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Abstract

The Poincaré–Hardy inequality∫
|u|2

dist2(x,E)
dm ≤ K2 ·

∫
| � u |2dm

is derived inR3 on the complement of a Cantor set E. We use a special self-similar tiling and a natural
metric on the space of trajectories generated by a Mauldin–Williams graph which is homeomorphic
with the space of tiles endowed with the Euclidean distance. A crude estimation of the constant K2

is 2,100. Two applications will be briefly discussed. In the last one, the constant K−1 ≈ 0.021819
plays the role of an estimate for the dimensionless Plank constant in the corresponding uncertainty
principle.

1 Introduction

In Classical Analysis the Poincaré–Hardy inequality (see, for example, Hardy, Littlewood, Polya [8] or
[6]) is one of most popular tools for comparing the generalized smoothness of a given function and its
square integrability with a singular weight–function. The inequality is also used in Quantum Mechan-
ics for deriving the uncertainty principle Schiff [20] and in Mathematical Hydrodynamics for proving
the existence and uniqueness of solutions of Navier–Stokes equations, Ladyzhenskaja [13]. Combined
with Garding inequality [7] it proves a surprisingly sharp instrument of qualitative spectral analysis of
differential operators [2]; it even appears as a central point of the proof of semi-boundedness of solv-
able few–body Hamiltonians in Quantum Scattering [17]. A version of Poincaré–Hardy inequality on
the complement of a uniformly δ-regular set was derived in [1] in connection with the question on the
uniqueness of the solution of the Dirichlet problem for second order elliptic equations in a domain with
a uniformly δ–regular boundary. The uniform δ–regularity is equivalent to the existence of the corre-
sponding superharmonic strong barrier function (see Theorem 2 in [1]) and is invariant under conformal
transformations of the space (an equivalent of uniform perfectness), [19, 10].

The necessity to have a convenient tool for analysis of Dirichlet forms in Hilbert spaces of square in-
tegrable functions with singular weights requires Poincaré–Hardy inequalities in multidimensional spaces
on complements of perfect zero–measure sets (fractals) with sharp estimates of corresponding constants.

In the present note we derive the simplest version of the Poincaré–Hardy inequality on the complement
of a Cantor set in R3. We have chosen the Cantor set because of its simplicity and usefulness (Cantor
sets are highly useful mathematical models for physical phenomena which include, for example, the
distribution of galaxies in the universe and the fractal structure of the rings of Saturn, see Pickover [18],
or [9]). We reduce the proof of Poincaré–Hardy inequality to the estimation of a discretized integral
which appears from the analysis of an analog of the strong barrier function, see Theorem 3.1 below. This
estimation is based on the generating Mauldin–Williams graph of the Cantor set together with a proper
measure constructed on all cylinder sets of trajectories generated by the generating finite automaton, see
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Calude [4].1 The above measure leads to a metric space homeomorphic with the space of tiles endowed
with the Euclidean distance.

This paper describes a simple case study of a connection between the analysis of smooth functions
on the complement of a uniformly δ-regular set (or just a zero–measure perfect set), on one hand,
and Symbolic Dynamics (see, for example, Schuster [21], Lind and Marcus [14]), on the other hand.
Although the phenomenon studied is analytically trivial, still the characteristic features of a possible
general construction can be already seen here:
• a special self-similar tiling of a neighborhood of a singular set, parameterized by trajectories gen-

erated by some Mauldin–Williams graph which defines the authomorphisms of the set.
• a homeomorphism between an Euclidean metric structure on the tiling and the metric space of

trajectories.
It is obvious that the above structures contain more information on the underlying set than just

the uniform δ–regularity, so they may be used for a more precise estimation of the constant in the
Poincaré–Hardy inequality (or even for deriving new versions of it).

In what follows we will also compute an estimation of the constant K2 appearing in Poincaré–Hardy
inequality. Our constant is certainly not the best; sharper estimates need more accurate operations with
integrals on tiles.

2 Prerequisites

We denote by Σ the binary alphabet {0, 1} and by Σ∗ the set of all non-empty binary strings, i.e.,
Σ∗ = {0, 1, 00, 01, 10, 11, 000, . . .}. If a = a1a2 . . . an is a string of n digits, then its length is denoted by
|a| = n. By Σl we denote the set of strings of length l. The concatenation of two strings a, c is denoted
by ac. A string a is a prefix of a string b (we write a ⊂ b) in case b = ac, for some c ∈ Σ∗. The negation
of a string a ∈ {0, 1} is denoted by ā = a− 1, so that 0̄ = 1, 1̄ = 0. For a, d ∈ Σ∗ we denote by a∩ d the
maximum common prefix of the strings a, d. Clearly, |a ∩ b| ≤ min{|a|, |b|}, and |a ∩ d| = |a| if and only
if a ⊂ d. Let Σω be the set of all infinite binary sequences. In analogy with the case of strings, if σ and τ
are two distinct sequences, then σ ∩ τ denotes the maximum common prefix of σ and τ ; of course, σ ∩ τ
is a string. If σ and τ are two distinct sequences in Σω and r is a real number in the unit interval (0, 1),
then δr(σ, τ) = r|σ∩τ | is an ultrametric on Σω. The space (Σω, δr) is complete, compact and separable.
For different r, s in (0, 1), the spaces (Σω, δr) and (Σω, δs) are homeomorphic. For more information see
Edgar [5].

A middle third Cantor set is constructed by removing successive open middle thirds from a sequence
of closed intervals. In the traditional construction, the one we are going to use in this paper, we are
starting from the interval ∆ = [0, 1] (the pre-Cantor set of zero order) from which we remove the “middle
third” (1/3, 2/3) on the first step, leaving the union of closed intervals ∆0 = [0, 1

3 ] and ∆1 = [ 23 , 1]. The
set ∆0∪∆1 is called the pre-Cantor set of the first order. The endpoints of the closed intervals constitute
its skeleton. In the second step we remove the middle thirds (1/9, 2/9) and (7/9, 8/9) respectively from
the intervals ∆0,∆1, and thus obtain the closed intervals

∆00 = [0,
1
32

], ∆01 = [
2
32
,
1
3
], ∆10 = [

2
3
,

7
32

], ∆11 = [
8
32
, 1],

which constitute the pre-Cantor set of the second order, and so on. For example, the skeleton of ∆
is E0 = {0, 1}, the skeleton of ∆0 ∪ δ1 is E1 = {0, 1

3 ,
2
3 , 1}. This procedure continues indefinitely. The

Cantor set E is defined as the intersection of the countable sequence of pre-Cantor sets Ea formed by
all closed intervals enumerated by all binary strings a length |a| = l:

E =
∞⋂
l=0

El, El =
⋃
|a|=l

∆a.

The endpoints of intervals constituting the pre-Cantor set El of order l, form the corresponding
skeleton and are enumerated by all binary strings length l + 1, that is, two strings a0, a1 correspond
to each interval ∆a. The first steps of this construction are pictured in Figure 1. The Cantor set is
compact, perfect and has length zero.

1Trajectories may be represented as paths on a binary Bruhat–Tits tree, [3].
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Figure 1: Cantor set

Figure 2: Mauldin–Williams graph for Cantor set

A convenient way to work with the Cantor set is to consider the Mauldin–Williams graph (see Edgar
[5]; equivalently, we could use a non-deterministic automaton as in [12]) in Figure 2, the contracting
ratio list (r0, r1) = (1/3/, 1/3), and the functions f0, f1 : [0, 1] → [0, 1] defined by f0(x) = x/3, f1(x) =
(x+2)/3. Let rΛ = 1 (Λ is the empty string), rαi = rα ·ri, for α ∈ Σ∗, i ∈ Σ and define δ(σ, τ) = rσ∩τ . It
is seen that δ is an ultrametric and, in fact, δ(σ, τ) = 3−|σ∩τ | = ρ1/3(σ, τ). According to Theorem 4.2.3
in [5] there exists a unique continuous function h : Σω → [0, 1] satisfying the following two conditions:

1. h(iσ) = fi(h(σ)), for all i ∈ Σ, σ ∈ Σω,

2. h(Σω) = E.

The function h can be defined inductively by the following equations:

h(0σ) =
h(σ)

3
, h(1σ) =

h(σ) + 2
3

, (1)

for all σ ∈ Σω, see Edgar [5]. For example, h(0101010101 . . .) = 1/4 because of the equality
h(0101010101 . . .) = 1

9 (2 + h(0101010101 . . .)).

The map h has a “bounded distortion” with respect to the ultrametric δ1/3, that is, for every σ, τ ∈
Σω,

1
3
δ1/3 (σ, τ) ≤ | h(σ)− h(τ) | ≤ δ1/3 (σ, τ). (2)

Re-phrased, the ultrametric δ1/3(σ, τ) on the set of binary sequences is equivalent to Euclidean distance
between h(σ), h(τ). Note that h does not have the above property with respect to any other ultrametric
δr with r �= 1/3.

3



Figure 3: Cantor tiling

We now define a special tiling of a neighborhood of the Cantor set by extending the map h to the
elliptic body Ω with focuses 0, 1

Ω = {x : |x|+ |x− 1| ≤ 5/3} , diam Ω = 5/3.

We shall see below that the sum of all tiles enumerated by these sequences gives an elliptic body Ωa,
diam Ωa = 5 ·3−|a|−1, and the metric space of trajectories is homeomorphic to the space of tiles endowed
with the Euclidean distance, see Lemma 4.1.

We denote by W 1
2 (R3) the Sobolev space of all square-integrable functions on R3 which have square-

integrable derivatives of the first order. This is a complete Hilbert space endowed with the dot-product

< u · v >W 1
2 (R3)=

∫
R3

(
〈�u� u〉+ ūv

)
dx3,

and the corresponding norm
|u|W 1

2 (R3) =
√
< u · u >W 1

2 (R3) .

For more details about the Sobolev classes which we will be used below see [15].

We denote by dist the Euclidean distance. A set E is bounded in case supx∈E dist(x, 0) < ∞. A
fractal is a closed zero-measure set E in R3 such that the function dE(x) = dist(x,E) is Lip1-continuous:

|dE(x)− dE(y)| ≤ C(K) · |x− y|,

on each compact subset K of the complement E′ of E in R3.2

3 Poisson construction

The Lebesgue measure µ(δ) of the δ–neighborhood Eδ = {x |dist(x,E) < δ} of E in R3 is a “sufficiently
smooth” function of δ and can be generally estimated, for small δ, as

µ(δ) =
∫
Eδ

dm ≤ C(α)δ3−α,

2This condition is automatically fulfilled for any set which has a finite skeleton
{
xKE,s

}
∈ E, s = 1, 2, . . . , N for each

compact K ∈ E′ such that dist(x,E) can be bilaterally estimated by mins=1,2,...,N |x − xKE,s|. Cantor set obviously has

this property.
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with finite non-negative α ≤ 3 and some positive C(α). The lower bound αE of values of the parameter
α for which this estimate holds is called the Minkowski dimension dimE = αE of the set E, see for
instance Edgar [5] and the literature quoted there. The Minkowski dimension of sets in Rn may be
defined in a similar way; it does not depend on the dimension n and may take any nonnegative value less
than n. In the most interesting cases the Minkowski dimension coincides with the Hausdorff dimension
[5]. In particular, the Minkowski dimension of the above Cantor set E is equal to log 2

log 3 .3

The following general statement serves as a base for our calculations in the next section.

Theorem 3.1 For every function u ∈ W 1
2 (R3) and every bounded fractal E ∈ R3 with dimE < 1

fulfilling the condition

KE = sup
x∈E

dx
4π

∫
1

|x− s|2
dm(s)
d2
E(x)

<∞, (3)

the Poincaré–Hardy inequality holds with the constant K2
E:

∫
u2

d2
E(x)

dm ≤ K2
E ·

∫
| � u|2 dm. (4)

Proof. It is sufficient to obtain the inequality (4) for any smooth function u with a compact support
in the complement E′ of E in R3.

If the Minkowski dimension αE is less than 1, then the function d−2
E (x) = dist−2(x, E) being Lip1-

continuous on any compact in E′ = R3 \ E is integrable on any bounded neighborhood Eδ. Indeed, we
may rewrite the integral

∫
E1

d−2
E (x) dm as

∫ 1

0
δ−2 dµ(δ) and then reduce it via integration by parts for

any α ∈ (αE , 1) to the following form:

lim
δ→0

(
2

∫ 1

δ

s−3µ(s) ds+ µ(1)− µ(δ)
δ2

)
≤ lim
δ→0

(
µ(1) + C(α)

1
1− α

(1− δ1−α)
)
<∞.

Hence the function d−2
E is integrable on any bounded domain in R3. Then we consider a Poisson

equation

−� v + κ2u =
1
d2
E

, κ2 > 0, (5)

and represent its generalized solution via the corresponding Green function

v(x) =
∫
R3

e−κ|x−s|

4π|x− s|
dm(s)
d2
E(s)

, (6)

on any compact subdomain of the complement E′ of E in R3. The generalized solution (6) is twice
continuously differentiable, v ∈ C2+β(K)β > 0, which permits the integration by parts for any smooth
real function u with a compact support Ku in E′:∫

u2

d2
E(x)

dm = −
∫

u2 � v dm+ κ2

∫
u2v dm =

∫
u < �u,�v > dm+ κ2

∫
u2v dm,

so, the following estimate holds true for any positive κ:

∫
u2

d2
E(x)

dm ≤
(∫

u2

d2
E(x)

dm

)1/2

·
(

4 ·
∫
| � u|2 (| � v|dE(x))2 dm

)1/2

+ κ2 ·
∫

u2v dm. (7)

We can estimate �v as

| � v(x)| = |
∫

(1 + κ|x− s|) e−κ|x−s|

4π|x− s|2
x− s

|x− s|
dm(s)
d2
E(x)

|

≤
∫

e−κ|x−s|

4π|x− s|2
dm(s)
d2
E(x)

+ κ ·
∫

e−κ|x−s|

4π|x− s|
dm(s)
d2
E(x)

. (8)

3In fact, the Minkowski dimension of the Cantor set embedded into any Rn does not depend on n and is equal to log 2
log 3

.

5



Together with (7), for fixed u, (8) gives:

∫
u2

d2
E(x)

dm ≤ lim
κ→0

{(
4 ·

∫
u2

d2
E(x)

dm

)1/2 (∫
| � u(x)|2 ·

[∫
e−κ|x−s|

4π|x− s|2
dm(s)
d2
E(x)

(9)

+κ ·
∫

e−κ|x−s|

4π|x− s|
dm(s)
d2
E(x)

]2

dm(x)

)1/2

+ κ2 ·
∫

u2v dm


 .

which implies, after passing to the limit κ→ 0, the inequality:∫
u2

d2
E(x)

dm ≤
[
sup
x

dx
π

∫
1

|x− s|2
dm(s)
d2
E(x)

]2

·
∫
| � u(x)|2 dm(x). (10)

The final result can be obtained now by taking the closure of (10) in the Sobolev space W 1
2 (R3). ✷

In the remaining part of this note we will derive a crude estimate for the constant K2 for the Cantor
set E. Our estimate is not optimal; however, our analysis of the discretized integral representing K2

reveals that the main part of this constant appears from an estimate of some infinite sum over a special
tiling described in the following section. This tiling appears from the extension H of the parameterizing
map of the Cantor set onto some neighbourhood of it in R3, see the construction in the next section.

4 A special tiling

Consider the Cantor set E on x–axis in R3 and denote by e1 the unit vector looking at the positive
direction of the x–axis. Consider a tiling of the whole space R3 formed by the complement R3 \ Ω of
the rotation-symmetric elliptic body Ω bordered by the ellipsoid Ω with focuses in 0, e1, that is on the
skeleton of zero-order pre-Cantor set ∆ = [0, 1] on the x-axis:

Ω =
{
x : |x|+ |x− e1| ≤

5
3

}
.

Next we consider the map H : Σ × Ω → Ω defined for each x ∈ Ω as a splitting of one point x into
two images:4

H(0, x) =
x

3
, H(1, x) =

2e1 + x

3
.

The function H can be extended in a natural way to a function, also denoted by H, from Σ∗×Ω into
Ω by

H(ia, x) = H(i,H(a, x)),

for all i ∈ Σ, a ∈ Σ∗ and x ∈ Ω. Clearly, H(ab, x) = H(a,H(b, x)), for all a, b ∈ Σ∗ and x ∈ Ω.
The imageH(Σ×Ω) consists of two components–two similar elliptic bodies Ω0 = H(0,Ω) = 1

3Ω, Ω1 =
H(1,Ω) = ( 2e1

3 + 1
3 )Ω ,

Ω0 =
{
x : |x|+ |x− 1

3
e1| ≤

5
32

}
,

Ω1 =
{
x : |x− 2

3
e1|+ |x− e1| ≤

5
32

}
,

with focuses at the skeleton E1 of the first-order pre-Cantor set E1 = ∆0 ∪∆1, E1 = {r00, r01, r10, r11}:

r00 = 0, r01 =
1
3
, r10 =

2
3
, r11 = 1,

and the basic tile ω is formed as a complement Ω \ H(Σ× Ω) = Ω \ (Ω0 ∪ Ω1).
On the next step we form two tiles ω0, ω1 of the first order which are similar to ω and are defined

respectively as the complement

ω0 = H(0,Ω) \ (H(00,Ω) ∪H(01,Ω)) = Ω0 \ (Ω00 ∪ Ω01)
4Note that H is the extension of h defined by (1).
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of the bodies

Ω00 =
{
x : |x− 0|+ |x− 1

9
e1| ≤

5
33

}
,

Ω01 =
{
x : |x− 2

9
e1|+ |x−

1
3
e1| ≤

5
33

}
in Ω0 and the complement

ω1 = H(1,Ω) \ (H(10,Ω) ∪H(11,Ω)) = Ω1 \ (Ω10 ∪ Ω11)

of the bodies

Ω10 =
{
x : |x− 6

9
e1|+ |x−

7
9
e1| ≤

5
33

}
,

Ω11 =
{
x : |x− 8

9
e1|+ |x− e1| ≤

5
33

}
in Ω1. The focuses of ellipsoids bordering Ω00, Ω01, Ω10, Ω11 form the skeleton E2 of the second-order
pre-Cantor set E2 = ∆00 ∪∆01 ∪∆10 ∪∆11 and are enumerated by all binary strings length 3: r00 =
r000 = 0, r00 + 1

32 = r001 = 1
32 , r01 = r010 = 2

32 , r01 + 2
32 = r011 = 3

32 = 1
3 , r10 = r100 = 2

3 , r10 + 1
32 =

r101 = 7
32 , r10 + 2

32 = r110 = 8
32 , r10 + 3

32 = r111 = 1.
The construction of the following tiles can be described by induction. On each step l, |a| = l − 1 we

begin from the result of the previous step–the set of 2l−1, non-intersecting elliptic bodies Ωa bordered
by the ellipsoids

Ωa =
{
x : |x− ra0|+ |x− ra1| ≤

5
3l

}
,

with focuses at the skeleton El of the pre-Cantor set El = ∪|b|=l∆b enumerated by all possible binary
strings b = a0, a1 of length l. Then we continue the construction by forming the tiles ωa as complements
ωa = Ωa \ (Ωa0 ∪ Ωa1) in Ωa of the elliptic bodies, respectively bordered by the ellipsoids

Ωa0 =
{
x : |x− ra00|+ |x− ra01| =

5
3l+1

}
,

and

Ωa1 =
{
x : |x− ra10|+ |x− ra11| =

5
3l+1

}
,

and so on. Hence, for every a ∈ Σ∗, H(a,Ω) = Ωa and

ωa = H(a,Ω) \ (H(a0,Ω) ∪H(a1,Ω)) = Ωa \ (Ωa0 ∪ Ωa1).

The following Lemma 4.1 will be used to derive bilateral estimates for the coefficient K2 in (4) in
terms of the constructed tiling. We enumerate the tiles by binary strings b.5

Lemma 4.1 The sets {ω, ω1, ω2, ωc}, enumerated by all possible binary strings c, |c| ≥ 0 form a tiling
for the elliptic body Ω with the following properties:

1. The distance dE(x) from the point x ∈ ωc to the Cantor set E may be bilaterally estimated by
the distance d|c|(x) from x to the skeleton E|c| of the pre-Cantor set E|c|. In particular, the ratio
d|c|(x)/dE(x) takes the minimal and maximal values on the border ∂Ωc, ∂Ωc0, ∂Ωc1 of the tile ωc
and

1 ≤ d|c|(x)
dE(x)

≤ 4, x ∈ ∂Ωc0 ∪ ∂Ωc1,

1 ≤ d|c|(x)
dE(x)

≤ 5√
17
, x ∈ ∂Ωc. (11)

The Euclidean volume of the tile ωc is equal to 103π3=3|c|−7 and the distance from the Cantor set
E to x ∈ ωc can be bilaterally estimated as

3−|c|−2 ≤ dE(x)|x∈ωc ≤
√

17
2
· 3−|c|−1.

5Recall that a ∩ b is the maximal common prefix of the strings a, b.
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2. The distance between the points xa ∈ ωa and xb ∈ ωc may be estimated from above as:

|xa − xc| ≤ 5 · 3−|a∩c|−1. (12)

If the the tiles ωa, ωc do not contact each other (that is, do not have a common piece of the
boundary), then the distance between the points xa ∈ ωa and xc ∈ ωc may be estimated from below
as

|xa − xc| ≥ 3−|a∩c|−2. (13)

Proof. Our tiling is self-similar, hence the estimate (11), if derived for the basic tile ω and the tiles
ω0, ω1 of the first order, remains true, under proper scaling, for the whole tiling. Note, for instance, that
the ratio d1(x)/dE(x) takes the minimal and maximal values on the boundary of the tile ω and can be
estimated as

1 ≤ d1(x)
dE(x)

≤ 4, x ∈ ∂Ω0 ∪ ∂Ω1,

and

1 ≤ d1(x)
dE(x)

≤ 5
17
, x ∈ ∂Ω. (14)

Similarly, the last part of the first statement follows from the estimate

1
9
≤ dE(x)|x∈ω ≤

√
17
6

.

To prove the last part of the second statement we notice that from the condition Ua ∩ ωc = ∅ follows
that either ωa ∈ ωd0, ωc ∈ ωd1, for some string d of length k, or vice-versa. This implies the announced
inequality:

|xa − xc| ≥ dist (ωd0, ωd1) = 3−|k|−2.

✷

Notice, that for every string a, the map H(a, ·) acts transitively on the constructed tiling, mapping
each l-generation of tiles ∪|a|=lωa into the following l+1-generation ∪|a|=l+1ωa. The same function maps
the l-generation of elliptic bodies H(Σl,Ω) = ∪|a|=lΩa into itself. One can easily see that the Cantor set
E is an invariant set of the map H similarly to the corresponding property of the parameterizing map
h : [0, 1] → [0, 1]. The restriction H onto [0, 1] coincides with h given by (1). This is the exact meaning
of the statement at the end of the previous section, that the special tiling is formed by the continuation
H of the parameterizing map h onto Ω. The transitive action of the map H on the tiling permits to
define an analog of the unilateral shift on the orthogonal sum of Hilbert spaces ⊕

∑
a L2(ωa).

5 Estimates for the discretized integral

We begin this section with a few preliminary results. For a given tile ωb we consider a triple of its closest
neighbours: its mother ωa of ωb such that b = a0 or b = a1 and two daughters ωb0, ωb1 which form
together with ωb the cut of the corresponding Bruhat–Tits tree at the level b. We denote ωb∩ωa∩ωb0∩ωb1
by Ub and consider its complement Ω \ Ub in Ω which is represented by joining all remaining tiles

Ω \ Ub =
⋃
c

ωc, c �= a, b, b0, b1. (15)

First note that for x ∈ ω1, the integral over U1 = ω ∪ ω1 ∪ ω10 ∪ ω11,

J1(x) =
1
4π

∫
U1

1
|x− s|2

dm(s)
d2
E(x)

,

is a uniformly continuous function of x ∈ ω1, and there exist two absolute constants A1, B1 such that

A1 ≤
dE(x)

4π

∫
U1

1
|x− s|2

dm(s)
d2
E(s)

≤ B1. (16)
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An obviously crude but still reasonable numerical estimate is:

A1 =
1
3
, B1 = 150. (17)

Indeed, due to the first statement in Lemma 4.1, the distance dE(s) from the set E on the cut U1

can be estimated by the distance d2(s) from the skeleton E2:

1
d2
2(s)

≤ 1
d2
E(s)

≤ 16 · 1
d2
2(s)

.

Hence,

dE(x)
4π

∫
U1

16
|x− s|2

dm(s)
d2
E(s)

≤ dE(x)
4π

∫
U1

16
|x− s|2

dm(s)
d2
2(s)

≤

4dE(x)
π

∫
U1

1
|x− s|2

[ ∑
sik∈E2

1
|s− sik|2

]
dm(s).

Using the following estimate for the standard integral

1
3
≤ 1

4π

∫
R3

1
|x− 1| |x| dm ≤ 7

3
, (18)

we obtain, after the change of variables,

4
dE(x)
π

∫
U1

1
|x− s|2

[ ∑
sik∈E2

1
|s− sik|2

]
dm(s) ≤ 150 · dE(x)

d2(x)
≤ 150. (19)

The estimate from below may be obtained as follows:

dE(x)
4π

∫
U1

1
|x− s|2

dm(s)
d2
E(s)

≥ dE(x)
4π

∫
U1

1
|x− s|2

dm

d2
2(s)

≥

max
sik∈E2

dE(x)
4π

∫
U1

1
|x− s|2

dm

|s− sik|2
≥ 1

3
· dE(x)
d2(s)

≥ 1
3
.

From the self-similarity of the tiling it follows that the same estimate holds for the corresponding
integral over any cut Uc, for every string c and x ∈ ωc:

A1 ≤
dE(x)

4π

∫
Uc

1
|x− s|2

dm(s)
d2
E(s)

≤ B1. (20)

The integral Cω =
1
4π

∫
ω

dm(s)
d2
E(s)

can be estimated as 3−2 ≤ Cω ≤ 16. Consequently, due to the

self-similarity, all integrals
1
4π

∫
ωc

dm(s)
d2
E(s)

can be estimated uniformly:

3−|s|−2 ≤ 1
4π

∫
ωc

dm(s)
d2
E(s)

≤ 16 · 3−|c|. (21)

Indeed, due to the first statement in Lemma 4.1 the integral

1
4π

∫
ω

dm(s)
d2
E(s)

may be estimated as

25
17
· 1
4π

∫
ω

dm(s)
d2
2(s)

≤ 4 · 25
17

∫ 1/3

0

∫ 4/6

0

ρdρdh

h2 + ρ2
≤ 6 ·

∫ 1/3

0

ln
h2 + (2/3)2

h2
dh ≤ 16.

9



An estimate of the integral from below may be derived from the estimate Lemma 4.1 of dE from above.
Next note that

sup
x∈R3\(Ω0∪Ω1)

dE (x)
4π

∫
1

|x− s|2
dm(s)
d2
E(s)

can be estimated from above by the sum

4 · dE
π

∫
R3\(∪ikΩik)

1
|x− s|2

dm(s)
d2
2(s)

+
dE (x)

4π(dE (x)− 2 . 3−3)2

∫
(
⋃
ik

Ωik)

1
d2
E

dm.

Due to (18) we have
448
3
· dE(x)
d2(x)

< 150 · dE(x)
d2(x)

< 150,

in view of (21) and self-similarity,

3−3 · dE(x)
(dE(x)− 2 · 3−3)2

· 8
3
≤ 200,

hence the integral
dE (x)

4π

∫
1

|x− s|2
dm(s)
d2
E(s)

, for x ∈ R3\(Ω0 ∪ Ω1), is estimated from above by 350 .

We obtain further the dominating estimate for the integral
dE (x)

4π

∫
1

|x− s|2
dm(s)
d2
E(s)

for x ∈ ωa, |a| ≥
1 .

Lemma 5.1 The integral coefficient

dE (x)
4π

∫
1

|x− s|2
dm(s)
d2
E(s)

can be discretized and estimated for x ∈ ωa as follows:

dE(x)
4π

∫
R3

1
|x− s|2

dm(s)
d2
E(s)

=
dE(x)

4π

∫
R3\Ω0∪Ω1

1
|x− s|2

dm(s)
d2
E(s)

+
dE(x)
π

∫
Ua

1
|x− s|2

dm(s)
d2
E(s)

+
∑
b

dE(x)
π

∫
ωb, |b|≥1,b∩Ua=∅

1
|x− s|2

dm(s)
d2
E(s)

≤ 300 + 900 ·
∑

ωb, |b|≥1,b∩Ua=∅
32·|a∩b|−|ab|.

Proof. The proof of the first statement is based on (18):

dE(x)
4π

∫
R3\(Ω0∪Ω1

1
|x− s|2

dm(s)
d2
E(s)

≤ 112
3
· dE(x)
d1(x)

≤ 150.

In view of (17) and (20) we get:

sup
x∈Uω1

dE(x)
4π

∫
Uω1

1
|x− s|2

dm(s)
d2
E(s)

≤ 150.

To get an upper bound for the third term we use the estimate (21) for integrals
dE(x)

4π

∫
ωb, b �=a

1
|x− s|2

dm(s)
d2
E(s)

, x ∈ ωa and the second statement of Lemma 4.1:

dE(x)
4π

∫
ωb, |b|≥1,b∩Ua=∅

1
|x− s|2

dm(s)
d2
E(s)

≤ 900 ·
∑

ωb, |b|≥1,b∩Ua=∅
32·|a∩b|−|ab|.

✷

The next statement, of algebraic nature, completes the estimation of the integral representing the
constant K.
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Lemma 5.2 The following inequality holds true for every string b ∈ Σ∗:∑
a∈S

32·|a∩b|−|ab| ≤ 4. (22)

Proof. Assume that |b| = m and b = b1b2 . . . bm. First, decompose the series in the left-hand side of
(22) into two disjoint series:

∑
a∈S

32·|a∩b|−|ab| =
∞∑
k=1

∑
|a|=k

32·|a∩b|−|ab|

=
m−1∑
k=1

∑
|a|=k

32·|a∩b|−|ab| +
∞∑
k=m

∑
|a|=k

32·|a∩b|−|ab|.

A typical string a = a1a2 . . . ak of length k ≤ m − 1 will be of one of the following two forms:
b1b2 . . . yib̄i+1 . . . ak (for some 0 ≤ i ≤ k − 1) or b1b2 . . . bk−1bk. We have 2k−i−1 different strings of
the first form and exactly one string of the last form. Similarly, a typical string a = a1a2 . . . ak of length
k ≥ m will be of one of the following two forms: b1b2 . . . biȳi+1 . . . am . . . ak (for some 0 ≤ i ≤ m − 1)
or b1b2 . . . bm−1bm . . . am+1ak. We have 2k−i−1 different strings of the first form and 2k−m strings of the
last form. An elementary computation, based on the above combinatorial analysis, justifies the following
two inequalities which combine to prove (22):

m−1∑
k=1

∑
|a|=k

32·|a∩b|−|ab| = 3−m−k
(
k−1∑
i=0

32i · 2k−i−1 + 32k

)

=
1

7 · 3m ·
m−1∑
k=1

(
2
3

)k
·
((

9
2

)m
− 1

)
+

1
2

(
1− 1

3m−1

)

≤ 4
7
,

and

∞∑
k=m

∑
|a|=k

32·|a∩b|−|ab| = 3−m−k
(
m−1∑
i=0

32i · 2k−i−1 + 32m · 2k−m
)

=
1

7 · 3m−1
·
((

9
2

)m
− 1

) (
2
3

)m
+ 3

≤ 24
7
.

✷

For a string b ∈ Σ∗ of length greater than one let b′ be the prefix of b of length |b| − 1. We can use
now the inequality (22) to deduce the following upper bound:∑

ωb, |b|≥1,b∩Ua=∅
32·|a∩b|−|ab| ≤

∑
a∈S\{b,b0,b1,b′}

32·|a∩b|−|ab| ≤ 2,

which leads directly to

Theorem 5.3 The Poincaré–Hardy inequality∫ |u|2
dist2(x,E)

dm ≤ 2, 100 ·
∫
| � u |2dm

holds true in R3 on the complement of the Cantor set E.
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6 Two applications

The inequality (4) can be used to derive several useful facts. In what follows we will present two such
applications.

A. Consider a real measurable function q, locally bounded on each compact in the complement E′ of
the fractal E. Then the Dirichlet form

∫
R3

(
|∇u|2 + q(x)|u|2

)
dm is closed in W 1

2 (R3) if q satisfies the
following additional condition:

lim
dE(x)→0

|q(x)| d2
E(x) = 0. (23)

To prove the above statement we have to check that the inequality (4) implies the strong subordination
of the quadratic form of the potential

∫
R3

q(x)|u|2 dm to the Dirichlet form
∫
R3
|∇u|2 dm (see Reed and

Simon[22]). Indeed, for any ε > 0 we can choose a positive constant C such that

|q(x)| ≤ C +
ε

KEd2
E(x)

,

which implies the strong subordination:∫
R3

|q(x)||u|2dm ≤ ε ·
∫
R3

|∇u|2dm+ C ·
∫
R3

|u|2dm.

B. The constant K plays the role of an estimate for the dimensionless Plank constant in the cor-
responding uncertainty principle. To see this, let us consider the self-adjoint operator (unbounded in
L2(R3)) of multiplication by the function ε(x)dE(x), where the factor ε(x) = ±1 is chosen such that for
every given smooth function u with a compact support in E′ the mean value of the “balanced distance”
with respect to some unitary-valued sign-factor ε(x), ε(x)dE(x) to the singular set E is equal to zero:6∫

R3

ε(x)dE(x)|u|2dm = 0.

We assume that the mean value of momentum is also zero:∫
R3

∇u ū dm = 0.

Under the above hypotheses we may estimate from below the product of the mean quadratic errors of the
balanced distance and the mean quadratic error of the momentum, the Dirichlet integral,

1
K ·

∫
R3

|u|2 dm ≤
[∫
R3

|dE(x)u|2dm
]1/2

·
[

1
K2

·
∫
R3

|u|2
d2
E(x)

dm

]1/2

(24)

≤
[∫
R3

|dE(x)|2 |u|2 dm
]1/2

·
[∫
R3

|∇u|2 dm
]1/2

, (25)

to obtain an analog of the classical dimensionless Heisenberg’s uncertainty relation:

1
2
·
∫
R3

|u|2 dm ≤
[∫
R3

|x|2|u|2 dm
]1/2

·
[∫
R3

|∇u|2 dm
]1/2

.

The constant K−1 ≈ 0.021819 plays the role of estimate for analog of the classical “dimensionless
Plank constant” 1/2. It defines the admissible precision of simultaneous measurements of deviation of
the the coordinate of the quantum particle from the singular set and the deviation of its total momentum
from zero.
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