
CDMTCS
Research
Report
Series

T-Complexity and
T-Information Theory – an
Executive Summary

Ulrich Günther
Department of Computer Science
University of Auckland

CDMTCS-149
February 2001

Centre for Discrete Mathematics and
Theoretical Computer Science



T-Complexity and T-Information Theory – an

Executive Summary

Ulrich Günther
Department of Computer Science
The University of Auckland

February 19, 2001

Abstract

This paper describes the derivation of the T-Complexity and T-In-
formation Theory from the decomposition of finite strings, based on the
duality of strings and variable-length T-Codes. It further outlines its sim-
ilarity to the string parsing algorithm by Lempel and Ziv. It is intended
as a summary of work published mainly by Titchener and Nicolescu.

1 A brief Introduction to T-Codes

This paper first gives an introduction to T-Codes and their construction tech-
nique, as this is fundamental for the understanding of the T-decomposition
algorithm that underpins the T-complexity measure.

T-Codes [3, 4, 11] are similar to Huffman codes in that they are codes with
variable-length codewords. Depending on the source symbol probabilities, a
Huffman code may also be a T-Code. In fact, any T-Code set could theoretically
have been constructed as a result of a Huffman code construction algorithm.

However, rather than letting the source symbol probabilities determine the
length of the codewords and the structure of the decoding tree, T-Codes are
constructed with no regard to symbol probabilities. Their construction focuses
instead on a recursive tree structure.

A T-Code set is constructed as follows:

1. Start with a finite alphabet S (e.g., the binary alphabet, where S = {0, 1}).
Every finite alphabet is a (trivial) T-Code set by default, with the letters
being primitive codewords.

2. Given a T-Code set, another T-Code set may be derived from it by a
process called “T-augmentation”. This involves picking a codeword from
the existing T-Code set, which is called the “T-prefix”, and a positive
integer called the “T-expansion parameter”. Any T-Code set may thus
be derived from an alphabet in a series of n T-augmentations using a

1



.

@
@@

�
��

root

0 1

@
@
@
@
@
@
@@

�
��

root

0 �
��

10 �
��

110 111

@
@
@
@
@
@
@

�
��

root

0 �
��
@
@
@
@
@@

�
�

100 �
�

1010 �
�

10110 10111

�
�
110 111

S = S
()
() S

(2)
(1) S

(2,1)
(1,10)

Figure 1: T-augmentation as a copy-and-append process of decoding trees

series of T-prefixes p1, p2, . . . , pn and a series of T-expansion parameters
k1, k2, . . . , kn (now also called “copy factors”[14]). The resulting set is

denoted S
(k1,k2,...,kn)
(p1,p2,...,pn)

and is said to be a T-Code set at “T-augmentation

level” n.

The T-augmentation itself is performed according to the following equation:

S
(k1,k2,...,kn+1)
(p1,p2,...,pn+1)

=

kn+1⋃

i=0

{pin+1s|s ∈ S
(k1,k2,...,kn)
(p1,p2,...,pn)

\{pn+1}} ∪ {p
k+1
n+1} (1)

where S
()
() = S.

That is:

1. select a T-prefix pn+1 from the existing set S
(k1,k2,...,kn)
(p1,p2,...,pn)

, which has been

derived from an alphabet S by n ≥ 0 T-augmentations.

2. select a T-expansion parameter kn+1 ≥ 1.

3. make kn+1 additional copies of the decoding tree.

4. Successively concatenate the new copies and the original of the tree via
the T-prefix chosen, i.e., the root of the first copy attaches to pn+1, that
of the second copy to pn+1pn+1, etc.

Figure 1 depicts the construction of the T-Code set S
(2,1)
(1,10). In the first

T-augmentation in this example, the tree for S is copied three times and the
three copies are linked to each other via the respective leaf nodes corresponding

2



to the codeword 1. The second T-augmentation links two copies of the tree for

S
(2)
(1) via the leaf node 10.

Another example, using codeword lists rather than trees, is shown in Table 1.
By T-augmenting over and over again, we can generate sets of arbitrary size.

By choosing the T-prefixes and the T-expansion parameters wisely, a T-
Code tree may be constructed to suit a particular source. However, this is not
of prime relevance here.

It is worth noting here that some T-Code sets may be constructed with more

than one set of T-prefixes and T-expansion parameters. E.g., the set S
(3)
(0) is the

same as the set S
(1,1)
(0,00). A set of T-prefixes and T-expansion parameters used in

the construction of a T-Code set is called a “T-prescription”. As the example
illustrates, a T-Code set may have more than one T-prescription. However, all
T-prescriptions for a given T-Code set can be derived from each other with ease.
For the purposes of this paper we shall assume that, if several T-prescriptions
exist, we will always refer to the one T-prescription for which the T-expansion
parameters are maximised (anti-canonical T-prescription). For a detailed dis-
cussion of this topic see [2] or [8]. A less rigorous version of the proof may also
be found in [11].

2 The Significance of the Longest Codewords

Consider the two longest codewords in the sets of the examples in Table 1 and
Figure 1. For each set, they differ by exactly one letter, the last one. In these
binary sets, there are exactly two longest codewords per set. More generally, the
number of longest codewords equals the cardinality of the alphabet. Further-
more, the longest codewords contain – in reverse succession – all the T-prefixes
that were used in the construction of the set. The length of the runs of the
T-prefixes in the longest codewords equals the T-expansion parameter (in the
T-prescription for which the T-expansion parameter is maximised).

As it turns out, it is possible to derive each T-Code set from either of its
longest codewords. The algorithm for this is described in the next section. For
the moment, let us simply presume that it exists.

Furthermore, given an arbitrary finite string over an arbitrary finite alpha-
bet, it is always possible to find a T-Code set for which this string is one of
its longest codewords. This set is unique, i.e., there is no other T-Code set for
which the same string is also one of the longest codewords. For a proof of this
theorem see [2] or [8].

Since the longest codewords in a T-Code set are identical except for the last
letter, we may regard their common part as an identifier for the T-Code set.

Note that this duality between strings and T-Code sets permits us to think
of the T-Code set construction algorithm not only as a code construction al-
gorithm, but also as a string construction (production) algorithm. The T-
augmentations are the steps in this algorithm.

3



T-augmentation level
n 0 1 2 3
kn n/a 1 1 3

set S S
(1)
(1) S

(1,1)
(1,10) S

(1,1,3)
(1,10,0)

0 0 0 0/
1 1/ − −

10 10// −
11 11 11

100 100
− −

1010 1010
1011 1011

00//
−
−

011
0100
−

01010
01011

000///
−
−

0011
00100
−

001010
001011

0000
−
−

00011
000100

−
0001010
0001011

Table 1: T-augmentation from the binary alphabet S via the intermediate T-Code

sets S
(1)
(1) and S

(1,1)
(1,10) to the final set S

(1,1,3)
(1,10,0). The columns show the codewords

in the respective T-Code sets. The “deleted” strings are the now internal nodes of
the new decoding tree.

4



If we consider the string production aspect, we can create (or lengthen) a
string as follows:

1. take an existing string (which may consist of just one letter) and consider

the T-Code set S
(k1,k2,...,kn)
(p1,p2,...,pn)

for which it is one of the longest codewords.

2. pick a codeword pn+1 from S
(k1,k2,...,kn)
(p1,p2,...,pn)

and append kn+1 copies of it to

the left of the string. The new string is now one of the longest codewords

from S
(k1,k2,...,kn+1)
(p1,p2,...,pn+1)

.

If we repeat this as often as we desire, we can generate arbitrarily long
strings.

Consider now the choice of T-prefix codeword and T-expansion parameter:
if we choose a long pn+1 to append to the left, we create a longer resulting string
than by choosing a short codeword. However, the number of steps needed to
create the string remains constant - and the patterns that the “extra” bit of
string includes are indeed all patterns we have already seen as T-prefixes in the
initial set (or, in other words, as substrings in the original string).

Similarly, by choosing a large kn+1, one does not add much extra informa-
tion, but merely repeats an already occurring pattern. Note that there is a
similar theme of construction steps and focus on recurring patterns in the LZ
algorithm [1].

Before we take this theme further, however, we need to discuss how an
existing string can be parsed to yield the associated T-Code set.

The next section describes how one arrives at the T-augmentation construc-
tion recipe for a string, i.e., at the T-prescription for the corresponding T-Code
set. The parsing algorithm used to obtain it is called “T-decomposition”.

3 T-Decomposition

Suppose that, for a given string x and a letter a from the alphabet S, we want
to find the T-Code set for which xa is one of the longest codewords. Consider
the following algorithm:

1. Set m = 0.

2. Decode xa as a string of codewords from S
(k1,k2,...,km)
(p1,p2,...,pm)

.

3. If xa decoded into a single codeword from S
(k1,k2,...,km)
(p1,p2,...,pm)

, set n = m and

finish.

4. Otherwise, set the T-prefix pm+1 to be the second-to-last codeword in the

decoding over S
(k1,k2,...,km)
(p1,p2,...,pm)

.

5. Count the number of adjacent copies of pm+1 that immediately precede
the second-to-last codeword. Add 1 to this number, and define it to be
the T-expansion parameter km+1.

5



6. T-augment with pm+1 and km+1.

7. Increment m by 1 and goto step 2 above.

Example: let x = 011000101010 and a = 0, and let xa = 0110001010100 be
the longest codeword in some T-Code set. Decoded over S = {0, 1}, we obtain
the following codeword boundaries indicated by a dot:

xa = 0.1.1.0.0.0.1.0.1.0.1.0.0.

from which we identify p1 = 0 and k1 = 1. Decoded over S
(1)
(0) we obtain

xa = 01.1.00.01.01.01.00.

i.e., p2 = 01 and k2 = 3. Hence, decoded over S
(1,3)
(0,01), we get

xa = 011.00.01010100.

such that p3 = 00, k3 = 1, and p4 = 011 with k4 = 1. The reader may wish
to verify that xa = 0110001010100 is indeed one of the longest codewords of

S
(1,3,1,1)
(0,01,00,011).

One can also regard this mechanism as a succesive elimination of lower-level
codeword boundaries, as shown in the following graphic for a different string:

S 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1)

(1) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1)

(1,10) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3)

(1,10,0) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3,1)

(1,10,0,11) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3,1,1)

(1,10,0,11,1010) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3,1,1,1)

(1,10,0,11,1010,1010011) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3,1,1,1,2)

(1,10,0,11,1010,1010011,100) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

N.B.: The above algorithm has been simplified to run more efficiently. The
reason for this lies in the well-explained self-synchronisation of T-Codes. A T-
Code decoder will not only inherently self-synchronize: Provided that there are no
errors in the string that is being decoded, it can also tell whether it has achieved
synchronisation with respect to the T-Code set it uses for decoding. Hence we
usually do not have to decode the entire string in each pass — the decoding of a

6



suffix of the string is all we need, provided it enables the decoder to synchronize
fully before the decoder hits the run of the T-prefixes for the next T-augmentation.

A more detailed treatment of T-decomposition using the current notation
may be found in [11]. As mentioned above, the original proof may be found
in [2, 8].

4 T-Complexity

When Lempel and Ziv [1] proposed their production complexity, they recognised
that the number of parsing steps would give a meaningful measure of string
complexity.

Titchener pursued a similar thought and proposed a “T-complexity” measure
CT (xa) as follows [10, 7, 9, 13]:

CT (xa) =
n∑

i=1

log2(ki + 1) (2)

where the ki are the T-expansion parameters found in the decomposition of xa.
The units of CT are effective T-augmentation steps, or taugs.

This measure was published in [7] and has since discussed in several other
papers by Titchener [9, 10, 13] and in a paper by Titchener, Fenwick, and
Chen [12]. A further paper by Ebeling, Steuer, and Titchener [14] is in print.

5 Bounds on the T-Complexity

Titchener further contemplated on the question which strings would deliver
maximal/minimal T-complexity for a given length.

For a given string length L, minimal T-complexity is delivered by strings
that contain L − 1 copies of a single letter, repeated over their entire length,
followed by an arbitrary letter. If L is the length of the string xa, then we have
a single step and CT (xa) = log2 L.

Maximal T-complexity is delivered, among others, by strings that satisfy
both of the following two conditions:

1. A T-prescription can be found for the string such that all T-expansion
parameters in the T-prescription are equal to one.

2. All of the T-prefixes in that T-prescription are at most as long as the
shortest codeword from the T-Code set that the string represents,

This ensures a maximum number of T-augmentations for a given length of
string. Note that these two conditions together are sufficient, but not necessary:
If we calculate the T-complexity of all strings of length L, then there there
must obviously always be at least one string whose T-complexity is maximal.
However, there are certain lengths for which no strings exist over a particular
alphabet that satisfy the two conditions above (e.g., there are binary strings

7



with L = 5 and L = 7 that satisfy them, but no such strings exist for L = 6 —
one would need to T-augment with a T-prefix of length 3 while there is still a
codeword of length 2 left in the set).

The construction rule for strings with maximal T-complexity demands that,
for a given alphabet, there must be an upper bound for CT . Titchener found by

experimentation that the logarithmic integral li(L ln #S) =
∫ L ln#S
0

dq
ln q seems

to provide such an upper bound, asymptotically. Moreover, he found that
the maximal T-complexity appears to converge rapidly towards this bound for
strings that are only a few dozen letters long. A proof of this theorem has yet
to be given — it is currently based on experimental evidence only.

Experimental evidence also shows the following:

• If all strings of a given length L are analyzed, they show on average a high
but sub-maximal CT . This is easily explained in that “random” strings
will, during their production in a random process, pick short T-prefixes
with a high likelihood — but that likelihood is not equal to one, and
occasionally a longer T-prefix is picked. Most of the strings of a given
length L have T-complexities that fall within a very narrow band. As L
increases, the distribution of CT values for strings of length L seems to
become increasingly peaked and seems to drop away from the maximum
value of CT for that length.

• Strings that would generally be regarded as being non-random (e.g., rep-
resentations of rational numbers) fall outside of this peak. Irrational num-
bers such as π,

√
2 etc. or strings produced by natural random processes

such as radioactive decay seem to fall inside the band.

6 T-Information and T-Entropy

For practical purposes, i.e., comparisons between strings of different length and
their substrings, a nonlinear concave function such as the logarithmic integral
is a bit unwieldy.

One can argue that a string with maximal CT that is T-augmented a number
of times, each time with one of the – respectively – shortest T-prefixes available,
has information added to it at a high and – approximately – constant rate over
its length.

Applying the inverse logarithmic integral to CT thus results in “linear-
looking” curves for both strings with maximal CT and for strings that fall within
the narrow band mentioned above.

Titchener recognized this [13] and thus defined an information measure IT
as:

IT = li−1(CT ) (3)

where li−1 is the inverse logarithmic integral.
He further defined a T-entropy as HT = ∆IT /∆L, i.e., the rate of change

of IT along the string. Furthermore, he defined H̄T = IT /L as the average
T-entropy.

8



7 Conclusions

The T-complexity definition seems reasonable given a similar approach to string
complexity by Lempel and Ziv [1]. From this, the derivation of T-information
and T-entropy also seem to be reasonable steps to take.

Experimental evidence suggests that they produce “meaningful” results. For
example, recent results by Ebeling, Steuer, and Titchener show that T-entropy
and the Kolmogorov-Sinai entropy seem to be closely related in nonlinear (sym-
bolic) dynamics [14].

To demonstrate this, a web site has been set up which allows online upload
and analysis of files representing strings:

http://www.tcs.auckland.ac.nz/~ulrich/cgi-bin/staff/tcomplexityplot9.cgi

Another web site, exploring the possibility of an application in similarity
searching, has also been set up:

http://www.tcs.auckland.ac.nz/~ulrich/cgi-bin/similarity.cgi

References

[1] A. Lempel and J. Ziv: On the Complexity of Finite Sequences. IEEE Trans.
Inform. Theory”, 22(1), January 1976, pp. 75-81.

[2] R. Nicolescu: Uniqueness Theorems for T-Codes. Technical Report. Tamaki
Report Series no.9, The University of Auckland, 1995.

[3] M. R. Titchener: Generalized T-Codes: an Extended Construction Algo-
rithm for Self-Synchronizing Variable-Length Codes, IEE Proceedings –
Computers and Digital Techniques, 143(3), June 1996, pp. 122-128.

[4] U. Guenther: Data Compression and Serial Communication with Gener-
alized T-Codes, Journal of Universal Computer Science, V. 2, N 11, 1996,
pp. 769-795. http://www.iicm.edu/jucs 2 11

[5] U. Guenther, P. Hertling, R. Nicolescu, and M. R. Titch-
ener: Representing Variable-Length Codes in Fixed-Length T-
Depletion Format in Encoders and Decoders, CDMTCS Research
Report no.44, Centre of Discrete Mathematics and Theoreti-
cal Computer Science, The University of Auckland, August 1997.
http://www.cs.auckland.ac.nz/research/CDMTCS/docs/pubs.html.

[6] U. Guenther, P. Hertling, R. Nicolescu, and M. R. Titchener: Representing
Variable-Length Codes in Fixed-Length T-Depletion Format in Encoders
and Decoders, Journal of Universal Computer Science, 3(11), November
1997, pp. 1207–1225. http://www.iicm.edu/jucs 3 11.

[7] M. R. Titchener: A Deterministic Theory of Complexity, Information and
Entropy, IEEE Information Theory Workshop, February 1998, San Diego.

9



[8] R. Nicolescu and M. R. Titchener, Uniqueness Theorems for T-Codes, Ro-
manian Journal of Information Science and Technology, 1(3), March 1998,
pp. 243–258.

[9] M. R. Titchener, A novel deterministic approach to evaluating the entropy
of language texts, Third International Conference on Information Theoretic
Approaches to Logic, Language and Computation, June 16-19, 1998, Hsi-
tou, Taiwan.

[10] M. R. Titchener, Deterministic computation of string complexity, informa-
tion and entropy, International Symposium on Information Theory, August
16-21, 1998, MIT, Boston.

[11] U. Guenther: Robust Source Coding with Generalized T-
Codes. PhD Thesis, The University of Auckland, 1998.
http://www.tcs.auckland.ac.nz/~ulrich/phd.ps.gz

[12] M. R. Titchener, P. M. Fenwick, and M. C. Chen: Towards a Calibrated
Corpus for Compression Testing, Data Compression Conference, DCC-99,
Snowbird, Utah, March 1999.

[13] M. R. Titchener: A measure of Information, IEEE Data Compression Con-
ference, Snowbird, Utah, March 2000.

[14] W. Ebeling, R. Steuer, and M. R. Titchener: Partition-Based Entropies of
Deterministic and Stochastic Maps, accepted for publication in Stochastics
and Dynamics.

10


