
CDMTCS
Research
Report
Series

On Game-Theoretic Models
of Networks

Hans L. Bodlaender
Institute of Information and Computing
Sciences, Utrecht University,
Utrecht, the Netherlands

Michael J. Dinneen
Bakhadyr Khoussainov
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-151
April 2001

Centre for Discrete Mathematics and
Theoretical Computer Science

On Game-Theoretic Models of Networks

Hans L. Bodlaender1, Michael J. Dinneen2, and Bakhadyr Khoussainov2

1 Institute of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB
Utrecht, the Netherlands hansb@cs.uu.nl

2 Department of Computer Science, The University of Auckland, Auckland, New Zealand
mjd@cs.auckland.ac.nz, bmk@cs.auckland.ac.nz

Abstract. In this paper, we study the complexity of deciding which player has a
winning strategy in certain types of McNaughton games. These graph games can be
used as models for computational problems and processes of infinite duration. We
consider the cases (1) where the first player wins when vertices in a specified set are
visited infinitely often and vertices in another specified set are visited finitely often, (2)
where the first player wins when exactly those vertices in one of a number of specified
disjoint sets are visited infinitely often, and (3) a generalization of these first two cases.
We give polynomial time algorithms to determine which player has a winning strategy
in each of the games considered.

Keywords: graph and network algorithms, complexity, infinite graph games, Mc-
Naughton games.

1 Introduction and Basic Definitions

Motivated by the work of Gurevich and Harrington [2], McNaughton [3] in-
troduced a type of infinite games played on finite graphs. These games can
be used as models for certain computational problems and can provide game-
theoretic foundations for studying infinite duration processes such as operating
systems, networks, communication systems and concurrent computations. For
example, Nerode et al. [4, 5] introduce the idea of investigating and identify-
ing distributed concurrent programs as strategies in Gurevich-Harrington and
McNaughton type of games.

Assume we have an infinite duration system. A run of the system can be
thought as an infinite sequence s0, s1, s2, s3, . . . of states. The state s0 is the
initial state. The state si+1 is obtained by the execution of a certain command
at si. The success of the run depends on whether or not the run satisfies certain
specifications given by (or inherited from) software or hardware of the system.
One can look at this run as a play between two players, Survivor and Adversary.
The goal of one of the players, say Survivor, is to satisfy the specifications, while
the goal of the opponent (in this case Adversary) is not to allow the specifications
to be satisfied. During the play there is no termination point. Instead there are
some special events that may happen continually. If some combination of these
events happens infinitely often then one player wins, otherwise the other player
wins. We now formalize these games, as was first given in [3].

Definition 1. A game G is a seven tuple (V, S,A,E, v0,W,Ω), where:

1. V is the set of nodes called positions.

2. S and A are subsets of V such that S∩A = ∅ and S∪A = V . The nodes of S
are positions of Survivor, and the nodes of A are positions of Adversary.

3. E ⊆ S × A ∪A× S is a set of directed edges between S and A such that

(a) for each s ∈ S there exists at least one a ∈ A with (s, a) ∈ E, and

(b) for each a ∈ A there exists at least one s ∈ S with (a, s) ∈ E.

4. v0 is the initial position of the game.

5. W is a subset of V called the set of special positions.

6. Finally, Ω is a set of some subsets of W . These are called winning sets or
winning conditions for Survivor.

For the game G the graph of the game is the graph (A∪S,E). All plays of
G occur in the graph of the game. To visualize a play we describe it informally
as follows. There is a placemarker, that is initially placed on node v0. At any
given time the placemarker is placed on a node. If the node is in S, then it is
Survivor’s turn to move the placemarker. Otherwise it is Adversary’s turn. The
placemarker is always moved along the edges of the game graph determined
by E. There is always a possibility to move the placemarker as stipulated by
conditions 3a) and 3b) of the definition.

Let s0 be a position, say of Survivor. Assume that Survivor begins its move
by putting the placemarker on a0 (so (s0, a0) ∈ E). Adversary responds by
putting the placemarker on a s1 (so (a0, s1) ∈ E). This procedure repeats and
the players’ actions produce an infinite sequence:

p = s0, a0, s1, a1, . . .

called a play that begins from position s0. In the play p consider the set of all
nodes t that have the following properties:

1. t belongs to W , and

2. t occurs in the play p infinitely often.

We denote this set by In(p) and call it the infinity set of p. Survivor wins
the play if In(p) ∈ Ω. Otherwise Adversary wins the play. Thus, every play is
won by one of the players.

The histories of the play p = q0, q1, q2, . . . are the finite prefixes of p. The set
H(S) consists of all histories whose last positions are positions where Survivor
makes move. The set H(A) is defined similarly. A strategy for Survivor is a
function f that maps H(S) into A such that for all u = q0 . . . qn ∈ H(S),
(qn, f(u)) ∈ E. A strategy for Adversary is defined similarly.

Let f be a strategy for a player. Let q be a position in the game. Consider
all the plays that begin from q which are played when the player follows the
strategy f . We call these plays consistent with f from q.

Definition 2. The strategy f of a player is a winning strategy if all plays
consistent with f from v0 are won by the player. In this case we say that the
player wins the game.

McNaughton [3] proved that for every McNaughton game, it is decidable who
has a winning strategy. However, his algorithm is by no means an efficient one.
Thus, it is natural to ask for which type of McNaughton games it can be decided
in polynomial time which player has a winning strategy. Some polynomial time
solvable instance were given by Dinneen and Khoussainov in [1] and Nerode et
al. in [5]. In [1] games with W = V and Ω = {V }, called update network
games are studied and it is shown that there is an O(|V ||E|) time algorithm
to determine if Survivor wins these games. In this paper, we extend this result.
First, we consider for networks with a partition of the set of nodes into three
sets V = I ∪ F ∪D, games of the form (V, S,A,E, v0, I ∪ F, {I}). I.e., Survivor
wins if every node in I is visited infinitely often, and every node in F is visited
finitely often. Thus, each play in such games is indifferent whether or not the
nodes in D = V \W are visited finitely or infinitely often. Therefore we call the
nodes D don’t care nodes. We provide a O(|V ||E|) time algorithm to decide
which player has a winning strategy in such games. Secondly, we consider the
games where W = V and Ω is a collection of pairwise disjoint winning sets. We
show that there exists a polynomial time algorithm to decide who wins such
games. Finally, we combine these results, and allow W to be a proper subset of
V , with Ω a collection of pairwise disjoint non-empty winning sets.

2 Preliminary Results

Given a McNaughton game G and a subset of the nodes X ⊆ V , a node v is in
the set REACH(S,X) if Survivor can force every play starting at v into a node
in X after a finite number of steps. Note that REACH(S, ∅) is assumed to be ∅
which is consistent with the definition.

Lemma 1. The set REACH(S,X) can be computed in O(|V |+ |E|) time.

Proof. We build a set R, that will eventually be REACH(S, V). Initially, we
take R = X. If a node x, owned by Survivor, has an edge to a node in R, then x
is added to R. If a node x, owned by player Adversary, has only edges to nodes
in R, then x is added to R. One can note that from every node in R Survivor
can always force a play to go to a node in X. Moreover, when no nodes can be
added to R anymore, then R = REACH(S,X). Adversary has a strategy such
that only nodes in V \R are visited. Indeed, Adversary has a strategy to always
stay inside of V \R when game begins in a node from V \R. The procedure of
constructing REACH(S,X) can be implemented in O(|V |+ |E|) time, by giving
each node not in X a counter, that is initially 1 for nodes owned by Survivor
and its outdegree for nodes owned by Adversary. Whenever we add a node v

to R, we subtract 1 from the counters of each node with an edge to v; when a
counter becomes 0 then the node is also added to R. �

Let v �∈ REACH(S,X) be an Adversary’s node. We iteratively define the set
AVOID(v, A,X) as follows. Initially, we take AVOID(v, A,X)={v}. If a node x
is owned by Adversary and x ∈ AVOID(v, A,X) then we add a neighbor y into

AVOID(a,A,X) if (x, y) ∈ E and y �∈ REACH(S,X). If a node x is owned by
Survivor and x ∈ AVOID(v, A,X) then we add all y into AVOID(a,A,X) for
which (x, y) ∈ E.

From Lemma 1 we obtain the following lemma.

Lemma 2. Given X and v �∈ REACH(S,X) the set AVOID(v, A,X) has the
following properties:

1. The set AVOID(v, A,X) can be constructed in O(|V |+ |E|) time.
2. AVOID(v, A,X) ∩ REACH(S,X) = ∅.
3. Adversary has a strategy, such that when the game visits a node in AVOID(v, A,X)

then all nodes visited afterwards also belong to AVOID(v, A,X).
4. For all s in AVOID(v, A,X) ∩ S and all a ∈ A if (s, a) ∈ E then a is in

AVOID(v, A,X).

If the game starts at v, then a strategy for Adversary not to play to a
node in X is to always play to a node in AVOID(v, A,X). Note that the sets
REACH(A,X) and AVOID(v, S,X) can be defined in a similar matter. The two
lemmas above hold true for these sets too.

3 Relaxed Update Networks

In [1] the games where W = V and Ω = {V } are studied. These games are called
update network games. An update network game is an update network if
Survivor wins the game. We generalize these games in the following definition.

Definition 3. A game G is relaxed update network game if Ω consists
of a fixed subset I of W . We say that a relaxed update network game from a
position q is a relaxed update network if Survivor has a winning strategy
from q.

Thus, in a relaxed update network the set of nodes is partitioned into three
sets V = I∪F ∪D, where I is a given subset of W , F = W \I, and D = V \W .
Survivor wins a play if every node in I is visited infinitely often, and every
node in F is visited finitely often. Thus, each play in such games is indifferent
whether or not the nodes in D are visited finitely or infinitely often. Therefore
we can call the nodes in D don’t care nodes.

3.1 The Case I = ∅

Let G be a relaxed update game. Here we consider the case that I = ∅, i.e., we
have nodes that must be visited only finitely often (F) and don’t care nodes.
Of course, the problem is trivial when F = ∅ and I = ∅. So we assume that
F �= ∅.

Let V0 = V \ REACH(A,F). If V0 is empty, then Adversary has a winning
strategy: from every node, Adversary has a forced play into a node in F . Thus,
Adversary can force some of the nodes in F to be visited infinitely often.

If Survivor begins the game from a node v in V0, then Survivor has a winning
strategy: he plays always inside the set AVOID(v, S, F) which is possible by
Lemma 2.

If neither V0 is empty nor the game starts at a node in V0, then we start
with an iterative process. In order to describe the process we make the following
notes.

Consider REACH(S, V0). Note that for each node in REACH(S, V0), Sur-
vivor has a winning strategy when the game starts at that node. Survivor can
force all plays from the node into V0. When a node in V0 is reached Survivor has
a strategy such that no node in F is visited anymore. Thus, Adversary should
not play into a node in REACH(S, V0). In particular, Adversary should not play
to nodes in F ∩ REACH(S, V0).

Let us consider F1 = F \REACH(S, V0) and V1 = V \REACH(A,F1). Note
that V0 ⊆ V1. Survivor has a winning strategy when the game starts at a node
of V1. Survivor can always play inside V1 again by Lemma 2, and hence no nodes
in F1 are visited. So the only nodes in F Adversary can possibly direct the plays
to are those in REACH(S, V0). But from these nodes Survivor can force all plays
into V0. Hence nodes in F are visited in total a finite number of times.

Thus, when the game starts at a node in V1 we are done: Survivor has a
winning strategy. When V1 = V0 and the game starts at a node in V \ V1, then
we are also done as Adversary has a winning strategy; Adversary always forces
all the plays into F1 = F staying in V \ V1.

The step above can be repeated which leads us to an iterative procedure.
Thus, let F0 = F and V0 = V \ REACH(A,F0). For each i ≥ 1, let

Fi = Fi−1 \ REACH(S, Vi−1) and Vi = V \ REACH(A,Fi).

With arguments similar as above, we can show that Survivor has a winning
strategy in all nodes in Vi.

As each Vi ⊆ Vi+1, the process stops when we have an i with Vi = Vi+1. In
that case, there is a winning strategy for Survivor if and only if the game starts
at a node in Vi. Suppose the game starts at a node in V \ Vi and Vi = Vi+1.
Then, Adversary can force a play to a vertex in Fi+1; and either it is owned
by Survivor and has all outgoing edges to a vertex in V \ Vi or is owned by
Adversary and has one outgoing edge to V \ Vi, (as follows from Lemma 2),
hence Adversary can force the game to stay in V \ Vi.

This gives a polynomial time algorithm for the problem with I = ∅. The
algorithm takes O(|V ||E|) time, as there are O(|V |) iterations, each taking
O(|V |+ |E|) time.

3.2 Reducing to the Case F = ∅

Now assume I �= ∅. In this section, we show that an instance with F �= ∅ can
be transformed to an equivalent instance with F = ∅, assuming I �= ∅.

We may assume that the initial position belongs to REACH(S, I); if not,
then clearly Adversary has a winning strategy from Lemma 2. (Adversary forces

that no node in I is ever reached.) Now, Survivor can start the game by forcing
to go to any node in I, and, as all nodes in I have to be visited infinitely often,
it is not important for the analysis to which node in I the game goes first.

There are two cases:

REACH(A,F) ∩ I �= ∅. This means that there is a node i ∈ I, such that
Adversary has a strategy that forces all the plays of the game (consistent with
the strategy) to visit a node in F after a finite number of steps. If this is the
case, then Adversary has a winning strategy for the game. Here either i is not
visited infinitely often, or he can force after every visit to i a play to a node in
F , in which case at least one node in F is visited infinitely often.

REACH(A,F) ∩ I = ∅. This means that for all nodes i ∈ I, Adversary can not
force any play of the game visit a node in F . Therefore if Survivor has a winning
strategy then he has one that prevents movement to a node in F after the first
node in I has been reached.

Once a node in I has been reached, Survivor wants to avoid the plays reach-
ing nodes in F . (Any play to a node in F now could possibly be repeated by
Adversary.) So if Survivor can avoid reaching a node in F infinitely many times,
he can avoid visiting it once.

So, what we can do is compute REACH(A,F), and remove all nodes in
REACH(A,F) from the graph, and obtain an equivalent instance, but now
with F = ∅.

3.3 Case with Infinite-Visit Nodes

In this section, we consider the game with F = ∅ and I �= ∅. Suppose the game
starts at node v0.

Lemma 3. There is a winning strategy for Survivor if and only if v0 ∈ REACH(S, I)
and I ⊆ REACH(S, {v}) for all v ∈ I.

Proof. Suppose w ∈ I, w �∈ REACH(S, {v}). Then Adversary has a winning
strategy. If w is never visited in the game, then Survivor loses. If w is vis-
ited, then after w has been visited, Adversary has a strategy that avoids v, so
Adversary again wins.

If v0 �∈ REACH(S, I), then Adversary can prevent any node in I to be visited
as follows from Lemma 2.

Now suppose for all v ∈ I, I ⊆ REACH(S, {v}), and v0 ∈ REACH(S, I).
The latter condition makes that Survivor can start by forcing all plays from
v0 into I. The former condition means that for every pair of nodes v, w ∈ I,
Survivor has a strategy that forces, after w has been visited, that in a finite
number of moves v will be visited. This enables Survivor to force that every
vertex in I to be visited infinitely often. �

The condition of Lemma 3 can be checked in O(|V ||E|) time. Thus we have
proved the following theorem.

Theorem 1. There is a O(|V ||E|) time algorithm to decide whether a given
game is a relaxed update network.

3.4 A Dual Case

This case is obtained when we interchange the players of games. Let us consider
the case when I = ∅ in a relaxed update game and interchange the roles of
the players. Thus, now Survivor’s winning conditions are nonempty subsets of
F . Then Subsection 3.1 can be explained as follows. Consider the following
sequence:

F0 = REACH(S, F), Fi+1 = {x | x ∈ REACH(S, Fi \ {x}) and x ∈ Fi}.

The iteration guarantees that Fi consists of all nodes from which Survivor can
visit the set F at least i + 1 times. Note that Fi+1 ⊆ Fi for all i. Let i be such
that Fi = Fi+1. We can show that Survivor wins the game from v if and only if
v ∈ REACH(S, Fi). The proof is basically given in Subsection 3.1.

4 Partition Games and Partition Networks

In this section we study games where winning conditions are pairwise dis-
joint collections of nonempty sets with W = V . Formally, a partition net-
work game is a game G of the form (V, S,A,E, v0, V, {W1, . . . ,Wn}), where
W1, . . . ,Wn is a collection of pairwise disjoint nonempty winning sets. We say
that a partition network game is a partition network if Survivor is the winner
of the game. An important concept of closed winning conditions (sets) is defined
as follows:

Definition 4. A winning condition Wi in a game G is S-closed if the following
two conditions are satisfied:

1. For any Survivor’s position s ∈ Wi there exists an a such that (s, a) ∈ E
and a ∈Wi.

2. For any Adversary’s position a ∈Wi and all s such that (a, s) ∈ E we have
a ∈Wi.

Informally, if Wi is a closed winning set then Survivor can always stay inside
of Wi no matter what the opponent does. The next lemma gives a necessary
condition for Survivor to win a partition network game.

Lemma 4. If Survivor wins the partition network game G then one of the win-
ning conditions must be S-closed.

Proof. Suppose that each Wi is not S-closed. Then for each Wi one of the
following cases hold:

1. There exists a Survivor’s node si ∈Wi so that all the outgoing edges from s
lead to nodes outside of Wi.

2. There exists an Adversary’s node ai ∈Wi such that (ai, si) ∈ E and si �∈Wi.

We construct the following strategy g for Adversary. For all Adversary’s
positions a if a = ai then g(a) = si; in all other cases g(a) is the first node s
for which (a, s) ∈ E. We claim that g is a winning strategy for Adversary thus
contradicting the assumption. Indeed let p = p0, p1, p2, . . . be a play consistent
with g. Consider the infinity set In(p). Assume that In(p) = Wi. Then from
some stage m in the play all nodes from Wi and only those will appear infinitely
often. Therefore Wi does not satisfy the first case listed above. Hence for Wi
there exists an Adversary’s node ai ∈ Wi such that (ai, si) ∈ E and si �∈ Wi.
From the definition of g, as ai must appear in p after point m, we see that p
must contain a position from outside of Wi after stage m. This contradicts the
choice of m. Therefore In(p) �= Wi for all winning sets Wi. �

For our next lemma we need the following concept. We say that a winning
condition W is an update component if W is S-closed and Survivor wins the
update game played in W .

Lemma 5. If Survivor wins the partition network game G (V, S,A,E, v0, V, {W1,
. . . ,Wn}), then one of the winning conditions is an update component.

Proof. By the lemma above, one of the winning conditions Wi must be S-closed.
Without lost of generality we may assume that W1, . . . ,Wk are all the S-closed
winning conditions among W1, . . . ,Wn, where k ≤ n.

In order to obtain a contradiction, assume that none of W1, . . ., Wk is an
update component. Hence for every t with 1 ≤ t ≤ k and every x ∈ Wt,
Adversary has a winning strategy gt,x to win the update game (Wt, x) from x.
Note that for each Wi, i > k, one of the following cases hold:

1. There exists a Survivor’s node si ∈Wi so that all the outgoing edges from s
lead to nodes outside of Wi.

2. There exists an Adversary’s node ai ∈Wi such that (ai, si) ∈ E and si �∈Wi.

Now we define the following strategy g for Adversary. Let a be an Adversary’s
position. Consider any finite history h = p0, . . . , pm of a play that begins from
v so that a = pm. If a = ai for some i > k then g(h) = si. Now assume a ∈ Wt
with 1 ≤ t ≤ k. Let pr be a node in the history so that all pr, . . . , pm ∈Wt and
pr−1 �∈ Wt. Then g(h) = gt,pr(pr, . . . , pm). In all other cases, g(h) is the first s

with (a, s) ∈ E.
We claim that g is a winning strategy for Adversary. Indeed, let p =

p0, p1, p2, . . . be a play consistent with g. Consider the infinity set In(p). As-
sume that In(p) = Wi. Then i ≤ t which can be proved by using the reasoning
similar to the proof of the previous lemma. Assume that i ≤ t. Let m be the
first point in the the play p so that all nodes from Wi and only those will appear
infinitely often. Then g will always follow the strategy gi,pm. Hence In(p) can
not be equal to Wi. Again we have a contradiction. �

From these two lemmas we have the following result.

Corollary 1. In a partition network game, if either (1) each winning conditions
is not S-closed or (2) each S-closed winning condition does not form an update
component then Adversary wins the partition game.

Now assume that one of the winning conditions of the partition network
game is an update component. Without loss of generality we can assume that it
is W1. Consider the set REACH(S,W1). If v0 ∈ REACH(S,W1) then Survivor
clearly wins the game. Otherwise, we define the following game G′:

1. Set V ′ = AVOID(v0, A,W1).
2. For each Wi if Wi ∩REACH(S,W1) �= ∅ then Wi is not a winning set of the

new game. Otherwise, Wi is a winning set of the new game.
3. The set E′ of edges is obtained by restricting E to V ′.
4. The initial position of the game is v0.

Lemma 6. Assume that W1 is an update network component and v0 �∈ REACH(S,W1).
Survivor wins the original game if and only if Survivor wins the new game G′.

Proof. Indeed, assume that Adversary wins the new game G′. Let g′ be winning
strategy. Then since g′ is inside the AVOID(v0, A,W1) strategy, we see that
Adversary wins the whole game. Assume that Survivor wins the new game. Let
f ′ be winning strategy. Define a strategy f as follows. If a play is inside the
game G ′ then always follow f ′. Otherwise, force the place into W1 and win the
update game W1. It is not hard to see that Survivor wins the game. �

We call the game G′ obtained from G the reduced game at v0. Now consider
the following procedure that for any x ∈ V proceeds by stages as follows.

Stage 0. Set G0 = G.
Stage i + 1. Consider Gi. If all of the winning conditions of Gi are not S-

closed or all S-closed winning conditions of Gi are not update components then
declare Adversary the winner. Otherwise take the first winning condition W
which is an update network component. If x ∈ REACH(S,W) then Survivor is
the winner. If not, reduce Gi to Gi+1 at node x.

Note that at some stage k the process stops at which the winner at x is
found. The algorithm to decide the game runs in O(|E||V |2) time yielding:

Theorem 2. There is a O(|V |2|E|) time algorithm to decide whether a given
game is a partition network.

5 Relaxed Partition Networks

In this section, we combine the results of Sections 3 and 4. We consider partition
games where possibly W �= V . We now have relaxed partition network
games of the form

G = (V, S,A,E, v0,W, {W1, . . . ,Wn}),

where W ⊆ V , and W1, . . . ,Wn is a collection of pairwise disjoint nonempty
winning sets, each a subset of W . Again, the set of don’t care nodes is denoted
by D = V \W .

For sets X, Y ⊆ V , X ∩ Y = ∅, define the set RA(S,X, Y) of nodes from
which Survivor can force a play that reaches, in a finite number of steps, a node

in X by avoiding Y . Thus, v ∈ RA(S,X, Y) if Survivor has a winning strategy
in the game that starts at a v where Survivor wins as soon as a node in X is
visited; Adversary wins as soon as a node in Y is visited or when infinitely many
moves occure without a visit to a node in X ∪ Y .

Lemma 7. Given X, Y , X ∩ Y = ∅, RA(X, Y) can can be computed in
O(|V ||E|) time.

Proof. The set RA(S,X, Y) can be computed as follows. Initially, set R = X.
If a node s ∈ S \ Y has an edge (s, a) ∈ E and a ∈ R, then add s to R. If a
node a ∈ A \ Y has for all s with (a, s) ∈ E, s ∈ R, then add s to R. Repeat
this process until we cannot add nodes to R using these rules. One easily sees
with induction that R ⊆ RA(S,X, Y). We also have, after no further nodes can
be added to R, that R = RA(S,X, Y); any Adverary node in V \R \ Y has an
edge to a node in V \ R, and any Survivor node in V \ R \ Y has only edges
to nodes in V \ R. Thus, when Adversary follows a strategy to always play to
nodes in V \R, he wins either by having the game moved to a node in Y , or by
an infinite play. Finally, use the same data structure as in Lemma 1. �

Definition 5. A winning condition Wi in a game G is S-closed with respect to
W , if the following two conditions are satisfied:

1. For any Survivor’s position s ∈ Wi, there exists an a such that (s, a) ∈ E
and a ∈ RA(S,Wi,W \Wi).

2. For any Adversary’s position s ∈ Wi and all a with (s, a) ∈ E, we have
a ∈ RA(S,Wi,W \Wi).

Note that the definition of S-closedness of the previous section is the same
as S-closedness with respect to V . Informally, when Wi is an S-closed winning
set with respect to W , then Survivor can force a play that visits only nodes in
Wi and don’t care nodes in D. Similar to the Lemma 4, we can show:

Lemma 8. If Survivor wins the relaxed partition network game G then one of
the winning conditions must be S-closed with respect to W .

For a set of nodes X ⊆ V with for all s ∈ X ∩S, there is an a ∈ X ∩A with
(s, a) ∈ E and for all a ∈ X ∩A, there is an s ∈ X ∩ S with (a, s) ∈ E, we can
define the subgame, induced by X with initial position v′ ∈ X:

(X,S ∩X,A ∩X,E ∩ (X ×X), v′,W ∩X,Ω ∩ P(X)),

where Ω ∩ P(X) is the collection of sets in Ω that are a subset of X. In other
words, the game is similar to the original game, but now only nodes in X are
visited.

Lemma 9. If Survivor wins the relaxed partition network game G then for one
of the winning conditions Wi, we have that Wi is S-closed with respect to W ,
the subgame, induced by RA(S,Wi,W \Wi), with initial position an arbitrary
v ∈ Wi has a winning strategy for Survivor, and the start node v0 of G belongs
to REACH(S,Wi).

The proof of this lemma is similar to (but somewhat more detailed as) the
proof of Lemma 5. The conditions of these lemmas can again be checked in
O(|V ||E|) time, as the game, induced by RA(S,Wi,W \Wi) is a relaxed update
game.

Suppose the conditions of the preceeding lemma is fulfilled for winning con-
dition W1. If v0 ∈ REACH(S,W1), Survivor wins the game. Otherwise, game
G′ can be defined as in the previous section, and we again have that Survivor
wins the game, if and only if Survivor wins game G′. The time to decide which
player has a winning strategy is again bounded by O(|E||V |2). Thus, we finally
have the following result.

Theorem 3. There is a O(|V |2|E|) time algorithm to decide whether a given
game is a relaxed partition network.

6 Conclusions

In this paper, we gave some types of McNaughton games where one can decide
in polynomial time which player has a winning strategy. The interest in these
games is that they can be used as a model for infinite processes.

Several directions for further research remain open. At one hand, one can
try to design faster algorithms for the problems solved in this paper. In ad-
dition, it would be interesting to see which kind of conditions on the winning
sets produce efficient algorithms to solve the games, and what conditions turn
this problem computationally untractable. Another problem is to pinpoint the
precise complexity (in terms of complexity class) of the question to decide if a
given player has a winning strategy for a given McNaughton game.

References

1. M. J. Dinneen and B. Khoussainov. Update networks and their routing strategies. In Proceedings
of the 26th International Workshop on Graph-Theoretic Concepts in Computer Science, WG2000,
volume 1928 of Lecture Notes on Computer Science, pages 127–136. Springer-Verlag, June 2000.

2. Y. Gurevich and L. Harrington. Trees, Automata, and Games, STOCS, 1982, pages 60–65.
3. R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic,

65:149–184, 1993.
4. A. Nerode, A. Yakhnis, V. Yakhnis. Distributed concurrent programs as strategies in games. Log-

ical methods (Ithaca, NY, 1992), pages 624–653, Progr. Comput. Sci. Appl. Logic, 12, Birkhauser
Boston, Boston, MA, 1993.

5. A. Nerode, J. Remmel, and A. Yakhnis. McNaughton games and extracting strategies for concur-
rent programs. Annals of Pure and Applied Logic, 78:203–242, 1996.

