends of the Queue

This technique only applies to the breadth-first
search, but it is quite powerful. In a virtual T-
augmentation, the code length distribution does not
change for lengths below |pp41], and the symbol that
would have been encoded with p,,;; will now have to
be encoded by a longer codeword. Thus, the portion
of the redundancy attributable to the codewords of
lengths up to and including |p, 41| represents a resid-
ual redundancy that does not disappear for any dis-
tributions derived from it (due to the non-decreasing
order of the T-prefix lengths used).

If this residual redundancy is larger than the best
redundancy found so far, then there is no point in
investigating the distribution any further. If we add
a distribution to the queue, it has to be feasible at
the time we add it. However, by the time it arrives at
the other end of the queue, the best redundancy may
have improved, and a previously feasible distribution
may no longer be feasible. In practice, it pays to
add the residual redundancy at the time of queueing
to the object queued. This enables a quick check
at the time of dequeueing to discard such “expired”

distributions.

5.8 Maximum Feasible Codeword

Length

Another significant saving can be made if we acknowl-
edge that codewords above a certain length are sim-
ply of no interest. Given a coding alphabet with #S5
symbols, we know that any complete code set C' over
S with a maximal codeword length of |Z| must have
a minimum number of codewords:

#C> (3] —)#S - D+ #S. (1)
If we require exactly N; = #C codewords, we obtain
a bound on the maximum codeword length possible:

N, -1
#S—1|’

Ln =il = | 12)
where [q] denotes the smallest integer greater than
or equal to q. Given Ng, we may choose k = L,,, —
1 and any p € S to obtain a T-code set S((;f)) such

that the longest codewords in S((ﬁ)) are of length L,,.

Since S((s)) has a sufficient number of codewords to
encode the source, we may ask whether it is possible
to encode the source more efficiently with a T-code
set that requires us to assign codewords longer than
L,.

Theorem 5.1 (Maximum Codeword Length)
There exists no source with Ns symbols such that the
T-code set with the lowest redundancy in an encoding
of that source requires the assignment of codewords
longer than L,,.

A formal proof of this theorem is an open problem.
However, it is easy to give a “handwaving argument”
for why the theorem is sensible: consider S((;f)) as

above. S(k)) is not only a T-code set, but also the
possible outcome of a Huffman code construction pro-
cess. Of all Huffman codes possible for a source with



N, characters, S((:;)) is the one with the longest possi-
ble codewords. Since the Huffman code construction
yields a minimum redundancy code for a given source,
all possible Huffman codes for the source

e yield the same or a lower redundancy than S((z)) )

and

e use only codewords up to length L,,.

As S ((:)) is a T-code set, it sets a bound on the redun-
dancy for the set we wish to find. The redundancy
criterion we have introduced above may be applied
here in a similar way — any improvement in the re-
dundancy that could be achieved requires an increase
in the number of codewords that are shorter than L,,.
This then enables “codeword assignment swapping”,
i.e., the codeword(s) that are used as T-prefix(es) dis-
appear, but their loss must be outweighed by a gain
from the additional codewords created, i.e., it must
be possible for source symbols with previously longer
assignments to “move up” the tree. Since the longest
possible assignment in a completely filled tree is of
length L,,, any “better” tree cannot have any longer
codewords assigned.

This leaves only those sets with codewords up to
length L,, or less to consider.
O

Thus we may assume that the wvirtual T-
augmentations in our algorithm do not need to keep
track of codeword lengths larger than L,,.

Furthermore, it means that a virtual T-
augmentation is not feasible unless
Elp| 4+ £z < L. (13)

This complements the already established rule for L:
we now have a feasibility criterion that also works
for sets that are too small to encode the source. For
larger sets, we may simply replace L,, by L.

It should be noted that the other feasibility criteria
mentioned in this chapter ensure on their own that
the algorithm will terminate. However, in practice,

the main benefit of the theorem is that it permits
some savings to be made with respect to memory
requirements and computation time, as the size of
the distributions is limited.

5.9 Dropping the Logarithms

If we take a closer look at Equation (1), we notice that
the term with the logarithms of the source symbol
probabilities is constant. We may hence drop it when
comparing the redundancies of two sets.

6 Performance of the Search
Algorithm

The algorithm presented above is still expensive
in both execution time and memory requirement
(queue). Both depend primarily on the number of
set distributions that have to be searched. As a
general rule, this increases with N,. However, due
to the redundancy bound feasibility criterion, it also
has a strong dependence on the source symbol prob-
abilities. Moreover, there is a dependence on the
shape /skew of the source probability distribution. As
a rule of thumb, the less skewed the distribution, the
more sets need to be searched. This is mainly a result
of the redundancy criterion — highly skewed sources
are governed by the probabilities for the most fre-
quent codewords, which ensures a high residual re-
dundancy at small T-prefix lengths. Consequently,
sources with equiprobable symbols take longest to
match.

Figure 3 shows the number of sets searched for N
source symbol probabilities, using a highly skewed
distribution. It also shows the CPU time taken by a
667 MHz Compaq AlphaServer DS20E for which the
algorithm was implemented in C as a CMEX func-
tion for MATLAB. It is evident from the spread of
the data that the source probability distribution is
itself the dominant factor in determining the execu-
tion time of the algorithm. For such highly skewed



distributions, the new algorithm seems to search only
O(N?) distributions. Given that it takes O(Nj)
steps to investigate a distribution, the computational
complexity of the algorithm is O(N?) for highly
skewed source probability distributions. This com-
pares favourably to the algorithm in [13], where even
the number of distributions searched grew more than
exponentially with N;. For N; = 80, the number of
distributions searched is now typically three orders of
magnitude below that of the algorithm in [13].

Figure 4 shows the number of sets searched for
N, source symbol probabilities, this time for both
highly skewed distributions such as in Figure 3 and
for equiprobable symbols. It is evident that the com-
plexity of the search is much higher for the latter.
This comes as no surprise since equiprobable sym-
bols minimze the residual redundancy in each case,
thus blunting the redundancy criterion.

7 Breadth-First Now Wins

The introduction of queue-front vetting represents an
improvement to the breadth-first algorithm that ren-
ders it, on average, faster than the depth-first al-
gorithm presented in [13]. This is consistent with
the observation that the important decisions about
coding efficieny are made during the first few T-
augmentations, which allow the feasibility criteria
to be tightened early on in the search. An excep-
tion are distribtions for which the symbols are ei-
ther equiprobable or almost equiprobable — depth-
first searches fewer sets than breadth-first here, al-
though the margin for distributions up to 40 source
symbols seems to be comparatively small (breadth-
first searches about 13% more sets at 40 symbols). In
the high-skew case, breadth-first wins by a factor of
typically 2 or 3 for Ny, = 40 and by over an order of
magnitude for N, = 100.

s

3,

Code length distributions searched

L L L L L I
40 50 60
Distribution size

20 30 100

e

CPU time for matching [s]
5

Dish’ib:t?on size 10
Figure 3: The number of code length distributions that
have to be searched, and hence the execution time of
the matching algorithm presented in this paper, depend
primarily on the number of source symbols, N, and
their associated probabilities of occurrence. In each of
the above plots, fifteen skewed probability distributions
were randomly generated for each IV and used as input
to the matching algorithm (assuming a binary alpha-
bet). Each marker in the top plot shows the number of
codelength distributions searched for a particular prob-
ability distribution. The bottom plot shows the CPU
times taken. It is evident that the source probability
distribution itself has a large influence on the number
of sets that need to be searched.
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Figure 4: The number of sets that need to be searched
to find the best match for a given source size N, de-
pends strongly on the source probabilities. For the top
plot above, 15 probability distributions of size Ny = 40
were randomly generated with a high skew (lowest prob-
ability of occurrence was about ten orders of magnitude
below the highest). These are represented by dots. The
crosses represent the case of equiprobable symbols, for
which the highest number of sets are searched. Bottom:
The breadth-first algorithm (dots) now generally out-
performs the depth-first algorithm (crosses) for source
probability distributions with high skews.
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8 Discussion

When we wish to find the most efficient T-code set
for a given set of source symbol probabilities, the con-
straints set by the T-augmentation construction pre-
vent us from using the well-known Huffman code con-
struction algorithm. To date, the only exact solution
to this problem appears to be an exhaustive search
of all feasible T-code code length distributions.

The number of distributions that need to be
searched for this purpose may be restricted by the
use of a number of feasibility criteria in a branch-
and-bound algorithm [13]. The algorithm’s output
are the T-expansion parameters and T-prefix lengths
of a T-code set with minimal redundancy. This leaves
a choice when it comes to picking the T-prefixes. It
is thus possible to select a set on the basis of other
properties, such as a minimal expected synchronisa-
tion delay.

The introduction of additional feasibility criteria
has now led to the algorithm presented above, which
yields a substantial improvement on the algorithm
presented by the author in [13] for high-skew sources.

While these recent improvements give the algo-
rithm practical value, its computational complexity
of at best O(N?) still compares unfavourably to the
Huffman algorithm, which is of order O(N,?).

Further improvements to the method presented are
conceivable. For example, one approach could be
in the form of new feasibility criteria — the author
doubts that he has exhausted all possibilities. Test-
ing for feasibility criteria carries a cost which is mul-
tiplied by the number of distributions that need to be
searched. Additional criteria are more likely to be of
benefit if they lead to a “pruning” of the search tree
close to the root, or if they rule out a large proportion
of sets that would otherwise be searched. Cost and
benefit have to be weighed against each other. Since
we now seem to be dealing with smaller search trees,
the total cost of additional tests has fallen — but the
benefits may decrease, too.



Another improvement could derive from the par-
allelisation of the algorithm. Given a base distri-
bution, the recursive calls for different virtual T-
augmentations may be processed in parallel, on a
multi-processor machine or over a distributed net-
work with a good load balancing scheme. The gains
here might extend beyond those due to the extra pro-
cessing power available: the initial shape of most T-
code code length distributions is formed during the
first few T-augmentations, and these short codewords
have the most significant influence on the code’s re-
dundancy. If these short distributions could be pro-
cessed in parallel, updated (i.e., lower) bounds for the
branch-and-bound could become available earlier and
might save parallel searches from unnecessary recur-
sions.

For some practical implementations, the algorithm
suggested by Titchener may also prove to be the
most economic. This could be the case especially
when large sources are involved, the encoding speed
is paramount, and the efficiency is only of secondary
importance.
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