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Abstract

We study e�ectively given positive reals (more speci�cally, computably enu-

merable reals) under a measure of relative randomness introduced by Solovay [30]

and studied by Calude, Hertling, Khoussainov, and Wang [6], Calude [2], Sla-

man [26], and Coles, Downey, and LaForte [12], among others. This measure is

called domination or Solovay reducibility, and is de�ned by saying that � domi-

nates � if there are a constant c and a partial computable function ' such that

for all positive rationals q < � we have '(q) #< � and � � '(q) 6 c(� � q). The

intuition is that an approximating sequence for � generates one for �. It is not

hard to show that if � dominates � then the initial segment complexity of � is at

least that of �.

In this paper we are concerned with structural properties of the degree struc-

ture generated by Solovay reducibility. We answer a long-standing question in

this area of investigation by proving the density of the Solovay degrees. We also

provide a new characterization of the random c.e. reals in terms of splittings in

the Solovay degrees. Speci�cally, we show that the Solovay degrees of computably

enumerable reals are dense, that any incomplete Solovay degree splits over any

lesser degree, and that the join of any two incomplete Solovay degrees is incom-

plete, so that the complete Solovay degree does not split at all. The methodology

is of some technical interest, since it includes a priority argument in which the

injuries are themselves controlled by randomness considerations.
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1 Introduction

In this paper we are concerned with e�ectively generated reals in the interval (0; 1] and

their relative randomness. In what follows, real and rational will mean positive real

and positive rational, respectively. It will be convenient to work modulo 1, that is,

identifying n + � and � for any n 2 ! and � 2 (0; 1], and we do this below without

further comment.

Our basic objects are reals that are limits of computable increasing sequences of ratio-

nals. We call such reals computably enumerable (c.e.), though they have also been called

recursively enumerable, left computable (by Ambos-Spies, Weihrauch, and Zheng [1]),

and, together with the limits of computable decreasing sequences of rationals, semicom-

putable. If, in addition to the existence of a computable increasing sequence q0; q1; : : : of

rationals with limit �, there is a total computable function f such that �� qf(n) < 2�n

for all n 2 !, then � is called computable. These and related concepts have been

widely studied. In addition to the papers and books mentioned elsewhere in this intro-

duction, we may cite, among others, early work of Rice [24], Lachlan [19], Soare [27],

and Ce��tin [8], and more recent papers by Ko [16, 17], Calude, Coles, Hertling, and

Khoussainov [5], Ho [15], and Downey and LaForte [14].

A real is random if its dyadic expansion forms a random in�nite binary sequence (in

the sense of, for instance, Martin-L�of [23]). Chaitin's number 
, the halting probability

of a universal self-delimiting computer, is a standard random c.e. real. (We will de�ne

these concepts more formally below.)

Many authors have studied 
 and its properties, notably Chaitin [9, 10, 11] and

Martin-L�of [23]. In the very long and widely circulated manuscript [30] (a fragment of

which appeared in [31]), Solovay carefully investigated relationships between Martin-L�of-

Chaitin pre�x-free complexity, Kolmogorov complexity, and properties of random lan-

guages and reals. See Chaitin [9] for an account of some of the results in this manuscript.

Solovay discovered that several important properties of 
 (whose de�nition is model-

dependent) are shared by another class of reals he called 
-like, whose de�nition is

model-independent. To de�ne this class, he introduced the following reducibility relation

among c.e. reals, called domination or Solovay reducibility.

1.1. De�nition. Let � and � be c.e. reals. We say that � dominates �, and write

� 6S �, if there are a constant c and a partial computable function ' : Q ! Q such

that for each rational q < � we have '(q)#< � and

� � '(q) 6 c(�� q):

We write � �S � if � 6S � and � 6S �.
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The notation 6dom has sometimes been used instead of 6S.

Solovay reducibility is naturally associated with randomness because of the following

fact, whose proof we sketch for completeness. Let H(�) denote the pre�x-free complexity

of � and K(�) its standard Kolmogorov complexity. (Most of the statements below also

hold with K(�) in place of H(�). For the de�nitions and basic properties of H(�) and

K(�), see Calude [3] and Li and Vitanyi [22]. Among the many works dealing with

these and related topics, and in addition to those mentioned elsewhere in this paper,

we may cite Solomono� [28, 29], Kolmogorov [18], Levin [20, 21], Schnorr [25], and the

expository article Calude and Chaitin [4].) We identify a real � 2 (0; 1] with the in�nite

binary string � such that � = 0:�. (The fact that certain reals have two di�erent dyadic

expansions need not concern us here, since all such reals are rational.)

1.2. Theorem (Solovay [30]). Let � 6S � be c.e. reals. There is a constant O(1)

such that H(� � n) 6 H(� � n) +O(1) for all n 2 !.

Proof sketch. We �rst sketch the proof of the following lemma, implicit in [30] and noted

by Calude, Hertling, Khoussainov, and Wang [6].

1.3. Lemma. Let c 2 !. There is a constant O(1) such that, for all n > 1 and all

binary strings �; � of length n with j0:� � 0:� j < c2�n, we have jH(�)�H(�)j 6 O(1).

The proof of the lemma is relatively simple. We can easily write a program P that,

for each suÆciently long �, generates the 2c + 1 binary strings �
0 of length n with

j0:� � 0:� 0j < c2�n. For any binary strings �; � of length n with j0:� � 0:� j < c2�n, in

order to compute � it suÆces to know a program for � and the position of � on the list

generated by P on input �.

Turning to the proof of the theorem, let ' and c be as in De�nition 1.1. Let �n =

0:(� � n). Since �n is rational and ���n < 2�(n+1), we have ��'(�n) < c2�(n+1). Thus,

by the lemma,H(� � n) = H('(�n))+O(1), and hence H(� � n) 6 H(� � n)+O(1).

Solovay observed that 
 dominates all c.e. reals, and Theorem 1.2 implies that if a

c.e. real dominates all c.e. reals then it must be random. This led Solovay to de�ne a

c.e. real to be 
-like if it dominates all c.e. reals. The point is that the de�nition of


-like seems quite model-independent, as opposed to the model-dependent de�nition of


. This circle of ideas was completed recently by Slaman [26], who proved the converse

to the fact that 
-like reals are random.

1.4. Theorem (Slaman). A c.e. real is random if and only if it is 
-like.
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It is natural to seek to understand the c.e. reals under Solovay reducibility. A useful

characterization of this reducibility is given by the following lemma, which we prove in

the next section.

1.5. Lemma. Let � and � be c.e. reals. Then � 6S � if and only if for every computable

sequence of rationals a0; a1; : : : such that

� =
X

n2!

an

there are a constant c and a computable sequence of rationals "0; "1; : : : < c such that

� =
X

n2!

"nan:

Phrased another way, Lemma 1.5 says that the c.e. reals dominated by a given c.e.

real � essentially correspond to splittings of � under arithmetic addition.

1.6. Corollary. Let � 6S � be c.e. reals. There is a c.e. real  and a rational c such

that c� = � + .

Proof. Let a0; a1; : : : be a computable sequence of rationals such that � =
P

n2! an. Let

c 2 Q and "0; "1; : : : < c be as in Lemma 1.5. De�ne  =
P

n2!(c � "n)an. Since each

"n is less than c, the real  is c.e., and of course � +  = �.

Solovay reducibility has a number of other beautiful interactions with arithmetic, as

we now discuss.

The relation 6S is symmetric and transitive, and hence �S is an equivalence relation

on the c.e. reals. Thus we can de�ne the Solovay degree [�] of a c.e. real � as its �S

equivalence class. (When we mention Solovay degrees below, we always mean Solovay

degrees of c.e. reals.) The Solovay degrees form an upper semilattice, with the join of

[�] and [�] being [�+�]=[��], a fact observed by Solovay and others (� is de�nitely not

a join operation here). We note the following slight improvement of this result. Recall

that an uppersemilattice U is distributive if for all a0; a1; b 2 U with b 6 a0 _ a1 there

exist b0; b1 2 U such that b0 _ b1 = b and bi 6 ai for i = 0; 1.

1.7. Lemma. The Solovay degrees of c.e. reals form a distributive uppersemilattice with

[�] _ [�] = [� + �] = [��].

Proof. Suppose that � 6S �0+�1. Let a
0
0; a

0
1; : : : and a

1
0; a

1
1; : : : be computable sequences

of rationals such that �i =
P

n2! a
i
n for i = 0; 1. By Lemma 1.5, there are a constant c

and a computable sequence of rationals "0; "1; : : : < c such that � =
P

n2! "n(a
0
n + a

1
n).
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Let �i =
P

n2! "na
i
n. Then � = �0 + �1 and, again by Lemma 1.5, �i 6S �i for i = 0; 1.

This establishes distributivity.

To see that the join in the Solovay degrees is given by addition, we again apply

Lemma 1.5. Certainly, for any c.e. reals �0 and �1 we have �i 6S �0 + �1 for i = 0; 1,

and hence [�0 + �1] >S [�0]; [�1]. Conversely, suppose that �0; �1 6 �. Let a0; a1; : : :

be a computable sequence of rationals such that � =
P

n2! an. For each i = 0; 1

there is a constant ci and a computable sequence of rationals "i0; "
i
1; : : : < ci such that

�i =
P

n2! "
i
nan. Thus �0+�1 =

P
n2!("

0
n+"

1
n)an. Since each "

0
n+"

1
n is less than c0+c1,

a �nal application of Lemma 1.5 show that �0 + �1 6S �.

The proof that the join in the Solovay degrees is also given by multiplication is a

similar application of Lemma 1.5.

There is a least Solovay degree, the degree of the computable reals, as well as a

greatest one, the degree of 
. For proofs of these facts and more on c.e. reals and

Solovay reducibility, see for instance Chaitin [9, 10, 11], Calude, Hertling, Khoussainov,

and Wang [6], Calude and Nies [7], Calude [2], Slaman [26], and Coles, Downey, and

LaForte [12].

Despite the many attractive features of the Solovay degrees, their structure is largely

unknown. Coles, Downey, and LaForte [12] have shown that this structure is very

complicated by proving that it has an undecidable �rst order theory.

One question addressed in the present paper, open since Solovay's original 1974

notes, is whether the structure of the Solovay degrees is dense. Indeed, up to now, it

was not known even whether there is a minimal Solovay degree. That is, intuitively, if

a c.e. real � is not computable, must there be a c.e. real that is also not computable,

yet is strictly less random that �?

In this paper, we show that the Solovay degrees of c.e. reals are dense. To do this

we divide the proof into two parts. We prove that if � <S 
 then there is a c.e. real 

with � <S  <S 
, and we also prove that every incomplete Solovay degree splits over

each lesser degree.

The nonuniform nature of the argument is essential given the techniques we use,

since, in the splitting case, we have a priority construction in which the control of the

injuries is directly tied to the enumeration of 
. The fact that if a c.e. real � is Solovay-

incomplete then 
 must grow more slowly than � is what allows us to succeed. (We

will discuss this more fully in Section 3.) This unusual technique is of some technical

interest, and clearly cannot be applied to proving upwards density, since in that case

the top degree is 
 itself. To prove upwards density, we use a di�erent technique,

taking advantage of the fact that, however we construct a c.e. real, it is automatically
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dominated by 
.

In light of these results, and further motivated by the general question of how ran-

domness can be produced, it is natural to ask whether the complete Solovay degree can

be split, or in other words, whether there exist nonrandom c.e. reals � and � such that

� + � is random. We give a negative answer to this question, thus characterizing the

random c.e. reals as those c.e. reals that cannot be written as the sum of two c.e. reals

of lesser Solovay degrees.

We remark that there are (non-c.e.) nonrandom reals whose sum is random; the

following is an example of this phenomenon. De�ne the real � by letting �(n) = 0 if n

is even and �(n) = 
(n) otherwise. (Here we identify a real with its dyadic expansion

as above.) De�ne the real � by letting �(n) = 0 if n is odd and �(n) = 
(n) otherwise.

Now � and � are clearly nonrandom, but � + � = 
 is random.

Before turning to the details of the paper, we point out that there are other reducibil-

ities one can study in this context. Coles, Downey, and LaForte [12, 13] introduced one

such reducibility, called sw-reducibility ; it is de�ned as follows. For sets of natural num-

bers A and B, we say that A 6sw B if there are a computable procedure � and a

constant c such that �B = A and the use of � on argument x is bounded by x+ c. For

reals �; � 2 (0; 1], we say that � 6sw � if there are sets A and B such that � = 0:�A,

� = 0:�B, and A 6sw B, where �S is the characteristic function of the set S.

As in the case of Solovay reducibility, it is not diÆcult to argue that if � 6sw � then

H(� � n) 6 H(� � n) + O(1) for all n 2 !, and that 
 is sw-complete. Furthermore,

Coles, Downey, and LaForte [12] proved the analog of Slaman's theorem above in the

case of sw-reducibility, namely that if a c.e. real is random then it is sw-complete. They

also showed that Solovay reducibility and sw-reducibility are di�erent, since there are

c.e. reals �, �, , and Æ such that � 6S � but � 
sw � and  6sw Æ but  
S Æ, and that

there are no minimal sw-degrees of c.e. reals.

1.8. Question. Are the sw-degrees of c.e. reals dense?

Ultimately, the basic reducibility we seek to understand is H-reducibility, where

� 6H � if there is a constant O(1) such that H(� � n) 6 H(� � n) +O(1) for all n 2 !.

Little is known about this directly.
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2 Preliminaries

Fix a self-delimiting universal computer M . (That is, for all binary strings �, if M(�)#

then M(�0)" for all �0 properly extending �.) Then one can de�ne 
 = 
M via


 =
X

M(�)#

2�j�j
:

(The properties of 
 relevant to this paper are independent of the choice of M .)

The c.e. real 
 is random in the canonical Martin-L�of sense. Recall that a Martin-

L�of test is a uniformly c.e. sequence fVe : e > 0g of subsets of f0; 1g� such that for all

e > 0,

�(Vef0; 1g
!) 6 2�e;

where � denotes the usual product measure on f0; 1g!. The string � 2 f0; 1g! and

the real 0:� are random, or more precisely, 1-random, if � =2
T

e>0 Vef0; 1g
! for every

Martin-L�of test fVe : e > 0g.

An alternate characterization of the random reals can be given via the notion of a

Solovay test. We give a somewhat nonstandard de�nition of this notion, which will be

useful below. A Solovay test is a c.e. sequence fIi : i 2 !g of intervals with rational end-

points such that
P

i2! jIij <1, where jIj is the length of the interval I. As Solovay [30]

showed, a real � is random if and only if fi 2 ! j � 2 Iig is �nite for every Solovay test

fIi : i 2 !g.

The following lemma, implicit in [30] and proved in [12], provides an alternate char-

acterization of Solovay reducibility, which is the one that we will use below.

2.1. Lemma. Let � and � be c.e. reals, and let �0; �1; : : : and �0; �1; : : : be computable

increasing sequences of rationals converging to � and �, respectively. Then � 6S � if

and only if there are a constant d and a total computable function f such that for all

n 2 !,

� � �f(n) < d(�� �n):

Whenever we mention a c.e. real �, we assume that we have chosen a computable

increasing sequence �0; �1; : : : converging to �. The previous lemma guarantees that,

in determining whether one c.e. real dominates another, the particular choice of such

sequences is irrelevant. For convenience of notation, we adopt the convention that, for

any c.e. real � mentioned below, the expression �s � �s�1 is equal to �0 when s = 0.

We will also make use of two more lemmas, the �rst of which has Lemma 1.5 as a

corollary.
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2.2. Lemma. Let � 6S � be c.e. reals and let �0; �1; : : : be a computable increasing se-

quence of rationals converging to �. There is a computable increasing sequence �̂0; �̂1; : : :

of rationals converging to � such that for some constant c and all s 2 !,

�̂s � �̂s�1 < c(�s � �s�1):

Proof. Fix a computable increasing sequence �0; �1; : : : of rationals converging to �, let

d and f be as in Lemma 2.1, and let c > d be such that �f(0) < c�0. We may assume

without loss of generality that f is increasing. De�ne �̂0 = �f(0).

There must be an s0 > 0 for which �f(s0) � �f(0) < d(�s0 � �0), since otherwise we

would have

� � �f(0) = lims�f(s) � �f(0) > limsd(�s � �0) = �� �0;

contradicting our choice of d and f . It is now easy to de�ne �̂1; : : : ; �̂s0 so that �̂0 <

� � � < �̂s0, �̂s0 = �f(s0), and �̂s � �̂s�1 6 d(�s � �s�1) < c(�s � �s�1) for all s 6 s0.

We can repeat the procedure in the previous paragraph with s0 in place of 0 to

obtain an s1 > s0 and �̂s0+1; : : : ; �̂s1 such that �̂s0 < � � � < �̂s1, �̂s1 = �f(s1), and

�̂s � �̂s�1 < c(�s � �s�1) for all s0 < s 6 s1.

Proceeding by recursion in this way, we de�ne a computable increasing sequence

�̂0; �̂1; : : : of rationals with the desired properties.

We are now in a position to prove Lemma 1.5.

1.5. Lemma. Let � and � be c.e. reals. Then � 6S � if and only if for every computable

sequence of rationals a0; a1; : : : such that

� =
X

n2!

an

there are a constant c and a computable sequence of rationals "0; "1; : : : < c such that

� =
X

n2!

"nan:

Proof. The if direction is easy; we prove the only if direction.

Suppose that � 6S �. Given a computable sequence of rationals a0; a1; : : : such that

� =
P

n2! an, let �n =
P

i6n ai and apply Lemma 2.2 to obtain c and �̂0; �̂1; : : : as in

that lemma. De�ne "n = (�̂n � �̂n�1)a
�1
n . Now

P
n2! "nan =

P
n2! �̂n � �̂n�1 = �, and

for all n 2 !,

"n = (�̂n � �̂n�1)a
�1
n = (�̂n � �̂n�1)(�n � �n�1)

�1
6 c:
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We �nish this section with a simple lemma which will be quite useful below.

2.3. Lemma. Let � 
S � be c.e. reals. The following hold for all total computable

functions f and all k 2 !.

1. For each n 2 ! there is an s 2 ! such that either

(a) �t � �f(n) < k(�t � �n) for all t > s or

(b) �t � �f(n) > k(�t � �n) for all t > s.

2. There are in�nitely many n 2 ! for which there is an s 2 ! such that �t��f(n) >

k(�t � �n) for all t > s.

Proof. If there are in�nitely many t 2 ! such that �t��f(n) 6 k(�t��n) and in�nitely

many t 2 ! such that �t � �f(n) > k(�t � �n) then

�� �f(n) = limt�t � �f(n) = limtk(�t � �n) = k(� � �n);

which implies that � �S �.

If there are in�nitely many t 2 ! such that �t � �f(n) 6 k(�t � �n) then

�� �f(n) = limt�t � �f(n) 6 limtk(�t � �n) = k(� � �n):

So if this happens for all but �nitely many n then � 6S �. (The �nitely many n for

which ���f(n) > k(�� �n) can be brought into line by increasing the constant k.)

3 Main Results

We now proceed with the proofs of our main results. We begin by showing that every

incomplete Solovay degree can be split over any lesser Solovay degree.

3.1. Theorem. Let  <S � <S 
 be c.e. reals. There are c.e. reals �0 and �
1 such that

 <S �
0
; �

1
<S � and �

0 + �
1 = �.

Proof. We want to build �
0 and �

1 so that  6S �
0
; �

1 6S �, �0 + �
1 = �, and the

following requirement is satis�ed for each e; k 2 ! and i < 2:

Ri;e;k : �e total ) 9n(�� ��e(n) > k(�i � �
i
n)):

By Lemma 2.2 and the fact that =c �S  for any rational c, we may assume without

loss of generality that 2(s � s�1) 6 �s � �s�1 for each s 2 !. (Recall our convention

that �0 � ��1 = �0 for any c.e. real �.)
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In the absence of requirements of the form R1�i;e;k, it is easy to satisfy simultaneously

all requirements of the form Ri;e;k: for each s 2 !, simply let �is = s and �
1�i
s = �s�s.

In the presence of requirements of the form R1�i;e;k, however, we cannot a�ord to be

quite so cavalier in our treatment of �1�i; enough of � has to be kept out of �1�i to

guarantee that �1�i does not dominate �.

Most of the essential features of our construction are already present in the case of

two requirements Ri;e;k and R1�i;e0;k0, which we now discuss. We assume that Ri;e;k has

priority over R1�i;e0;k0 and that both �e and �e0 are total. We will think of the �j as

being built by adding amounts to them in stages. Thus �js will be the total amount

added to �j by the end of stage s. At each stage s we begin by adding s � s�1 to the

current value of each �
j; in the limit, this ensures that �j >S .

We will say that Ri;e;k is satis�ed through n at stage s if �e(n)[s]# and �s���e(n) >

k(�is � �
i
n). The strategy for Ri;e;k is to act whenever either it is not currently satis�ed

or the least number through which it is satis�ed changes. Whenever this happens, Ri;e;k

initializes R1�i;e0;k0, which means that the amount of �� 2 that R1�i;e0;k0 is allowed to

funnel into �
i is reduced. More speci�cally, once R1�i;e0;k0 has been initialized for the

mth time, the total amount that it is thenceforth allowed to put into �
i is reduced to

2�m.

The above strategy guarantees that if R1�i;e0;k0 is initialized in�nitely often then the

amount put into �
i by R1�i;e0;k0 (which in this case is all that is put into �i except for

the coding of ) adds up to a computable real. In other words, �i �S  <S �. But it is

not hard to argue, with the help of Lemma 2.3, that this means that there is a stage s

after which Ri;e;k is always satis�ed and the least number through which it is satis�ed

does not change. So we conclude that R1�i;e0;k0 is initialized only �nitely often, and that

Ri;e;k is eventually permanently satis�ed.

This leaves us with the problem of designing a strategy for R1�i;e0;k0 that respects the

strategy for Ri;e;k. The problem is one of timing. To simplify notation, let �̂ = �� 2

and �̂s = �s � 2s. Since R1�i;e0;k0 is initialized only �nitely often, there is a certain

amount 2�m that it is allowed to put into �
i after the last time it is initialized. Thus

if R1�i;e0;k0 waits until a stage s such that �̂ � �̂s < 2�m, adding nothing to �
i until

such a stage is reached, then from that point on it can put all of �̂� �̂s into �
i, which

of course guarantees its success. The problem is that, in the general construction, a

strategy working with a quota 2�m cannot e�ectively �nd an s such that �̂� �̂s < 2�m.

If it uses up its quota too soon, it may �nd itself unsatis�ed and unable to do anything

about it.

The key to solving this problem (and the reason for the hypothesis that � <S 
) is
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the observation that, since the sequence 
0;
1; : : : converges much more slowly than

the sequence �̂0; �̂1; : : : , 
 can be used to modulate the amount that R1�i;e0;k0 puts into

�
i. More speci�cally, at a stage s, if R1�i;e0;k0's current quota is 2�m then it puts into �i

as much of �̂s � �̂s�1 as possible, subject to the constraint that the total amount put

into �i by R1�i;e0;k0 since the last stage before stage s at which R1�i;e0;k0 was initialized

must not exceed 2�m
s. As we will see below, the fact that 
 >S � implies that there

is a stage v after which R1�i;e0;k0 is allowed to put in all of �̂� �̂v into �
i.

In general, at a given stage s there will be several requirements, each with a certain

amount that it wants (and is allowed) to direct into one of the �j. We will work back-

wards, starting with the weakest priority requirement that we are currently considering.

This requirement will be allowed to direct as much of �̂s � �̂s�1 as it wants (subject to

its current quota, of course). If any of �̂s � �̂s�1 is left then the next weakest priority

strategy will be allowed to act, and so on up the line.

We now proceed with the full construction. We say that Ri;e;k has stronger priority

than Ri0;e0;k0 if 2he; ki+ i < 2he0; k0i+ i
0.

We say that Ri;e;k is satis�ed through n at stage s if

�e(n)[s]# ^ �s � ��e(n) > k(�is � �
i
n):

Let ni;e;ks be the least n through which Ri;e;k is satis�ed at stage s, if such an n exists,

and let ni;e;ks =1 otherwise.

A stage s is e-expansionary if

maxfn j 8m 6 n(�e(m)[s]#)g > maxfn j 8m 6 n(�e(n)[s� 1]#)g:

Let q be the last e-expansionary stage before stage s (or let q = 0 if there have been

none). We say that Ri;e;k requires attention at stage s if s is an e-expansionary stage

and there is an r 2 [q; s) such that either ni;e;kr =1 or ni;e;kr 6= n

i;e;k
r�1 .

If Ri;e;k requires attention at stage s then we say that each requirement of weaker

priority than Ri;e;k is initialized at stage s.

Each requirement Ri;e;k has associated with it a c.e. real � i;e;k, which records the

amount put into �1�i for the sake of Ri;e;k.

We decide how to distribute Æ = �s � �s�1 between �
0 and �

1 at stage s as follows.

1. Let j = s and " = 2(s� s�1), and add s� s�1 to the current value of each �
i.

2. Let i < 2 and e; k 2 ! be such that 2he; ki+ i = j. Let m be the number of times

Ri;e;k has been initialized and let t be the last stage at which Ri;e;k was initialized.

Let

� = min(Æ � "; 2�(j+m)
s � (�
i;e;k
s�1 � �

i;e;k
t )):

11



(It is not hard to check that � is non-negative.) Add � to " and to the current

values of � i;e;k and �
1�i.

3. If " = Æ or j = 0 then add Æ � " to the current value of �0 and end the stage.

Otherwise, decrease j by one and go to step 2.

This completes the construction. Clearly,  6S �
0
; �

1 6S � and �
0 + �

1 = �.

We now show by induction that each requirement initializes requirements of weaker

priority only �nitely often and is eventually satis�ed. Assume by induction that Ri;e;k

is initialized only �nitely often. Let j = 2he; ki+ i, let m be the number of times Ri;e;k

is initialized, and let t be the last stage at which Ri;e;k is initialized. If �e is not total

then Ri;e;k is vacuously satis�ed and eventually stops initializing requirements of weaker

priority, so we may assume that �e is total. Now the following are clearly equivalent:

1. Ri;e;k is satis�ed,

2. lims n
i;e;k
s exists and is �nite, and

3. Ri;e;k eventually stops requiring attention.

Assume for a contradiction that Ri;e;k requires attention in�nitely often. Since 
 
S

�, part 2 of Lemma 2.3 implies that there are v > u > t such that for all w > v we have

2�(j+m)(
w � 
u) > �w � �u. Furthermore, by the way the amount � added to �
i;e;k

at a given stage is de�ned in step 2 of the construction, � i;e;ku � �

i;e;k
t 6 2�(j+m)
u and

�

i;e;k
w�1 � �

i;e;k
u 6 �w�1 � �u. Thus for all w > v,

�w � �w�1 = �w � �u � (�w�1 � �u) <

2�(j+m)(
w � 
u)� (�w�1 � �u) = 2�(j+m)
w � (2�(j+m)
u + �w�1 � �u) 6

2�(j+m)
w � (� i;e;ku � �

i;e;k
t + �

i;e;k
w�1 � �

i;e;k
u ) = 2�(j+m)
w � (�

i;e;k
w�1 � �

i;e;k
t ):

From this we conclude that, after stage v, the reverse recursion performed at each stage

never gets past j, and hence everything put into �i after stage v is put in either to code

 or for the sake of requirements of weaker priority than Ri;e;k.

Let � be the sum of all � 1�i;e
0;k0

such that R1�i;e0;k0 has weaker priority than Ri;e;k.

Let sl > t be the lth stage at which Ri;e;k requires attention. If R1�i;e0;k0 is the pth

requirement on the priority list and p > j then �
i0;e0;k0

� �
i0;e0;k0

sl
6 2�(p+l)
. Thus

� � �sl 6
X

p>1

2�(p+l)
 = 2�l
 6 2�l;

and hence � is computable.
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Putting together the results of the previous two paragraphs, we see that �i 6S .

Since � 
S , this means that � 
S �
i. It now follows from Lemma 2.3 that there is an

n 2 ! such that Ri;e;k is eventually permanently satis�ed through n, and such that Ri;e;k

is eventually never satis�ed through any n0
< n. Thus lims n

i;e;k
s exists and is �nite, and

hence Ri;e;k is satis�ed and eventually stops requiring attention.

We now show that the Solovay degrees are upwards dense, which together with the

previous result implies that they are dense.

3.2. Theorem. Let  <S 
 be a c.e. real. There is a c.e. real � such that  <S � <S 
.

Proof. We want to build � >S  to satisfy the following requirements for each e; k 2 !:

Re;k : �e total ) 9n(� � ��e(n) > k( � n))

and

Se;k : �e total ) 9n(
� 
�e(n) > k(� � �n)):

As in the previous proof, the analysis of an appropriate two-strategy case will be

enough to outline the essentials of the full construction. Let us consider the strategies

Se;k and Re0;k0, the former having priority over the latter. We assume that both �e and

�e0 are total.

The strategy for Se;k is basically to make � look like . At each point of the con-

struction, Re0;k0 has a certain fraction of 
 that it is allowed to put into �. (This is in

addition to the coding of  into �, of course.) We will say that Se;k is satis�ed through

n at stage s if �e(n)# and 
s�
�e(n) > k(�s��n). Whenever either it is not currently

satis�ed or the least number through which it is satis�ed changes, Se;k initializes Re0;k0,

which means that the fraction of 
 that Re0;k0 is allowed to put into � is reduced.

As in the previous proof, if Se;k is not eventually permanently satis�ed through some

n then the amount put into � by Re0;k0 is computable, and hence � �S . But, as before,

this implies that there is a stage after which Se;k is permanently satis�ed through some

n and never again satis�ed through any n0
< n. Once this stage has been reached, Re0;k0

is free to code a �xed fraction of 
 into �, and hence it too succeeds.

We now proceed with the full construction. We say that a requirement Xe;k has

stronger priority than a requirement Ye0;k0 if either he; ki < he0; k0i or he; ki = he0; k0i,

X = R, and Y = S.

We say that Re;k is satis�ed through n at stage s if �e(n)# and

�s � ��e(n) > k(s � n):

13



We say that Se;k is satis�ed through n at stage s if �e(n)# and


s � 
�e(n) > k(�s � �n):

For a requirement Xe;k, let n
Xe;k

s be the least n through which Xe;k is satis�ed at stage s,

if such an n exists, and let n
Xe;k

s =1 otherwise.

As before, a stage s is e-expansionary if

maxfn j 8m 6 n(�e(m)[s]#)g > maxfn j 8m 6 n(�e(n)[s� 1]#)g:

Let Xe;k be a requirement and let q be the last e-expansionary stage before stage s (or

let q = 0 if there have been none). We say that Xe;k requires attention at stage s if

s is an e-expansionary stage and there is an r 2 [q; s) such that either n
Xe;k

r = 1 or

n

Xe;k

r 6= n

Xe;k

r�1 .

At stage s, proceed as follows. First add s � s�1 to the current value of �. If no

requirement requires attention at stage s then end the stage. Otherwise, let Xe;k be the

strongest priority requirement requiring attention at stage s. We say that Xe;k acts at

stage s. If X = S then initialize all weaker priority requirements and end the stage.

If X = R then let j = he; ki and let m be the number of times that Re;k has been

initialized. If s is the �rst stage at which Re;k acts after the last time it was initialized

then let t be the last stage at which Re;k was initialized, and otherwise let t be the last

stage at which Re;k acted. Add 2�(j+m)(
s � 
t) to the current value of � and end the

stage.

This completes the construction. Since � is bounded by  +
P

i>0 2
�i
 =  + 2
, it

is a well-de�ned c.e. real. Furthermore,  6S �.

We now show by induction that each requirement initializes requirements of weaker

priority only �nitely often and is eventually satis�ed. Assume by induction that there

is a stage u such that no requirement of stronger priority than Xe;k requires attention

after stage u. If �e is not total then Xe;k is vacuously satis�ed and eventually stops

requiring attention, so we may assume that �e is total. Now the following are clearly

equivalent:

1. Xe;k is satis�ed,

2. lims n
Xe;k

s exists and is �nite,

3. Xe;k eventually stops requiring attention, and

4. Xe;k acts only �nitely often.
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First suppose that X = R. Let j = he; ki and let m be the number of times that

Re;k is initialized. (Since Re;k is not initialized at any stage after stage u, this number

is �nite.) Suppose that Re;k acts in�nitely often. Then the total amount added to � for

the sake of Re;k is 2
�(j+m)
, and hence � �S 2

�(j+m)
 �S 
 
S . It now follows from

Lemma 2.3 that there is an n 2 ! such that Re;k is eventually permanently satis�ed

through n, and such that Re;k is eventually never satis�ed through n
0
< n. Thus

lims n
Re;k

s exists and is �nite, and hence Re;k is satis�ed and eventually stops requiring

attention.

Now suppose that X = S and Se;k acts in�nitely often. If v > u is the mth stage at

which Se;k acts then the total amount added to � after stage v for purposes other than

coding  is bounded by
P

i>0 2
�(i+m)
 < 2�m+1. This means that � �S  �S 
. It now

follows from Lemma 2.3 that there is an n 2 ! such that Se;k is eventually permanently

satis�ed through n, and such that Se;k is eventually never satis�ed through n
0
< n. Thus

lims n
Se;k

s exists and is �nite, and hence Se;k is satis�ed and eventually stops requiring

attention.

Combining Theorems 3.1 and 3.2, we have the following result.

3.3. Theorem. The Solovay degrees of c.e. reals are dense.

We �nish by showing that the hypothesis that � <S 
 in the statement of Theo-

rem 3.1 is necessary. This fact will follow easily from a stronger result which shows

that, despite the upwards density of the Solovay degrees, there is a sense in which the

complete Solovay degree is very much above all other Solovay degrees. We begin with a

lemma giving a suÆcient condition for domination.

3.4. Lemma. Let f be an increasing total computable function and let k > 0 be a

natural number. Let � and � be c.e. reals for which there are in�nitely many s 2 ! such

that k(���s) > ���f(s), but only �nitely many s 2 ! such that k(�t��s) > �f(t)��f(s)

for all t > s. Then � 6S �.

Proof. By taking �f(0); �f(1); : : : instead of �0; �1; : : : as an approximating sequence for

�, we may assume that f is the identity.

By hypothesis, there is an r 2 ! such that for all s > r there is a t > s with

k(�t � �s) 6 �t � �s. Furthermore, there is an s0 > r such that k(� � �s0) > � � �s0 .

Given si, let si+1 be the least number greater than si such that k(�si+1��si) 6 �si+1��si .

Assuming by induction that k(�� �si) > � � �si, we have

k(�� �si+1) = k(�� �si)� k(�si+1 � �si) > � � �si � (�si+1 � �si) = � � �si+1:
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Thus s0 < s1 < � � � is a computable sequence such that k(� � �si) > � � �si for all

i 2 !.

Now de�ne the computable function g by letting g(n) be the least si that is greater

than or equal to n. Then � � �g(n) < k(�� �g(n)) 6 k(�� �n) for all n 2 !, and hence

� 6S �.

3.5. Theorem. Let � and � be c.e. reals, let f be an increasing total computable func-

tion, and let k > 0 be a natural number. If � is random and there are in�nitely many

s 2 ! such that k(�� �s) > � � �f(s) then � is random.

Proof. As in Lemma 3.4, we may assume that f is the identity. If � is rational then we

can replace it with a nonrational computable real �0 such that �0 � �
0

s > �� �s for all

s 2 !, so we may assume that � is not rational.

We assume that � is nonrandom and there are in�nitely many s 2 ! such that

k(�� �s) > � � �s, and show that � is nonrandom. The idea is to take a Solovay test

A = fIi : i 2 !g such that � 2 Ii for in�nitely many i 2 ! and use it to build a Solovay

test B = fJi : i 2 !g such that � 2 Ji for in�nitely many i 2 !.

Let

U = fs 2 ! j k(�� �s) > � � �sg:

Except in the trivial case in which � �S �, Lemma 2.3 guarantees that U is �0
2. Thus

a �rst attempt at building B could be to run the following procedure for all i 2 ! in

parallel. Look for the least t such that there is an s < t with s 2 U [t] and �s 2 Ii. If

there is more than one number s with this property then choose the least among such

numbers. Begin to add the intervals

[�s; �s + k(�s+1 � �s)]; [�s + k(�s+1 � �s); �s + k(�s+2 � �s)]; : : : (�)

to B, continuing to do so as long as s remains in U and the approximation of � remains

in Ii. If the approximation of � leaves Ii then end the procedure. If s leaves U , say at

stage u, then repeat the procedure (only considering t > u, of course).

If � 2 Ii then the variable s in the above procedure eventually assumes a value in

U . For this value, k(� � �s) > � � �s, from which it follows that k(�u � �s) > � � �s

for some u > s, and hence that � 2 [�s; �s + k(�u � �s)]. So � must be in one of the

intervals (�) added to B by the above procedure.

Since � is in in�nitely many of the Ii, running the above procedure for all i 2 !

guarantees that � is in in�nitely many of the intervals in B. The problem is that

we also need the sum of the lengths of the intervals in B to be �nite, and the above

procedure gives no control over this sum, since it could easily be the case that we start
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working with some s, see it leave U at some stage t (at which point we have already

added to B intervals whose lengths add up to �t�1 � �s), and then �nd that the next

s with which we have to work is much smaller than t. Since this could happen many

times for each i 2 !, we would have no bound on the sum of the lengths of the intervals

in B.

This problem would be solved if we had an in�nite computable subset T of U . For

each Ii, we could look for an s 2 T such that �s 2 Ii, and then begin to add the

intervals (�) to B, continuing to do so as long as the approximation of � remained in Ii.

(Of course, in this easy setting, we could also simply add the single interval [�s; �s+k jIj]

to B.) It is not hard to check that this would guarantee that if � 2 Ii then � is in one

of the intervals added to B, while also ensuring that the sum of the lengths of these

intervals is less than or equal to k jIij. Following this procedure for all i 2 ! would give

us the desired Solovay test B. Unless � 6S �, however, there is no in�nite computable

T � U , so we use Lemma 3.4 to obtain the next best thing.

Let

S = fs 2 ! j 8t > s(k(�t � �s) > �t � �s)g:

If � 6S � then � is nonrandom, so, by Lemma 3.4, we may assume that S is in�nite.

Note that k(���s) > ���s for all s 2 S. In fact, we may assume that k(���s) > ���s

for all s 2 S, since if k(���s) = ���s then k� and � di�er by a rational amount, and

hence � is nonrandom.

The set S is co-c.e. by de�nition, but it has an additional useful property. Let

S[t] = fs 2 ! j 8u 2 (s; t](k(�u � �s) > �u � �s)g:

If s 2 S[t� 1]� S[t] then no u 2 (s; t) is in S, since for any such u we have

k(�t � �u) = k(�t � �s)� k(�u � �s) 6 �t � �s � (�u � �s) = �t � �u:

In other words, if s leaves S at stage t then so do all numbers in (s; t).

To construct B, we run the following procedure Pi for all i 2 ! in parallel. Note

that B is a sequence rather than a set, so we are allowed to add more than one copy of

a given interval to B.

1. Look for an s 2 ! such that �s 2 Ii.

2. Let t = s+ 1. If �t =2 Ii then terminate the procedure.

3. If s =2 S[t] then let s = t and go to step 2. Otherwise, add the interval

[�s + k(�t�1 � �s); �s + k(�t � �s)]

to B, increase t by one, and repeat step 3.
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This concludes the construction of B. We now show that the sum of the lengths of

the intervals in B is �nite and that � is in in�nitely many of the intervals in B.

For each i 2 !, let Bi be the set of intervals added to B by Pi and let li be the sum of

the lengths of the intervals in Bi. If Pi never leaves step 1 then Bi = ;. If Pi eventually

terminates then li 6 k(�t � �s) for some s; t 2 ! such that �s; �t 2 Ii, and hence

li 6 k jIij. If Pi reaches step 3 and never terminates then � 2 Ii and li 6 k(�� �s) for

some s 2 ! such that �s 2 Ii, and hence again li 6 k jIij. Thus the sum of the lengths

of the intervals in B is less than or equal to k
P

i2! jIij <1.

To show that � is in in�nitely many of the intervals in B, it is enough to show that,

for each i 2 !, if � 2 Ii then � is in one of the intervals in Bi.

Fix i 2 ! such that � 2 Ii. Since � is not rational, �u 2 Ii for all suÆciently large

u 2 !, so Pi must eventually reach step 3. By the properties of S discussed above,

the variable s in the procedure Pi eventually assumes a value in S. For this value,

k(� � �s) > � � �s, from which it follows that k(�u � �s) > � � �s for some u > s,

and hence that � 2 [�s; �s+ k(�u� �s)]. So � must be in one of the intervals (�), all of

which are in Bi.

3.6. Corollary. If �0 and �
1 are c.e. reals such that �0 + �

1 is random then at least

one of �0 and �
1 is random.

Proof. Let � = �
0+�1. For each s 2 !, either 3(�0��0

s) > ���s or 3(�
1��1

s) > ���s,

so for some i < 2 there are in�nitely many s 2 ! such that 3(�i � �
i
s) > � � �s. By

Theorem 3.5, �i is random.

Combining Theorem 3.1 and Corollary 3.6, we have the following results, the second

of which also depends on Theorem 1.4.

3.7. Theorem. A c.e. real  is random if and only if it cannot be written as �+ � for

c.e. reals �; � <S .

3.8. Theorem. Let d be a Solovay degree. The following are equivalent:

1. d is incomplete.

2. d splits.

3. d splits over any lesser Solovay degree.
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