
CDMTCS
Research
Report
Series

Effective Model Theory: The
Number of Models and Their
Complexity

Bakhadyr Khoussainov
Univeristy of Auckland, Auckland NZ

Richard A. Shore
Mathematics Department, Cornell
University, USA

CDMTCS-131
March 2000

Centre for Discrete Mathematics and
Theoretical Computer Science



Effective Model Theory: The Number of Models
and Their Complexity1

Bakhadyr Khoussainov2

Cornell University, Ithaca NY 14853

University of Aukland, Aukland New Zealand

Richard A. Shore3

Cornell University, Ithaca NY 14853

Abstract
Effective model theory studies model theoretic notions with an eye towards

issues of computability and effectiveness. We consider two possible starting
points. If the basic objects are taken to be theories, then the appropriate effective
version investigates decidable theories (the set of theorems is computable) and
decidable structures (ones with decidable theories). If the objects of initial
interest are typical mathematical structures, then the starting point is computable
structures. We present an introduction to both of these aspects of effective model
theory organized roughly around the themes of the number and types of models
of theories with particular attention to categoricity (as either a hypothesis or a
conclusion) and the analysis of various computability issues in families of models.

1. Basic Notions

The lectures on which this paper is based were intended to be a brief intro-
duction to effective model theory centered around one set of issues: the number
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1996; the annual meeting of the ASL, University of Wisconsin, Madison, 1996, USA; and the Spe-
cial Session on Computable Mathematics and its Applications of the AMS annual meeting, Bal-
timore, January 1998.
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of models of specified type and, in particular, the notion of categoricity. For more
general introductions we refer the reader toThe Handbook of Recursive Algebra
(Ershov et al. [1998]), especially the articles by Harizanov [1998] and Ershov
and Goncharov [1998]. ThisHandbookalso contains other useful survey papers
on aspects of effective model theory and algebra and an extensive bibliography.
The one most closely related to the theme of this paper is Goncharov [1998]. An-
other interesting survey is Millar [1999] inThe Handbook of Computability Theory
(Griffor [1999]). Two books in progress on the subject are Ash and Knight [1999]
and Harizanov [2000]. These are all good sources for material and references. An
extensive and very useful bibliography prepared by I. Kalantari [1998] can also be
found in Ershov et al. [1998].

One might well begin with the question of what effective model theory is
about. Of course, it is about investigating the subjects of model theory with an eye
to questions of effectiveness. What then is model theory about and what does one
mean by effectiveness? As for model theory we simply quote from two standard
texts (to which we also refer the reader for the terminology, notation and results
of classical model theory). Chang and Keisler [1990] say “Model theory is the
branch of mathematical logic which deals with the connection between a formal
language and its interpretations, or models.” Hodges [1993] says “Model theory
is the study of the construction and classification of structures within specified
classes of structures.” We can take these two definitions as expressing two views
of the proper subject of model theory. The first starts with formal languages and
so we may say with theories. (We take atheoryT to be simply a set of sentences
in some (first-order) languageL, called thelanguage ofT . We say that a theoryT
is completeif T � σ or T � ¬σ for every sentenceσ of L.) The second starts with
mathematical structures. One might think of these views as, respectively, logical
and algebraic. They lead to a basic dichotomy in the approach to effective model
theory. Should we “effectivize” theories or structures. Of course, the answer is that
we should investigate both approaches and their interconnections. As for what one
means by “effectiveness,” there are many notions ranging from ones in computer
science to ones of descriptive set theory that have some claim to being versions
of effectiveness. Most, if not all, of them can be reasonably called in to analyze
different model theoretic questions. In this paper, we limit ourselves to what we
view as the primary notion of effectiveness: Turing computability (or, equivalently,
recursiveness). Thus we are lead to formal definitions of the two basic notions of
our subject, effective theories and structures.

Definition 1.1 A theoryT is decidableif the theorems ofT form a computable
set. A structureA (for a languageL) with underlying set(or domain) A is de-
cidable if Th(A, a)a∈A, thecomplete(or elementary) diagramof A, i.e. the set
of all sentences (with constant symbols for each element ofA) true inA, is com-
putable.A is computableif D(A, a)a∈A, the (atomic) diagramof A, i.e. the set
of all atomic sentences or their negations (again with constant symbols for each
element ofA) true inA, is computable.
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For those whose basic object of interest, or at least starting point, consists
of theories, the decidable theories are the natural effective objects of study. In
line with standard model theoretic usage a structure whose complete theory has
some propertyP is often said to also have propertyP and so we have decidable
structures. This is the “logical” point of view. On the other hand, the algebraist
or general mathematician usually starts with structures. From this point of view,
the effective objects are the computable structures. After all, when one thinks of
what a computable group should be one thinks that it should be a group structure
for which the group operation is computable and similarly for all other typical
algebraic structures. One does certainly not assume that even the word problem,
let alone the complete diagram, is computable.

Note that we are deliberately avoiding all issues of coding or Gödel number-
ing. There are two common approaches to this issue. The Eastern, and especially
the Russian, school favors numerations. One starts with a classical structureA and
provides anumeration(or enumeration), that is a mapν from the natural numbers
N onto the underlying setA of the structureA. Thenumerated(or enumerated)
structure〈A, ν〉 is calledconstructiveif the (appropriately coded) atomic diagram
of A, with constant symbolsi for i ∈ N interpreted asν(i), is computable (recur-
sive). 〈A, ν〉 is strongly constructiveif the complete diagram ofA with constant
symbolsi for i ∈ N interpreted asν(i) is computable. These notions essentially
correspond to what we call computable and decidable structures, respectively.

An established Western approach is to say that all elements are natural num-
bers, all sets are subsets ofN and all functions are functions fromN to N . In this
view, languages are Gödel numbered, structures consist of a set of numbers and re-
lations and functions on that set. The formal definitions of computable or recursive
for subsets of, and functions on,N are then simply applied directly to theories and
structures. We adopt what might be viewed as a less formal version of the second
approach along the lines followed in Shoenfield [1971] and now, we think, preva-
lent in thinking (if not always in writing) about computability. Given that we are
not considering issues raised by the theory of enumerations, we see no reason to
explicitly code objects as numbers. After all, we now “know” what effective and
computable mean not only for numbers but for all kinds of data structures from
strings to arrays on arbitrary finite alphabets. Thus we talk about a computable
language without the formalities of Gödel numbering and so about computable
theories, types, etc. Similarly, we have computable structures, lists of names for
their elements, diagrams and theories. These may or may not “be” sets of, or
functions on,N . Any reader who prefers explicit Gödel numbering is certainly
able to make the appropriate translations. (We may at times, however, resort to in-
dices to clarify certain uniformity issues.) For those interested in the issues related
specifically to numerations we refer the reader to Ershov [1977].

Of course, the notions of effectiveness associated with Turing computability
only make sense in the countable setting.
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• All languages, sets, structures and the like are assumed to be countable unless
explicitly stated otherwise.

Even so, not all sets or structures are computable. Classically, one typically
identifies isomorphic structures. Of course, this eliminates all issues of effective-
ness and so is often not appropriate here. We will have to distinguish between
classically isomorphic models. The following definitions of presentations and pre-
sentability help us make these distinctions.

Definition 1.2 A structureA is computably (decidably) presentableif A is iso-
morphic to a computable (decidable) structureB which we call acomputable (de-
cidable) presentationof A.

Before launching into theorems and analyses, we present a few examples of
decidable or computable theories and structures. These theories and structures will
serve as examples for many of the notions and results we consider below. Proofs
for many of the facts we cite about these structures can be found in Chang and
Keisler [1990, 3.4].

Example 1.3 Our language here is that of (linear) orders with one binary predi-
cate≤. We consider two theoriesDeLO, dense linear orderings with no first or last
element andDiLO, discrete linear orderings with first but no last element.DeLO
is axiomatizable,ℵ0-categorical(i.e. all countable models are isomorphic) and so
complete and decidable.DiLO is axiomatizable and complete and so decidable
but notℵ0-categorical. The standard structures associated with these theories are
Q andN , respectively, with their natural orderings. Both are decidable. AsDeLO
isℵ0-categorical every model (remember we are considering only countable struc-
tures) is isomorphic toQ and so decidably presentable.DeLO has effective quan-
tifier elimination and so every computable model is actually decidable. On the
other hand, not every model ofDiLO is even computably presentable nor is every
computable model decidable as we shall see below (for example, in Proposition
6.1). (To see that not every model ofDiLO is computably presentable, note that
at the cost of a couple of jumps we can form the quotient of a givenDiLO by
the equivalence relation of being finitely far apart. This procedure can produce an
arbitrary ordering with first element. If the quotient ordering is not arithmetic, the
original model can’t be computably presented.)

Example 1.4 The next theory we mention isACF0, algebraically closed fields
of characteristic0. The language is that of field theory with0, 1,+ and×. ACF0
is axiomatizable,ℵ1-categorical, i.e. all models of cardinalityℵ1 are isomorphic,
and so complete and decidable.ACF0 also has effective quantifier elimination
and so here too every computable model is actually decidable. Even thoughACF0
is notℵ0-categorical, every model is decidably presentable and below we prove a
general theorem establishing this fact (Theorem 5.2).
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Example 1.5 Finally, we briefly discussPA, Peano Arithmetic or if one prefers
any suitable finitely axiomatized subtheory such as Robinson’sQ [1950]. The
language has0, 1,+ and× with the usual axioms. Of coursePA is axiomatizable
but, by Gödel’s incompleteness theorem, it is neither complete nor decidable. It
is notℵ0-categorical (the compactness theorem provides nonstandard models not
isomorphic toN). No model is decidable (again by the incompleteness theorem)
and only the standard modelN is computably presentable.

Proposition 1.6 (Tennenbaum [1959]) No nonstandard model ofPA or even of
Robinson’sQ is computably presentable.

Proof sketch. We assume that one has developed the theoryT in question enough
to, say prove unique factorization into primes and that the standard universal partial
computable function is representable in that there is a formulaF (e, x, s, i) such
that, for eache, x, s, i in N , φe,s(x) = i if and only if T � F (e, x, s, i). (We do
not bother to differentiate between a number and the numeral representing it.) One
now shows thatT proves the simple fact that
(∗)∀s∃y∀e([F (e, e, s, 0) → pe|y ∧ p2e+1 - y] ∧ [¬F (e, e, s, 0) → pe - y ∧ p2e+1|y])

wherepe|y is a formula saying that theeth prime dividesy.
Now letA be any nonstandard model ofT , s any nonstandard element ofA

andy the element ofA guaranteed by (∗). We define the functionf onN byf(e) =
1 if A |= pe|y andf(e) = 0 if A |= p2e+1|y. Clearlyf(e) is computable from the
atomic diagram ofA by searching for an elementz such thatA |= pe × z = y
or A |= p2e+1 × z = y. (One must exist by (∗).) However,f is clearly not
computable. Indeed,f is diagonally noncomputable: ∀e(f(e) �= φe(e)). ThusA
is not computably presentable.�

2. The Effective Completeness Theorem

A common theme in model theory is the investigation of questions about when
given theories have models with specified properties. Typical examples include
characterizing when theories have atomic, prime, universal, homogeneous or sat-
urated models. Other questions involve models of various ranks or dimension,
with or without indiscernibles or even more ambitiously attempts to characterize
all the models of a given theory. In effective model theory one naturally wants to
know when theories have decidable or computable models of each type or even
to attempt to characterize the decidable or computable models of a given theory.
We will investigate a few examples of such questions. We begin with the issue of
when a theory has a model at all – Gödel’s completeness theorem.

Theorem 2.1 (Completeness Theorem) If a theoryT is consistent it has a model.

We present one effective analog of the completeness theorem for decidable
theories with a proof modeled on Henkin’s proof of the classical completeness
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theorem. This method of construction is simple but basic for many results in both
classical and effective model theory and we will see several variants latter on.

Theorem 2.2 (Effective Completeness Theorem) If a theoryT is consistent and
decidable then it has a decidable model.

Proof. We assume that the classical Henkin construction is known and so provide
only a sketch so that we can check its effective content. LetLc be the language
L of T extended by infinitely many new constantsci and letσe be a (computable)
list of the sentences ofLc. We construct an increasing sequence of finite setsΨs of
sentences ofLc (with ∧Ψs = ψs) consistent withT with unionΨ as in the Henkin
proof of the completeness theorem. We need to satisfy the requirementsPe for
eache ∈ N :

• Pe : σe ∈ Ψ or¬σe ∈ Ψ and ifσe is of the form∃xθ(x) and inΨ thenθ(ci) ∈ Ψ
for somei.

Construction: At stages ask if σs is consistent withT ∪ Ψs. If so putσs into
Ψs+1 and, ifσs is ∃xθ(x), also putθ(ci) into Ψs+1 for some as yet unmentioned
ci. If σs is not consistent withT ∪ Ψs put¬σs into Ψs+1.

Verifications: Obviously,Ψ is complete and the standard argument shows that it
is consistent. As usual the elements of the desired modelM are the equivalence
classes of theci under the equivalence relation≡ given byci ≡ cj iff (ci = cj) ∈ Ψ
and the relations and functions onM are determined in the natural way by the
formulas inΨ.

The only issue for us now is the effectiveness of the construction. First we
note that one can verify that ifT is decidable thenΨ is computable. The only
question we must answer at stages is if σs is inconsistent withT ∪ Ψs. This is
equivalent to whether or notψs → ¬σs (with new free variableszi substituted in
for the constantsci appearing inΨs or σs) is a theorem ofT . As T is decidable
the answer to these questions is a computable function ofs. Thus the equivalence
relationci ≡ cj is computable. (Just look atΨs+1 whereci = cj is σs.) So the
equivalence classes form a computable set (the domain ofM) and the relations
and functions onM are determined byΨ. Indeed, as usual, a sentenceσ is true in
M if and only if σ ∈ Ψ and soM is decidable as required.�

One theme in effective model theory that we will not pursue investigates the
question of how hard it is (say in terms of Turing degree or levels of the (hy-
per)arithmetic hierarchy) to construct models of a given type when it is not possi-
ble to produce decidable or even computable ones. We consider the completeness
theorem as our only example. In the construction above the only noneffective step
was deciding ifσs is consistent withT ∪Ψs. As one can always answer this ques-
tion computably inT ′ (the Turing jump ofT ), every consistent theoryT has a
model computable, indeed decidable, inT ′.
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Corollary 2.3 If T is consistent then there is a modelM of T such that the ele-
mentary theory ofM, Th(M,m)m∈M , is computable inT ′ (and so∆02 in T ). In-
deed by the low basis theorem, there is always one withT ′ ≤T (Th(M,m)m∈M)′.

Proof. The first assertion follows immediately from the construction and discus-
sion above. For the second, instead of a singleΨ we build a binary tree (of choices
of σs (and Henkin axioms as appropriate) or¬σs). We terminate any path that
becomes inconsistent when we find a proof of inconsistency fromT . This pro-
duces an infinite binary tree computable inT (the particularΨ constructed above
is an infinite path through this tree). The low basis theorem (Jockusch and Soare
[1972]) says that there is an infinite pathP through the tree withP ′ ≤T T ′. As
above we can construct the desired model (and its complete diagram) computably
in P as required.�

• For the sake of convenience we assume from now on that all theories are con-
sistent.

We can now say (in some sense) when a theoryT has a decidable model.

Corollary 2.4 A complete theoryT has a decidable model if and only if it is
decidable. An arbitrary theoryT has a decidable model if and only if it has a
decidable complete extension.

Proof. If M is a model ofT andT is complete then the set of theorems ofT is
simply the intersection ofTh(M,m)m∈M with the sentences of the languageL of
T and soT is decidable ifM is decidable. Even ifT is not complete, ifM is a
decidable model ofT then this set is a decidable complete extension ofT . The
other (if) direction of both assertions in the Corollary follow from Theorem 2.2.�

We will not in general assume that theories are complete. However, finite
models have little interest from the viewpoint of Turing computability.

• We assume from now on that all theories have only infinite models.

Now that we “know” when a theoryT has a decidable model, we might well
ask how many decidable models a theory can have. For now we identify models
up to classical isomorphisms and so we might better ask how many decidably pre-
sentable models can a theory have. The issues of identifying computable models
only when there is a computable isomorphism between them will be taken up in
§6-7.

If T is incomplete then every decidable complete extension has a decidable
model by Theorem 2.2 and, of course, models of distinct extensions are not iso-
morphic. Moreover, every decidable model ofT is a model of some complete
decidable extension ofT . Thus if one is interested in the number of decidably
presentable models of a theory, it suffices to consider only complete decidable the-
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ories. We begin with the possibility that there is only one as in our exampleDeLO
of a decidableℵ0-categorical theory.

Proposition 2.5 If a theoryT isℵ0-categorical then the following conditions are
equivalent:

1. T is decidable.
2. T has a decidable model.
3. All models ofT are decidably presentable.

Proof. As ℵ0-categoricity implies completeness, the equivalences all follow di-
rectly from the hypothesis, definitions and Theorem 2.2.�

Now, it is a remarkable classical theorem due to Vaught [1961] that no com-
plete theory has exactly two (isomorphism types of) models. The effective analog
for decidable models is, however, false.

Theorem 2.6 (Millar [1979], Kudaibergenov [1979]) There is a decidable the-
ory T with exactly two (isomorphism types of) decidably presentable models.

Proof sketch. Let f be a partial computable function whose range is{0, 1} and
which does not have a total computable extension. Consider the (computably
enumerable but computably inseparable) setsM0 = {x|f(x) = 0} andM1 =
{x|f(x) = 1}. Let f0 ⊂ f1 ⊂ . . . be an effective approximation tof such that
k /∈ dom(fs) for all k > s.

The language ofT contains infinitely many unary and binary predicatesPi and
Ri, respectively, wherei ∈ ω. Consider first the theoryT0 whose axioms are the
following set of statements:

1. ∀xP0(x)&∀y(Pi+1(y) → Pi(y)), wherei ∈ ω.
2. If Rk(x, y), thenx �= y andPk(x)&Pk(y).
3. If x �= y, Ps(x)&Ps(y) andfs(k) = 0, thenRk(x, y).
4. If x �= y, Ps(x)&Ps(y) andfs(k) = 1, then¬Rk(x, y).

One can check that the following four properties hold ofT0:

1. T0 has a decidable model completionT . MoreoverT has a unique1–type
(Definition 3.1)p such thatPk(z) ∈ p for all k ∈ ω.

2. If a modelA of T has at least two elements realizingp, thenA is not decidably
presentable.

3. If a modelA of T has fewer than two elements realizingp, thenA is decidably
presentable.

4. If A1 andA2 are models ofT with the same finite number of elements realizing
p, thenA1 andA2 are isomorphic.

These properties show thatT has exactly two decidably presentable models.�
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The above proof can easily be generalized:

Corollary 2.7 For eachn ≤ ω, there exists a theory with exactlyn nonisomor-
phic decidable models.�

As for our examples above, an analysis of the structure of models ofDiLO
as in Chang and Keisler [1990, 3.4] easily implies that there are countably many
distinct decidable models. The same is true forACF0 as we shall see in Theorem
5.2.

Although the natural effective version of Vaught’s theorem fails, the proof
(properly effectivized) can be used to give a similar result for decidable models
(Theorem 4.4 below). We first need to study another aspect of the question of how
many decidable models a theoryT can have: When are each of the classically
studied types of models such as prime, atomic or saturated models of a decidable
theory decidably presentable?

3. Decidable Prime Models

We begin our study of specific types of models with prime and atomic models.
They will play a crucial role in the next two sections.

Definition 3.1 An n-typeΓ or Γ(x1, . . . , xn) of a theoryT is a set of formulas
with n free variables in the language ofT which is consistent withT such that
σ(x1, . . . , xn) or ¬σ(x1, . . . , xn) belongs toΓ for each such formula. Ann-type
Γ(x1, . . . , xn) of a theoryT is principal if there is a formulaθ(x1, . . . , xn) such
thatT � θ(x1, . . . , xn) → σ(x1, . . . , xn) for everyσ ∈ Γ. In this case we say that
θ(x1, . . . , xn) is acomplete formulathatgeneratesΓ.

Definition 3.2 A modelA of a theoryT in the languageL is aprimemodel of
T if it can be elementarily embedded into every model ofT . A is atomicif every
n-tuple of elements fromA satisfies a complete formulaθ(x1, . . . , xn) of L. (Each
of these models is unique (up to isomorphism) if it exists.)

The notions of prime and atomic coincide for countable models and so we
motivate our characterization of decidable prime models by two classical charac-
terizations.

Theorem 3.3 A complete theoryT in a languageL has a prime model if and only
if every formula ofL consistent withT is a member of a principal type overT .

Theorem 3.4 A complete theoryT in a languageL has an atomic model if and
only if every formula ofL consistent withT can be extended to a complete formula.

As the notions of atomic and prime coincide (for countable models), each of
these theorems provides a characterization of the theories with prime models. We
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now consider what might be the appropriate effective versions of these theorems.
In one direction, note that every type realized in a prime model ofT is principal
and all principal types are realized in every model ofT . Thus, ifT has a decidable
prime model, not only is every formula consistent withT a member of a prin-
cipal type (and so completable) but there is a uniformly computable list of these
principal types given by the ones realized in the decidable prime model.

The classical theorems at first glance suggest that this condition might be suffi-
cient. We should use this list of computable types to construct the model. However,
an additional possible uniformity is suggested by each classical characterization.
The characterization of prime models suggests that we might need to be able to
go uniformly effectively from formulas to (indices for) principal types contain-
ing them. The characterization of atomic models suggests that one might need to
be able to go uniformly effectively from formulas to generating formulas for the
principal types containing them. Although the two classical versions are equiva-
lent these two effective versions are not. The first is clearly necessary as given a
formulaψ consistent withT and a decidable prime modelA we can computably
find ann-tuple of elements ofA satisfyingψ. The set of formulas satisfied by this
n-tupleA is then a computable principal type containingψ. It turns out that this
condition is also sufficient. The second condition clearly implies the first and so is
sufficient but not, as it turns out, necessary.

Theorem 3.5 (Harrington [1974]; Goncharov and Nurtazin [1973]) A complete
decidable theoryT has a decidable prime model if and only if there is a com-
putable function taking each formula to (an index for) a computable principal
type containing it.

Proof. We construct the desired model by a priority argument reminiscent of that
for the Sacks splitting theorem for computably enumerable sets [1963] but instead
producing a Henkin construction that restricts the types realized to the principal
ones.

Let σe list the formulas ofLc the language ofT extended by new constants
ci. We construct in stages a sequence of finite setsΨs(c1, . . . , cns) of sentences
consistent withT with union Ψ as in the proof of Theorem 2.2. Again we let
ψs = ∧Ψs. At each stages of the constructionΓe,s will be a principale-type
containing the formula∃ye+1, . . . , ∃ynsψs(x1, . . . , xe, ye+1, . . . , yns). Our goal is
to satisfy the requirementsPe of Theorem 2.2 as well as new onesQe that guar-
antee that the model constructed is prime by making sure that only principal types
are realized. We satisfyQe by making sure thatΓe,s is eventually constant and
so that[c1], . . . [cn] satisfies the principal typeΓe(= lims Γe,s). (We denote the
equivalence class ofci in the model built from the constants as in Theorem 2.2 by
[ci].)

• Pe : σe ∈ Ψ or¬σe ∈ Ψ and ifσe is of the form∃xθ(x) and inΨ thenθ(ci) ∈ Ψ
for somei.
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• Qe : 〈[c1], . . . [ce]〉 realizes a principal typeΓe = lims Γe,s.

Construction: At stages, if only one ofσs and¬σs is consistent withT ∪ Ψs
put it into Ψs+1. Suppose it isρ that is put intoΨs+1 and soT � ψs → ρ. As
∃ye+1, . . . , ∃ynsψs(x1, . . . , xe, ye+1, . . . , yns) is in Γe,s which is a complete type
overT , andT � ψs → ρ, ∃ye+1, . . . , ∃yns+1ψs+1(x1, . . . , xe, ye+1, . . . , yns+1) is
also inΓe,s. So we can letΓe,s+1 beΓe,s for all e. If bothσs and¬σs are consistent
with T ∪Ψs, the problem is that addingσs (or¬σs) to Ψs to formΨs+1 may make
∃ye+1, . . . , ∃yns+1ψs(x1, . . . , xe, ye+1, . . . , yns+1) not be a member ofΓe,s for var-
ious numberse. This would force us to change our choice of the type realized by
〈[c1], . . . , [ce]〉 and so makeΓe,s+1 �= Γe,s. We view this as an injury to require-
mentQe (which requires thatΓe,s eventually stabilize). As in the Sacks splitting
theorem we act so as to minimize the priority of the first requirement injured.

More precisely, we letψ0s+1 beψs∧σs andψ1s+1 beψs∧¬σs. We letei,s (for i =

0, 1) be the leaste ≤ s such that∃ye+1, . . . , ∃yns+1ψ
i
s+1(x1, . . . , xe, ye+1, . . . , yns+1)

is not inΓe,s. (If none exists,ei,s = s.) If e0,s ≤ e1,s letψs+1 = ψ1s+1 and otherwise
let ψs+1 = ψ0s+1. Let es = min{e0,s, e1,s}. Fore ≤ es we can letΓe,s+1 = Γe,s as
for suche, ∃ye+1, . . . , ∃yns+1ψs+1(x1, . . . , xe, ye+1, . . . , yns+1) ∈ Γe,s. For e > es
we redefineΓe,s+1 as the first in our uniformly computable list of principal types
which contains∃ye+1, . . . , ∃yns+1ψs+1(x1, . . . , xe, ye+1, . . . , yns+1).

If we have put∃xθ(x) into Ψ, we putθ(ci) in as well for some unusedci. This
clearly does not require any change in theΓe,s+1 already defined.

Verifications: As T is decidable and the types on our list are uniformly com-
putable, the construction is clearly computable. We clearly satisfy thePe require-
ments and so construct a decidable modelM as in Theorem 2.2. As all sentences
σi involving only c1, . . . , ce that are put intoΨs at stages belong to the principal
type Γe,s, if we can show thatlims Γe,s exists for eache (and is sayΓe) then we
will have shown that, inM, 〈[c1], . . . [ce]〉 realizes the principal typeΓe as required
to guarantee thatM is a prime model ofT .

We prove by induction one that there is a stagete such thates > e for all s ≥ te
and soΓe,s = Γe,te for all s > te. Suppose thatte−1 exists. We need to show thates
is greater thane for all sufficiently larges. Now, by the definition ofte−1, e ≤ es
for everys > te−1 and so by the choice ofΨs+1 in the construction,Γe,s = Γe,te =
Γe for all s > te. As Γe is principal, someσ(x1, . . . , xe) is a generator and so by
some staget ≥ te−1 we have addedσ to Ψt. We claim thates > e for everys > t.
Considerσs for anys > t. The only wayes could bee is if both σs and¬σs are
consistent withT ∪ Ψs but ∃ye+1, . . . , ∃yns+1ψ

i
s+1(x1, . . . , xe, ye+1, . . . , yns+1) is

not in Γe,s for i = 0 or 1. As ∃ye+1, . . . , ∃yns+1ψs(x1, . . . , xe, ye+1, . . . , yns+1) →
σ andσ is complete this would mean that

∃ye+1, . . . , ∃yns+1ψs(x1, . . . , xe, ye+1, . . . , yns+1) →

¬∃ye+1, . . . , ∃yns+1σs(x1, . . . , xe, ye+1, . . . , yns+1)

or that
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∃ye+1, . . . , ∃yns+1ψs(x1, . . . , xe, ye+1, . . . , yns+1) →

¬∃ye+1, . . . , ∃yns+1¬σs(x1, . . . , xe, ye+1, . . . , yns+1)

so thatσs or ¬σs, respectively, would be inconsistent withΨs contrary to our
assumption. Thust is the required stagete. �

We finish this section with an alternative version of Theorem 3.5 and some
remarks about various uniformity conditions.

Corollary 3.6 A complete decidable theoryT has a decidable prime model if
and only ifT has a prime model and the set of all principal types ofT is uniformly
computable.

Proof. The only if direction of this Corollary is clearly implied by the Theorem.
Suppose then thatT has a prime model and the set of principal types ofT is
uniformly computable. AsT has a prime model, every formulaψ is a member of
a principal type and so the search among those in the given set for one containing
ψ terminates and provides the computable function required in the theorem.�

The effective uniformity in the listing of the computable principal types is
necessary as an explicit hypothesis:

Theorem 3.7 (Millar[1978]) There is a complete decidable theoryT all of whose
types are computable with a prime model but no decidable (or even computable)
one.

Finally, we show that the possible alternate version of Theorem 3.5 that asks
for a computable way to go from a formula to a completion is false and so “uni-
formly atomic” is stronger than “uniformly prime” even for decidableℵ1-categor-
ical theories.

Proposition 3.8 There is a (complete) decidableℵ1-categorical theoryT with a
decidable prime model but with no computable function taking formulas to com-
plete extensions.

Proof. The language ofT has infinitely many unary predicatesRi. The axioms of
T say that the cardinality of eachRi is exactly2 and thatRi andRj are disjoint for
distincti andj except for somedesignatedtriples〈i, j, k〉 such thatRk consists of
one element from each ofRi andRj . Moreover, no two distinct designated triples
have any entry in common. The actual list of axioms forT is thus determined by
the list of designated triples. This list will be defined recursively to diagonalize
against each possible computable partial functionθe which might be a candidate
for a function taking formulas to complete extensions. ThusT will be axiomati-
zable. It is alsoℵ1-categorical. (The part of the model consisting of elements in
anyRi is uniquely determined by the axioms. The rest just consists ofℵ1 many
elements not in anyRi.) ThusT is complete and decidable.
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The list of designated triples is effectively enumerated in increasing order (and
so is computable) by waiting to diagonalize eachθi at the formulaR2i(x). If
θi(R2i(x)) converges at stages, we choosej, k larger than any number mentioned
already and designate the triple〈2i, 2j + 1, 2k + 1〉. In particular, ifθi(R2i(x)) is
the generating formulaθ(x) (which impliesR2i(x)) thenθ cannot mentionR2k+1.
We claim thatT can prove neither thatθ(x) impliesR2k+1(x) nor that it implies
¬R2k+1(x) and soθi is not a function taking formulas to complete extensions. To
see that no information aboutR2k+1(x) can be implied byθ(x) consider the theory
T ′ gotten by restrictingT to the languageL′ which is L without the predicate
R2k+1. T ′ is clearly alsoℵ1-categorical and consistent withθ(x). Let A be a
model ofT ′ anda an element realizingθ(x). Let b be the other element ofR2i in
A andc andd the elements ofR2j+1. (R2i andR2j+1 are disjoint by construction.)
We can easily expandA to a model ofT by interpretingR2k+1 as either{a, c} or
{b, d}. Thusθ(x) cannot imply eitherR2k+1(x) or¬R2k+1(x). �

4. Saturated Models and the Number of Decidable
Models

Definition 4.1 A modelA of a theoryT in the languageL is asaturatedmodel
of T if it realizes every type ofT with finitely many parameters fromA. (If it
exists, the saturated model ofT is unique.)

The characterization of decidable theories with decidable saturated models is
somewhat easier than for prime ones.

Theorem 4.2 (Morley [1976], Millar [1978], Goncharov [1978a]) A decidable
theoryT has a decidable saturated model if and only if the types ofT are uniformly
computable.

Proof sketch. If T has a decidable saturated modelA then the types ofT are
uniformly computable as we can simply list then-tuples fromA and, for each of
them the set of formulas it satisfies. For the other direction, we can use the uni-
formly computable list of types to do an effective Henkin construction. As the
construction proceeds, we designate new constants to realize each potential type
over previously introduced constants. As all the potential types over new constants
are given uniformly computably as restrictions to a subset of their free variable of
ones on our given list this procedure can be effectively organized. Roughly speak-
ing, the plan is to continue to make the designated constants realize the appropriate
type until an inconsistency is reached. We can check for inconsistencies with pre-
viously assigned types since they are all uniformly computable. We use a priority
ordering to guarantee that, despite the need to cancel attempts at realizing certain
potential types, each actual type over the constants introduced is in fact realized.
Thus the model constructed is saturated as required.�
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By Millar [1978], the explicit assumption of uniformity is necessary even if
one assumes that the decidable theoryT has a saturated model and all its types
are computable. Millar [1978, p. 63] suggests that the proof of this results can
be modified to show that there is no connection between the decidability of the
saturated and prime models (when both exist). We now show that, in fact, if there
is a decidable saturated model then there is a decidable prime model.

Proposition 4.3 (Ershov [1980, 381-382], see also Goncharov [1997, Theorem
3.4.4]) If a complete theoryT has a decidable saturated model then it has a de-
cidable prime model.

Proof. As T has a decidable model it is itself decidable by Corollary 2.4. As it has
a decidable saturated model, Theorem 4.2 gives us a uniformly computable listΓe
of all the types ofT . By Theorem 3.5, it suffices to prove that, given any formula
φ consistent withT , we can go effectively to a principal typeΓ containingφ. We
begin with the first typeΓn0 on our list containingφ = φ0. We proceed recursively
to extendφ to φi and define a typeΓni containingφi. Givenφi, Γni andσi (from
the list of all formulas with the same number of free variables asφ), we ask if both
σi and¬σi are consistent withT ∪{φi}. If not,φi+1 = φi andni+1 = ni. If so, we
find the firste0 ande1 such thatφi∧σi ∈ Γe0 andφi∧¬σi ∈ Γe1 , respectively. We
let ni+1 be the larger ofe0 ande1 and letφi+1 beφi ∧ σi or φi ∧ ¬σi accordingly.
It is clear that the sequenceni is nondecreasing as at stepi of the construction if
e0 ande1 are defined then one of them isni and we always take the larger. As
this procedure is effective,{φi|i ∈ ω} generates a computable typeΓ containing
φ. If ni is not eventually constant,Γ would be a type ofT not equal to anyΓe
for a contradiction. Onceni has stabilized say atn we can definee0 ande1 at
only finitely many stagess as each time we do so we extendφs and eliminate one
possibleΓj for j < n from future consideration. Thusφi also eventually stabilizes
say atφe. It is now clear thatφe generates the typeΓn which is therefore the
required principal type containingφ. �

We now see what the proof of Vaught’s theorem that a complete theory cannot
have exactly two models gives us.

Corollary 4.4 If a complete but notℵ0-categorical theoryT has a decidable sat-
urated model then it has at least three decidable models.

Proof. Let A be a decidable saturated model ofT . By Proposition 4.3,T has
a decidable prime modelB. As T is notℵ0-categorical, the decidable saturated
modelA of T is not a prime model and soA andB are not isomorphic. ThusA
realizes a nonprincipal (but computable) typeΓ(x). A can clearly be expanded
to a saturated model ofT ∪ Γ(c) by properly interpreting the constantsc and so
T ∪Γ(c) has a decidable saturated model and hence a decidable prime modelC by
Proposition 4.3. Of course, the restriction ofC is a decidable model ofT . As in
the proof of Vaught’s theorem (as in Chang and Keisler [1990, Theorem 2.3.15]),
this model cannot be isomorphic to eitherA orB. �
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On the other hand, if a decidable theoryT has no decidable prime model
(and so no decidable saturated model) then it has infinitely many decidable prime
models. To see this, we quote a simple case of Millar’s effective omitting types
theorem.

Theorem 4.5 (Millar [1983]) If T is a decidable theory and{Γi|i < n} a finite
set of computable nonprincipal types ofT then there is a decidable model ofT
omitting every (i.e. not realizing any)Γi.

Corollary 4.6 If a decidable theoryT does not have a decidable prime model
thenT has infinitely many decidable models.

Proof. By Theorem 2.2,T has a decidable modelA. As A is not a prime model
it realizes some nonprincipal typeΓ1. By Theorem 4.5, there is a decidable model
A1 of T omittingΓ1. AsA1is not prime, it realizes a nonprincipal typeΓ2 distinct
from Γ1 by construction. We now get a decidableA2 omitting bothΓ1 andΓ2.
Continuing in this way we get an infinite sequenceΓi of computable nonprincipal
types ofT and decidable nonisomorphic modelsAi of T as required. (EachAi
realizesΓi+1 but notΓj for anyj ≤ i.) �

Another variation on the question of how many decidable models a decidable
theory can have asks when is every model ofT decidably presentable. One obvious
necessary condition is that all types inT are computable. (Every type is realized
in some model and only computable types can be realized in a decidable model.)
Thus, in particular,T can have only countably many types. This condition is
not sufficient and the problem remains open in general. There are a couple of
partial answers. The answer is simple forℵ0-categorical theories and is supplied
by Proposition 2.5. The nicest result is forℵ1-categorical theories to which we
now turn.

5. ℵ1-Categorical Theories

If a theoryT is ℵ1-categorical (and so complete) but notℵ0-categorical then
the Baldwin-Lachlan theorem [1971] supplies us with a full classification of the
models ofT in terms of a well defined notion of dimension. There are countably
many modelsAi of T and they are arranged in a liner order of typeω + 1 with
respect to elementary embedding ascending with increasing dimension:

A0 � A1 � A2 � . . . � An � . . . � A∞.

A0, the model of dimension zero is the prime model ofT andA∞, the unique
model of infinite dimension, is the saturated model ofT . The modelAi for i > 0
is the model of dimensioni.

The classic example of anℵ1 but notℵ0- categorical theory isACF0. Here
the dimension of a model is its transcendence degree over the prime fieldQ . A0,



16 Bakhadyr Khoussainov and Richard A. Shore

the prime model, is the algebraic closure ofQ . A∞, the saturated model, is the
algebraic closure of the rationals extended by infinitely many transcendental el-
ements. EachAi for i > 0 is the algebraic closure ofQ extended byi many
transcendentals.

The general problem we wish to address is the following:

Question 5.1 If T is ℵ1 but notℵ0-categorical theory when (and which of) its
models are decidably or computably presentable?

5.1 Decidable Models of ℵ1-Categorical Theories

Of course, ifT is ℵ1-categorical and so complete, it has a decidable model if
and only if it is itself decidable (Theorem 2.4). Actually, the decidability ofT is
enough to guarantee that every model is decidably presentable:

Theorem 5.2 (Harrington[1974], Khisamiev [1974]) IfT is ℵ1-categorical and
decidable then every model ofT is decidably presentable.

Proof. We first use the results of Baldwin and Lachlan [1971] to show that we
can reduce the problem to that of the existence of decidable prime models for a
decidable theoryT . (All the model theoretic facts we cite in this proof can be
found in Baldwin and Lachlan [1971].)

As T is ℵ1-categorical, there is a principaln-type Γ(x1, . . . , xn) such that
T ′ = T ∪ Γ(c1, . . . , cn) (with ci new constants) has astrongly minimal formula,
i.e. a formulaφ(x) of L′ (the languageL of T expanded by new constantsci)
such that for every modelA of T ′ and every formulaψ(x) of L′, exactly one of
{a ∈ A|A |= φ(a) ∧ ψ(a)} and{a ∈ A|A |= φ(a) ∧ ¬ψ(a)} is finite. Of course,
T ′ is ℵ1-categorical. Note that asT is decidable andΓ is principal,T ′ is also
decidable (T ′ � φ ⇔ φ ∈ Γ ⇔ T � θ → φ whereθ is a generator ofΓ). As all
models ofT can be extended to ones ofT ′, we can assume for the proof of our
theorem thatT has a strongly minimal formulaφ.

Now each model of anℵ1-categorical theoryT with a strongly minimal for-
mulaφ is the prime model of an extensionT ′ of T by constantsdi satisfying a type
∆ which says thatφ(di) holds for eachi and that thedi are algebraically inde-
pendent, i.e. there is no formulaψ(x, y) ∈ ∆ such that for somen, ∃≤nx(φ(x) ∧
ψ(x, y)) ∈ ∆. (In fact, the cardinality of the set ofdi is the dimension of the model
and uniquely determines it.) AgainT ′ is clearlyℵ1-categorical. We must verify
that it is also decidable, i.e.∆ is computable. We prove by induction on the num-
bern of di that the corresponding types∆n and theoriesTn = T ∪∆n(d1, . . . , dn)
are uniformly decidable. (They are complete by definition.) Forn + 1, consider
any formulaψ(x, d1, . . . , dn). In each modelA of Tn exactly one of{a ∈ A|A |=
φ(a) ∧ ψ(a, d1, . . . , dn)} and{a ∈ A|A |= φ(a) ∧ ¬ψ(a, d1, . . . , dn)} is finite by
the strong minimality ofφ. By compactness, there is then anm ∈ N such that
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Tn � ∃≤mx(φ(x) ∧ ψ(x, d)) or Tn � ∃≤mx(φ(x) ∧ ¬ψ(x, d)). As Tn is decid-
able, we can search for and find such anm for ψ or ¬ψ. The other is in∆, i.e. if
Tn � ∃≤mx(φ(x)∧ψ(x, d)) then¬ψ(x, d) ∈ ∆ and ifTn � ∃≤mx(φ(x)∧¬ψ(x, d))
thenψ(x, d) ∈ ∆. Thus eachTn andT∞ = ∪Tn is decidable and the models ofT
are precisely the prime models of these theories. To prove our theorem it therefore
suffices to show that each of these theories has a decidable prime model.

By Theorem 3.5, it suffices to show that ifT is a decidableℵ1-categorical
theory with a strongly minimal formulaψ then there is a computable function
taking any formulaσ(x) to a computable principal typeΓσ containingσ.

Givenσ, we construct a computable typeΓ in stagese by starting withσ and
adding on eachσe in turn if it is consistent with what we have put inΓ so far
and, if σe is ∃y(ψ(y) ∧ θ(y, x)), we also add in∃y(ψ(y) ∧ θ(y, x) ∧ φ(y)) for
some algebraicφ, i.e. one such thatT � ∃≤ny(ψ(y) ∧ φ(y)) for somen ∈ ω. Of
course, ifσe is not consistent with what we have so far we add on¬σe. The point
here is that if∃y(ψ(y) ∧ θ(y, x)) is consistent with what we have so far then the
formula gotten by adding it on is realized in the prime model ofT say byc. Now
that model has only algebraic realizations ofψ and so whatever element witnessed
∃y(ψ(y)∧θ(y, c)) is algebraic and so also satisfies some algebraic formulaφ. Thus
∃y(ψ(y) ∧ θ(y, x) ∧ φ(y)) can be consistently added on as desired.

We claim thatΓ is principal and so the requiredΓσ. Consider the prime model
A of T ∪ Γ(c) and anya ∈ A such thatA |= ψ(a). As A is a prime model
of T ∪ Γ(c), a realizes a principal type overT ∪ Γ(c) generated say byθ(y, c).
If a is not algebraic then for every formulaφ and everyn ∈ ω, T ∪ Γ(c) �
θ(y, c) → [φ(y) → ¬∃≤ny(ψ(y) ∧ φ(y))]. On the other hand, asA |= ψ(a) ∧
θ(a, c), ∃y(ψ(y)∧θ(y, x)) ∈ Γ and so by construction∃y(ψ(y)∧θ(y, x)∧φ(y)) ∈
Γ for someφ such thatT � ∃≤ny(ψ(y) ∧ φ(y)) for somen for a contradiction.
ThusA has only algebraic solutions ofψ, i.e. it is the model of dimension0, and
soA is actually the prime model ofT . As Γ is realized inA, it must be principal
overT as required.

(This last argument is attributed to Lachlan in Harrington [1974]. Harrington’s
own proof is also instructive. It begins with the observation that the function taking
a formulaσ to its rank as defined in Baldwin [1973] can be seen to be a computable
map from formulas intoN by the arguments presented in that paper. Thus, given a
formulaσ consistent withT , we may computably define a typeΓ = ∪Γe contain-
ing σ by putting in, for eache in turn, eitherσe or ¬σe so as to always preserve
consistency and to reduce the rank of

∧
Γe if possible. Eventually, the rank must

stabilize and so we produce a principal typeΓ containingσ.) �

5.2 Computable Models

We now turn to the question of which models of anℵ1-categorical but notℵ0-
categorical theoryT are computably presentable ifT is not decidable. It is easy to
find such a theory with no computable models by coding a noncomputable setS
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into every model. (For example, extend ACF0 by adding on new unary predicates
Pi and, for eachi ∈ ω, axioms∀x(Pi(x) → x = 0) andPi(0) if i ∈ S but¬Pi(0)
if i /∈ S.) Thus the question is, ifT has a computable but no decidable model,
which of the modelsAi of T can or cannot be computable. Only a few facts are
known.

Theorem 5.3 (Goncharov [1978], Kudaibergenov [1980]) For everyn ∈ N there
is anℵ1-categorical but notℵ0-categorical theoryT such thatA0, . . . ,An are all
computably presentable but notAi for i > n.

Proof. Fix n ∈ N . The language for the required theoryT will consist of a unary
predicatePk and ann-ary predicateRk for eachk ∈ N . The axioms forT will
code a computably enumerable but not computable setB = ∪Bs into each model
of dimension greater thann while maintaining the possibility that the models of
dimension less than or equal ton are computably presentable.

Axioms:

• ThePk are nested downward with respect tok and exactly one element drops
out at eachk, i.e. for eachk ∈ N we have the following axioms:

*∀x(Pk+1(x) → Pk(x))
*∃!x(Pk(x) ∧ ¬Pk+1(x))

• For eachk ∈ N we wish to require that

Rk(x1, . . . , xn) ⇔
∧

{xi �= xj|i �= j} ∧ ∃s(k ∈ Bs ∧ x1, . . . , xn ∈ Ps).

We enforce this requirement by the following axioms:

*Rk(x1, . . . , xn) → xi �= xj for i �= j.
*For eachs ∈ N andk ∈ Bs :∧

{xi �= xj|i �= j} ∧ x1, . . . , xn ∈ Ps → Rk(x1, . . . , xn).
*For eachs ∈ N andk /∈ Bs :

∨
{xi /∈ Ps|i ≤ n} → ¬Rk(x1, . . . , xn).

Verifications: It is easy to see that the cardinality of∩PAs uniquely determines the
isomorphism type of any modelA of T and that all modelsA of sizeℵ1 haveℵ1
many elements in∩PAs . ThusT is ℵ1-categorical. Indeed, the cardinality of∩PAs
is the dimension ofA.

We claim that a modelA of T is computably presentable if and only if there
are fewer thann distinct elements in∩PAs . For one direction, suppose that there
are distinctc1, . . . , cn in ∩PAs . In that case,k ∈ B ⇔ A |= Rk(c1, . . . , cn) and so
A cannot be computably presentable asB is not computable.

For the other direction, we wish to construct a computable modelA of T with
m < n many elementsc1, . . . , cm, in ∩PAs . We let the other elements of the
desired model be the natural numbers and we puti in Pk if and only if i ≥ k. We
now only have to computably define the predicatesRk. Given distinct elements
a1, . . . , an fromA, not all of them are from among theci and so we can effectively
find ans and indeed the smallests such that one of them is not inPs. We then let
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Rk(a1, . . . , an) hold if and only ifk ∈ Bs−1. This clearly defines a computable
modelA of T with | ∩ PAs | = m as required.�

Thus any initial segment of the models ofT can be the computably presentable
ones. The obvious questions arise as to what else is possible.

Question 5.4 Which subsets ofω + 1 can be the set of computably presentable
models of anℵ1-categorical but notℵ0-categorical theoryT with a computable
model? In particular, must the prime model always be computably presentable?
Must the saturated model be computably presentable if all the others are?

The following theorem answers the two specific questions asked. All other
instances of the general question are open.

Theorem 5.5 (Khoussainov, Nies and Shore [1997]) There areℵ1-categorical
but notℵ0-categorical theoriesT1 andT2 such that

i)All models ofT1 except the prime one are computably presentable.
ii)All models of T2 except the saturated one are computably presentable.

Proof (For T1). GivenS ⊂ ω we construct a structureAS of signatureL =
(P0, P1, P2, . . .), where eachPi is a binary predicate symbol having the following
properties:

• The theoryTS of the structureAS is ℵ1- but notℵ0–categorical andAS is the
prime model ofTS.

• Each nonprime modelA of TS has a computable presentation if and only ifS
is Σ02.

• A computable prime model providesS with a certain recursion-theoretic prop-
erty but there exists aΣ02–set which does not have this property.

The building blocks of our structuresAS will be finite structures that we call
n-cubes and now define by induction onn.

Definition 5.6 A 1–cubeC1 is a structure({a, b}, P0) such thatP0(x, y) holds in
C1 if and only if (x = a andy = b) or (y = a andx = b). Given two disjoint
n-cubes we get ann + 1-cubeas an expansion of their union by lettingPn be an
isomorphism between then-cubes. Anω–cubeis an increasing union ofn–cubes,
n ∈ ω with signature(P0, P1, P2, . . .)

Definition 5.7 If S ⊆ ω, AS is the disjoint union ofn-cubes forn ∈ S and
TS = Th(AS).

Lemma 5.8 If S is infinite, thenTS is ℵ1- but notℵ0–categorical and the model
with noω-cubes is its prime model.

Proof. It is easy to see that the modelAS satisfies the following conditions which
are all expressible by a set of axioms in the languageL:
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1. ∀x∃yP0(x, y) and for eachn, Pn defines a partial one-to-one function. (We
abuse notation by also denoting this partial function byPn.)

2. For alln �= m and for allx, Pn(x) �= Pm(x).
3. For eachn and for allx if Pn(x) is defined, thenP0(x), P1(x), . . ., Pn−1(x) are

also defined.
4. For alln,m and for allx if Pn(x) andPm(Pn(x)) are defined, thenPm(Pn(x)) =
Pn(Pm(x)).

5. For allk, n > n1 ≥ n2 ≥ . . . ≥ nk−1 ≥ nk, ∀x(Pn1(. . . (Pnk(x) . . .) �= Pn(x)).
6. For eachn ∈ ω, n ∈ S if and only if there exists exactly onen–cube which is

not contained in ann + 1–cube.

Let M be a model which satisfies all the above statements. For eachn ∈ S,
M must have ann–cube which is not contained in ann + 1–cube. If anx ∈ M
does not belong to anyn–cube forn ∈ S, thenx is in anω–cube. Thus any two
models which satisfy this list of axioms are isomorphic if and only if they have
the same number ofω–cubes. In particular, ifM1 andM2 are models ofTS of
cardinalityℵ1, each hasℵ1 manyω–cubes (as each cube is countable). ThusM1

andM2 are isomorphic andTS is anℵ1- but notℵ0–categorical theory. It is clear
that the prime model is the one with noω-cubes.�

Lemma 5.9 Each nonprime model ofTS is computably presentable if and only if
S is Σ02.

Proof. If M is a model ofTS, s ∈ S if and only if M |= ∃x∃y∀z(Ps(x, y)&
¬Ps+1(x, z)). Thus if M is computably presentableS is Σ02. For the other di-
rection, note that it suffices to construct a computable modelM1 with oneω-
cube whenS ∈ Σ02. (We can computably add on moreω-cubes as desired.) We
buildM by putting in ann-cube when, according to theΣ02 representation ofS as
{n|∃x∀yH(x, y, n)}, we seem to have a witnessx thatn ∈ S. When the witness
fails, we merge thisn-cube into theω-cube that we are building. More formally,
at stage0 we start to build a substructureB that will be anm-cube for somem
at every stages and will at the end of the construction be anω-cube. At stages,
we first put intoM ann-cube for eachn < s for which we do not have one and
associate the cube with the first numberx that has not yet been associated with
n. Then, we mergeB and the existingn-cubes for thosen < s for which there
is ay < s such thatH(x, y, n) fails for thex currently associated withn into an
m-cube for somem larger than any number yet used in the construction. Clearly
the substructureB becomes the onlyω-cube ofM. Moreover, forn ∈ ω, there is
ann-cube in the final structureM if and only if ∃x∀yH(x, y, n), i.e. if and only
if n ∈ S as required.�

We now provide the recursion theoretic property ofS that is guaranteed by the
existence of a computable prime model ofTS (but not by any of the other models
being computably presentable).
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Definition 5.10 A functionf is limitwise monotonicif there exists a computable
functionφ(x, t) such thatφ(x, t) ≤ φ(x, t + 1) for all x, t ∈ ω, limt φ(x, t) exists
for everyx ∈ ω andf(x) = limt φ(x, t).

Lemma 5.11 If the prime model ofTS is computably presentable thenS is the
range of a limitwise monotonic function.

Proof. SupposeM is a computable prime model ofTS. Defineφ(x, s) for each
x ∈ M ands ∈ N as the largestn < s such thatPn(x, y) holds for somey < s. It
is clear thatφ(x, s) is monotonic ins. As everyx ∈ M is in ann-cube for some
n, φ(x, s) is equal to thisn for all sufficiently larges. �

Lemma 5.12 There exists a∆02 setA which is not the range of any limitwise
monotonic function.

Proof. Let φe(x, t) be a list of all candidates for representations of limitwise
monotonic functionsfe. At stages we define a finite setAs so thatA(y) =
limsAs(y) exists for ally (and henceA is ∆02). We also satisfy the following
requirements to guarantee thatA is not the range of a limitwise monotonic func-
tion.

Re : If fe(x) = limtφe(x, t) < ω for all x, thenrange(fe) �= A.

The strategy to satisfy a singleRe works as follows: At stages, pick a witness
me, enumerateme into A (i.e. setAs(me) = 1). Now Re is satisfied (sinceme
remains inA) unless at some later staget0 we find anx such thatφe(x, t0) = me.
If so,Re ensures thatA(φe(x, t)) = 0 for all t ≥ t0. Thus, eitherfe(x) ↑ or fe(x) ↓
andfe(x) /∈ A.

Keepingφe(x, t) out of A for all t ≥ t0 can conflict with a lower priority
(i > e) requirementRi since it maybe the case thatmi = φe(x, t

′) for some
t′ > t0. However, iffe(x) ↓, then from some point on there is only one number
thatRe prevents from being a candidate formi. If fe(x) ↑, then the restriction
is transitory, i.e. asφe(x, t) is monotonic int each candidate formi is eventually
released and never prevented from being chosen as the final value ofmi.Thus each
lower priorityRi will eventually be able to choose a witnessmi that it will never
have to change because of the actions ofRe. In this way, every requirement can be
satisfied by a typical finite injury priority argument.�

Proof sketch (ForT2). We take aΠ02 setS defined byk ∈ S ⇔ ∀n∃mH(n,m, k)
which is notΣ02. (H is some computable predicate onN3 .) We now codeS into a
computable structureA with unary predicatesPi and predicatesRk,s of arity k for
i, k, s ∈ N . The relevant properties ofA that can be guaranteed by axioms in this
language are as follows:

• ThePAi form a descending chain of sets with one element dropping out at each
i.
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• TheRAk,s code the approximationH(n,m, k) to k ∈ S by requiring that ifj is
least such that∀n ≤ s∃m ≤ j(H(n,m, k)) andx1, . . . , xk ∈ Pj are distinct for
i ≤ k thenRk,s(x1, . . . , xk) holds and not otherwise. (In particular, ifk /∈ S
then for somes0 we have axioms saying thatRk,s(x1, . . . , xk) does not hold for
anys ≥ s0 and anyx1, . . . , xk.)

The theoryTS of AS is ℵ1- but notℵ0-categorical with the dimension of a
modelA being once again determined by the cardinality of∩PAi . The intuition is
that the more elements there are in∩PAi for a modelA of TS, the more of theΠ02-
approximation toS that we can “recover” from the diagram ofA. In particular,
if A is the saturated model ofTS, ∩PAi is infinite andS is Σ2 in A: k ∈ S ⇔
∃x1, . . . xk ∈ A[(∀i)(A |= Pi(x1) ∧ . . . Pi(xk) ) ∧ (∀s)(A |= Rk,s(x1, . . . xk))].
As S is notΣ02, the saturated model ofTS is not computably presentable. For each
t < ω, however, we can (nonuniformly) build a computable modelAt of TS with
t many elements in∩PAti . The information needed isS ∩ (t + 1) and, for each
k ≤ t which is not inS the leastn for which there is nom such thatH(n,m, k)
holds.�

All the theorems in this subsection about computable models ofℵ1-categorical
theories use infinite signatures. Not too much is known about the existence of
such structures and theories in finite signatures or for ones that are extensions
of standard algebraic theories. One interesting example is Herwig, Lempp and
Ziegler [1999] who have established Theorem 5.3 forn = 0 with T an extension
of the theory of groups in the standard signature.

6. Computable Dimension and Categoricity

Until now we have taken the classical approach of identifying models up to
classical isomorphism. However, it is not obvious that even two computable (or
decidable) models that happen to be isomorphic should be identified when one is
interested in effective procedures. There could well be (and indeed, as we shall
see, there are) structures with presentationsA andB such that the two presenta-
tions have different effective properties. For example, there are computable pre-
sentations of〈N ,≤〉 on which the successor function is not computable.

Proposition 6.1 There is a computable presentationA = 〈A,≤A〉 of 〈N,≤〉 such
that the successor function onA is not computable.

Proof. A will consist of the even numbers in their usual order plus an infinite set
of odd numbers determined and placed in the ordering by a procedure designed
to guarantee that no computable functionφe is the successor function onA. At
stages we check, for eache < s, if φe(2e) has converged at stages and is equal to
2e+ 2. If so we put2s+ 1 intoA and place it between2e and2e+ 2. It is obvious
thatA is computable and thatφe(2e) is not the successor of2e in A for anye. �
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The natural approach to the issue raised by such examples is to identify struc-
tures or presentations only when there is a computable isomorphism between them.
Of course, this only makes sense when the structures themselves are computable.

• Henceforth all structures will be computable.

Definition 6.2 A is computably isomorphicto B, A ∼=c B, if there is a com-
putablef : A → B which is an isomorphism. We also say then thatA andB are
of the same computable isomorphism type.

Definition 6.3 The (computable) dimensionof a structureA is number of its
computable isomorphism types.A is computably categoricalif its computable
dimension is1, i.e. everyB isomorphic toA is computably isomorphic toA.

Note that in a computably categorical structureA every definable relation that
is computable in any presentation ofA is computable in every presentation ofA
and so for such structures the effectiveness of definable properties is independent
of the presentation.

Example 6.4 Q (the rationals) with its usual linear order is computably categori-
cal: The standard back and forth argument showing that the theory of dense linear
orderings without endpoints is countably categorical is effective and so produces
computable isomorphisms between any two such orderings.

Example 6.5 N as a model orPA or indeed as a structure with only the suc-
cessor functions(x) (given asx + 1 in the language of arithmetic) is computably
categorical: Given anyB isomorphic toN , one defines the required computable
f : N → B by recursion.f(0) is the first element ofB and if f(n) is defined as
b ∈ B thenf(n + 1) = sB(b). However, it is easy to see from Proposition 6.1
that〈N ,≤ 〉 is not computably categorical. (Ifs is the successor function onN and
f : N →A were a computable isomorphism into theA of Proposition 6.1,fsf−1

would be a computable successor function onA.)

Example 6.6 Every finitely generated structure is computably categorical by the
natural generalization of the preceding argument for〈N , s〉.

Example 6.7 Q , the algebraic closure of the rationals and so the prime model of
ACF0, is computably categorical but̃Q , the countable saturated model ofACF0
(i.e. the algebraic closure of the rationals extended by infinitely many transcen-
dentals) has computable dimensionω (Corollary 6.12).

All of these examples have dimension1 or ω but, actually, everyn ≤ ω is
possible.

Theorem 6.8 (Goncharov [1980a]) For eachn, 1 ≤ n ≤ ω there is a structure
of dimensionn.
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Goncharov uses a priority argument to construct families of uniformly com-
putably enumerable sets with (in a precise sense) exactlyn many distinct enumera-
tions and then codes them into structures so as preserve the dimension. We will see
other approaches to these results in Theorem 6.22 and Corollary 7.16. Although
there are interesting codings of these families into familiar types of mathematics
structures such as groups and rings (see §9), we do not know of any “natural”
structures with dimensionn for 1 < n < ω. Indeed, for many classes of structures
it is possible to prove that they are computably categorical or have dimensionω.
In most of these cases it is actually possible to characterize the structures that are
computably categorical.

Theorem 6.9 (Goncharov [1973], LaRoche [1977], Remmel [1981], Goncharov
and Dzgoev [1980]) A Boolean algebra is computably categorical if it has finitely
many atoms. If not, it has dimensionω.

Theorem 6.10 (Remmel [1981a], Goncharov and Dzgoev [1980]) A linear order
is computably categorical if it has only finitely many pairs of adjacent elements. If
not, it has dimensionω.

We can deduce a similar result on algebraically closed fields from a general
theorem about computable categoricity among decidable presentations of a struc-
ture.

Theorem 6.11 (Nurtazin [1974]) SupposeA is a decidable structure. If there
are finitely many elements̄c ∈ A such that(A, c̄) is the prime model of the theory
Th(A, c̄) and the set of complete formulas of this theory is computable, then any
two decidable presentations ofA are computably isomorphic. On the other hand,
if there are no suchc, then there are infinitely many decidable presentations ofA
no two of which are computably isomorphic.

Corollary 6.12 (Nurtazin [1974]; Metakides and Nerode [1979]) An algebraic-
ally closed field of finite transcendence degree over its prime field is computably
categorical. One of infinite transcendence degree has dimensionω.

Proof. Let T be the theory of algebraically closed fields of characteristic0. As T
has quantifier elimination every computable modelA of T is decidable. (Given a
sentence with quantifiers (in the expanded language with constants for elements of
A) find the quantifier free equivalent. Its truth can be decided by the computability
of A. As T is ℵ1-categorical every modelA is the prime model ofT ′ = T ∪
Γ(c)∪∆(d) for a computable principal typeΓ providing the theory with a strongly
minimal formula and the type∆ of a sequence of transcendentals (independent
elements) as described in the proof of Theorem 5.2. (Actually, for this particular
T , Γ is not needed as it is already strongly minimal.) The sequenced is finite if and
only if the transcendence degree ofA over its prime field is finite. In particular if
the transcendence degree is infinite, there is no finite sequence as required and so
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A would have infinite computable dimension. On the other hand, if the sequence is
actually finite, we can effectively decide if a given formulaφ(d, x) is an atom. As
in the proof of Theorem 5.2, we can go effectively to a computable principal type
Γ of T ′ containingφ(d, x). For this particular theory, however, we can enumerate
the complete formulas. (In characteristic0, they just say that (for some ordering
of thex’s), eachx in turn satisfies some irreducible polynomial over the previous
ones.) We can thus find such a generating formulaγ in Γ and then ask ifφ → γ.
If soφ is complete and not otherwise. (Metakides and Nerode [1979] give a direct
proof of this Corollary.)�

An important program is thus to characterize or at least classify computably
categorical structures and theories whose models are computably categorical. One
major success along these lines is the characterization by Goncharov [1975] of
computably categorical structures whose two quantifier theory is decidable in terms
of Scott families.

Definition 6.13 A Scott family for a structureA is a computable sequence

φ0(ā, x1, . . . , xn0), φ1(ā, x1, . . . , xn1), . . . ,

of ∃-formulas, i.e. prenex ones with only existential quantifiers, satisfiable inA,
whereā is a finite tuple of elements fromA, such that everyn-tuple of elements
fromA satisfies one these formulas and any two tuples satisfying the same formula
from the above sequence can be interchanged by an automorphism ofA.

Definition 6.14 A structureA is n-decidable(for n ∈ N) if the set of prenex
sentences ofTh(A, a)a∈A with n−1 alternations of quantifiers is computable. So,
for example,A is 1-decidableif the set of prenex sentences ofTh(A, a)a∈A with
either only existential or only universal quantifiers is decidable.

Proposition 6.15 If a structureA has a Scott family, thenA is computably cate-
gorical.

Proof. Let φ0(ā, x1, . . . , xn0), φ1(ā, x1, . . . , xn1), . . . be a Scott family forA,
where ā = (a0, . . . , am−1). Let A1 andA2 be computable presentations ofA.
We define a mappingf : A1 → A2 by stages. We can assume that for each
j ∈ {0, . . . ,m − 1}, aij is the element inAi corresponding to the constantaj.
At even stages we define images of elements fromA1, at odd stages we define
preimages of elements fromA2.

Stage 0. Setf0 = {(a10, a
2
0), . . . , (a

1
m−1, a

2
m−1)}.

Stage 2k>0. We can suppose that the functionf2k−1 has been defined.
Assume thatf2k−1 = {(a10, a

2
0), . . . , (a

1
m−1, a

2
m−1), (b1, d1), . . . , (bs, ds)} and that

f2k−1 can be extended to an isomorphism fromA1 to A2. Let b be the first num-
ber inA1 not in the domain off2k−1. Consider the tuple(b1, . . . , bs, b). Find an
i such thatφi(ā, b1, . . . , bs, b) holds inA1. Hence∃xφi(ā, d1, . . . , ds, x) holds in
A2. Find the firstd ∈ A2 for which φi(ā, d1, . . . , ds, d) holds. Extendf2k−1 by
lettingf2k = f2k−1

⋃
{(b, d)}.
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Stage 2k+1. We definef2k+1 similarly so as to put the least element ofA2 not
yet in the range off2k into that off2k+1.

Finally, letf =
⋃
i∈ω fi. Clearly,f is a computable isomorphism.�

Theorem 6.16 (Goncharov [1975]) IfA is 2-decidable then it is computably cat-
egorical if and only if it has a Scott family.

Of course, the if direction of this Theorem follows from the preceding Propo-
sition. For the other direction, one uses a priority argument to build aB and a∆02
isomorphism betweenA andB. Attempts are made to make sure that noφe is an
isomorphism betweenA andB. If one of the attempts fails, the construction builds
a Scott family forA. (See Ash and Knight [1999] for the details of an ingenious
but relatively simple proof.)

Note that the definition of computable categoricity is on its face aΠ11 prop-
erty. This theorem gives aΣ11 equivalent (having a Scott family). Actually, the
property of having a Scott family can easily be seen to be arithmetic as the re-
quirement for an isomorphism can be replaced by the existence of a set of finite
partial isomorphisms with the back and forth property. Thus, for2-decidable struc-
tures, Theorem 6.16 gives a characterization that is significantly simpler than the
underlying definition of computable categoricity.

We now turn to the specific issue of persistence of computable categoricity
under expansions by constants that will turn out to be a route into various results
and examples of the sorts listed above. In particular, it will lead us to a proof that
the existence of a Scott family is not necessary for computable categoricity.

6.1 Persistence of Computable Categoricity

Classically, it is an easy consequence of the Ryll-Nardzewski Theorem that
having a countably categorical theory ispersistent, i.e. preserved under expansions
by finitely many constants.

Theorem 6.17 If Th(A), the theory of a structureA, is countably categorical
then so is the theory of any expansion ofA by finitely many constants.

The natural question for computable categoricity has been considered by Mil-
lar, Goncharov and others. It is posed as the Millar-Goncharov problem in Ershov
and Goncharov [1986]:

Question 6.18 (Millar,Goncharov) Is computable categoricity persistent, i.e. if
A is computably categorical is also every expansion ofA by finitely many con-
stants?

It is not hard to see that if a structureA has a Scott familyφi(ā, x1, . . . , xni)
then every expansion by finitely many constantsc1, . . . cm also has one. We simply
slightly modify the original Scott family. (Essentially, one replaces each formula
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φi(ā, x1, . . . , xni) by φi(ā, c1, . . . , cm, x1, . . . xni−m) and then lists only the satis-
fied formulas. Then, one can easily check that the sequenceψ0, ψ1, . . . is a Scott
family for the expanded structure(A, c1, . . . , cm).) Thus Theorem 6.16 gives us
an answer whenA is 2-decidable.

Corollary 6.19 (Goncharov [1975]) IfA is 2-decidable then the expansion ofA
by finitely many constants is also computably categorical.

Millar has improved this result by one quantifier by a quite different proof. So,
roughly speaking, it suffices to be able to solve systems of equalities and inequal-
ities.

Theorem 6.20 (Millar [1986]) If A is 1-decidable then the expansion ofA by
finitely many constants is also computably categorical.

Proof (Hirschfeldt). Suppose we are givenA andB isomorphic, computably cat-
egorical and1-decidable with〈A, a〉 ∼= 〈B, b〉. We will build C via a Henkin
construction, a sequencegs of partial isomorphisms fromC to B and, for each
potential isomorphismΦe : C → A, a partial maphe : C → B such that

• either there is ane such thathe is total andheΦ−1e is an isomorphism from
〈A, a〉 to 〈B, b〉,

• or g = lims gs exists and is an isomorphism fromC to B but noΦe is an iso-
morphism fromC toA.

As the second alternative contradicts the hypothesis thatA is computably cat-
egorical, we will have the desired computable isomorphism between〈A, a〉 and
〈B, b〉. In the construction we actually act, when we can, to guarantee thatΦe is
not an isomorphism fromC to A (and so we do not have to worry about it). Thus
we letRe be the requirement thatΦe is not an isomorphism fromC to A. As the
construction proceeds, we say thatRe is satisfied (or not) depending on whether
we have a certain type of witness toΦe’s not being an isomorphism fromC toA.

For convenience, we assume that the domain of each model considered here
is N . Let {θn}n∈ω be an effective list of all atomic sentences in the language ofA
expanded by adding a constanti for eachi ∈ ω. By θ0n andθ1n we mean¬θn and
θn, respectively.

For any conjunctionΓ of literals containing no constanti for i > m and partial
computable functionΦ with computable domain, we letf(k) = n if Φ(k) ↓= n,
f(k) = xk if Φ(k) ↑, and denote byΓ[Φ] the formula∃x0 · · · ∃xmΓ(0/f(0), . . .
. . . ,m/f(m)). So, for example, ifθn is the sentenceP (0,1,2,3) and Φ =
{〈1, 7〉, 〈3, 5〉}, thenθ1n[Φ] = ∃x0∃x1∃x2∃x3P (x0,7, x2,5), while, on the other
hand,θ0n[Φ] = ∃x0∃x1∃x2∃x3¬P (x0,7, x2,5).

We note a few immediate consequences of this definition. In what follows,ε
will always be either0 or 1.
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Proposition 6.21

1. If M � Γ[Φ] andΦ is an extension ofΨ thenM � Γ[Ψ].
2. If M � Γ[Φ] andS ⊃ dom Φ then there is an extensionΨ of Φ with domainS

such thatM � Γ[Ψ].
3. If M � Γ[Φ] andM � ¬((Γ ∧ θεn)[Φ]) thenM � (Γ ∧ θ1−εn )[Φ].
4. Let a0, . . . , am andb0, . . . , bm be two sequences of natural numbers. IfM �

¬(Γ[{〈n, an〉 | n ≤ m}]) andN � Γ[{〈n, bn〉 | n ≤ m}]) then〈M, a0, . . . , an〉
� 〈N , b0, . . . , bn〉.

5. Suppose thatΦ is total and surjective,dom Ψ = {0, . . . , r − 1}, M � θ[Φ � r]
andN � ¬(θ[Ψ]) for some literalθ. Then there is a total computablef which
is the identity on{0, . . . , r− 1} such thatM � θ[Φ ◦ f ]. Let θ′ = ¬θ[f ]. Then
M � ¬(θ′[Φ]) andN � ¬((¬θ′)[Ψ]). �

We now describe our construction.

Construction. At each stages, we define partial computable functionsgs andhi,s,
i ∈ ω.We also construct the atomic diagram∆C of C by adding on one of the
literalsθ0s or θ1s at each stages. We use the following notations:Γs is the conjunc-
tion of all the literals in∆C at the end of stages; ze,s is the least number such that
Φe,s(ze,s) = a, if one exists,ze,s = 0 otherwise;re,s = sup((

⋃
i<e domhi,s)∪{zi,s |

i ≤ e} ∪ {e}).
We say that a stages is e-expansionary ifΦe,s is injective,Φe,s(ze,s) ↓= a,

{0, . . . , re,s} ⊆ dom Φe,s, dom Φe,s ) {0, . . . , sup(dom Φe,s−1)}, andrng Φe,s )
{0, . . . , sup(rng Φe,s−1)}. (Thus, if there are infinitely manye-expansionary stages,
Φe is total, injective, and surjective.)

We begin ats = 0 with Γ0 = ?, g0 = ? andhe,0 = ? for eache ∈ ω. We
assume by induction thatB � Γs[gs] and for eache ∈ ω, B � Γs[he,s]. At stage
s + 1 we find the leaste ≤ s, if any, such thatRe is not satisfied and one of the
following conditions holds.

1. For someε, B � (Γs ∧ θεs)[gs�re,s + 1] andA � ¬((Γs ∧ θεs)[Φe,s]) or
B � ¬(Γs ∧ θεs)[gs�re,s + 1] andA � ((Γs ∧ θεs)[Φe,s]).

2. Not 1 and for someε,

(a) B � (Γs ∧ θεs)[gs �re,s + 1],
(b) B � (Γs ∧ θεs)[he,s], and
(c) s + 1 is ane-expansionary stage.

3. Not (1 or 2 a and b), and for someε,

(a) B � (Γs ∧ θεs)[gs � re,s + 1],
(b) B � ¬((Γs ∧ θ1−εs )[gs � re,s + 1]), and
(c) B � ¬((Γs ∧ θεs)[he,s]).

If such ane exists, we say thate is active at stages + 1. Let r = re,s + 1. For
eachi > e, lethi,s+1 = ?. For eachi < e, lethi,s+1 = hi,s. Declare allRi, i > e,
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to be unsatisfied.
If 1 or 3 holds we must abandon the current attempt at the isomorphismh

and so lethe,s+1 = ?. If 1 holds, we have a witness to fact thatΦe is not an
isomorphism fromC toA and we declareRe to be satisfied.

If 2 holds, there are two cases. Ifhe,s = ?, we restart our definition ofhe
using the assumed isomorphism between〈A, a〉 and〈B, b〉: Find the least tuple
〈a0, . . . , ar−1〉 of distinct numbers such thataze,s = b and if we definehe,s+1 to be
the partial function mapping eachn < r to an, then

1.B � Γs+1[he,s+1] and
2. for all t ≤ s andδ ∈ {0, 1}, B � (Γt ∧ θδt )[he,s+1] ⇒ A � (Γt ∧ θδt )[Φe,s �
re,s + 1],

and definehe,s+1 in this manner. (Such a tuple exists because, sinceRe is not
satisfied,A � Γs+1[Φe,s], so thatA � Γs+1[{〈ze,s, a〉}], and〈A, a〉 ∼= 〈B, b〉.)

If he,s �= ?, we extendhe so as to keephe andheΦ−1e looking like isomor-
phisms. If |domhe,s| is even, letk be the least number not inrng he,s, let n
be a number larger than any previously appearing in the construction, and de-
fine he,s+1 = he,s ∪ {〈n, k〉}. If |domhe,s| is odd, letp be the least number
not in domhe,s, let m be such thatB � Γs+1[he,s ∪ {〈p,m〉}], and lethe,s+1 =
he,s ∪ {〈p,m〉}.

If no suche exists, letε be such thatB � (Γs∧θ
ε
s)[gs] and letmax(dom gs)+1

= r. For eachi ∈ ω, lethi,s+1 = hi,s.
In any case, we continue to extend the diagram∆C and the isomorphismg.

We addθεs to ∆C and letΓs+1 = Γs ∧ θεs. If |dom(gs �r)| is even, letk be the least
number not inrng(gs � r), let n be a number larger than any previously appearing
in the construction, and letgs+1 = gs � r∪{〈n, k〉}. If |dom(gs �r)| is odd, letp be
the least number not indom(gs �r), letm be such thatB � Γs+1[gs �r∪{〈p,m〉}],
and setgs+1 = gs �r ∪ {〈p,m〉}.

Notice that, whichever case holds,B � Γs+1[gs+1] and for eache ∈ ω, B �

Γs+1[he,s+1], which are the induction hypotheses needed for the next stage of the
construction.

Verifications. Since at each stages + 1 we added eitherθs or its negation to∆C ,
∆C is the atomic diagram of a structureC. BecauseA andB are1-decidable, the
construction is effective and soC is computable.

Suppose first that there is ane such thatRe is active infinitely often and lete
be the least such number. We wish to show thatheΦ

−1
e is the desired computable

isomorphism from〈A, a〉 to 〈B, b〉. Let s0 be a stage such that noRi is active for
i < e at any staget ≥ s0. It follows from the definition ofre,s that there exists an
s1 ≥ s0 such thatre,t = re,s1 for all t ≥ s1. Let re = re,s1. It follows from the
definition ofgs that there existss2 ≥ s1 such thatgt � re + 1 = gs2 � re + 1 for
all t ≥ s2. As Re is active infinitely often it is never satisfied after stages2. So
condition 1 never holds after this stage. ThusA � Γs[Φe] for everys ≥ s2, and
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henceΦe is an isomorphism fromC toA.
We claim that it is not possible for condition 3 to hold infinitely often. Suppose

otherwise. Lets3 ≥ s2 be such thatdom Φe,s3 ⊇ {0, . . . , re}. Inspecting the way
he,s+1 is defined when case 2 holds andhe,s = ?, we see that there is ans ≥ s3
such thathe,s+1 = {〈n, an〉 | n ≤ re} for a tuple〈a0, . . . , are〉, aze,s = b, such that
for all t > s,

1.B � Γt+1[{〈n, an〉 | n ≤ re}] and
2.B � (Γt ∧ θ1−εt )[{〈n, an〉 | n ≤ re}] ⇒ A � (Γt ∧ θ1−εt )[Φe � re + 1].

Such a tuple exists because〈A, a〉 ∼= 〈B, b〉 andΦe(ze,s) = a.
Now suppose thatt+ 1 is the first stage afters+ 1 at which condition 3 holds,

and letε be as in that condition. ThenB � ¬((Γt ∧ θεt)[he,t]). On the other hand,
B � Γt[he,t]. ThusB � (Γt ∧ θ1−εt )[he,t]. Sincehe,t is an extension ofhe,s+1,
B � (Γt ∧ θ1−εt )[he,s+1]. But then by 2 above,A � (Γt ∧ θ1−εt )[Φe � re + 1]. But
by part b of condition 3,B � ¬((Γt ∧ θ1−εt )[gt � re + 1]). By Proposition 6.21(5),
there exists au and anε such thatA � ¬(θεu[Φe]) andB � ¬(θ1−εu [gt � re + 1]).
But thenθεu must be inΓu+1, so thatA 2 Γu+1, contrary to our assumption.

So condition 3 holds only finitely often. Say it never holds after stages4 ≥ s3.
Since condition 2 holds infinitely often, there are infinitely manye-expansionary
stages. Thus, sinceRe is never satisfied,Φe is a computable isomorphism fromC
to A. Furthermore,he = lims he,s is well-defined, and in facthe(x) = he,s(x) for
the leasts > s4 for whichhe,s(x) is defined. SinceB � Γs[he,s] for all s > s4, he
is a computable isomorphism fromC toB.

Thushe ◦ Φ−1e is a computable isomorphism fromA to B. But if we let z =
lims ze,s, thenhe ◦ Φ−1e (a) = he(z) = b. Thus in facthe ◦ Φ−1e is the desired
computable isomorphism from〈A, a〉 to 〈B, b〉.

Finally, suppose for the sake of a contradiction that everye is active only
finitely often. It is not hard to see that at anye-expansionary stage, one of condi-
tions 1, 2, or 3 must hold. Thus, if there are infinitely manye-expansionary stages
thenRe is eventually permanently satisfied.

As we have mentioned, ifs is a stage such that, for eachi < e and eacht ≥ s,
Ri is not active at staget andre,t = re,s, then for allt ≥ s, gt � re,s + 1 = gs �
re,s+1 andB � Γt[gt � re,s+1]. So the fact that eache is active only finitely often
implies thatg = limt gt exists and is an isomorphism fromC toB.

ThusC is isomorphic, but not computably isomorphic, toA, contradicting the
computable categoricity ofA. �

Thus 1-decidability suffices to guarantee the persistence of computable cate-
goricity. We will see in the next section that, without such an assumption, com-
putable categoricity need not be persistent. Moreover, the equivalence of com-
putable categoricity with having a Scott family established by Goncharov under
the assumption of 2-decidability does not hold for all 1-decidable structures (The-
orem 7.19).
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6.2 Nonpersistence of Computable Categoricity

We now see that the addition of even a single constant for any element of a
computably categorical structure can change its dimension.

Theorem 6.22 (Cholak, Goncharov, Khoussainov and Shore [1999]) For each
k ∈ ω there is a computably categoricalA such that the expansionA′ ofA gotten
by adding on a constant naming any element ofA has dimension exactlyk.

Idea of Proof (for k = 2). We first construct a (uniformly) computably enumer-
able family of distinct pairs of setsS = {f(i)|i ∈ ω} = {(Ai, Bi)|i ∈ ω} which
is symmetric, i.e. for everyi ∈ ω there is aj ∈ ω such thatf(i) = (Ai, Bi) =
(Bj, Aj). In addition to the computable enumerationf , there is one other natural
computable enumeration of this family,f̃ defined byf̃(i) = (Bi, Ai). This family
S is constructed (by a0′′ type priority argument) to have dimension2 in the sense
that there is no computable functiong such thatf = f̃ g but, for every one-one
computable enumerationh of the family, there is a computable functiong such
thatf = hg or f̃ = hg. The two enumerations of this family are then coded sym-
metrically into a graph so that the whole structure is computably categorical. If one
adds on a constant, however, it distinguishes between the two coded enumerations
and so one has a structure of dimension2. �

For k̇ > 2, one can generalize the notion of symmetric family to one-one
enumerationsf of familiesS of k-tuples of sets. The combinatorial details be-
come fairly complicated. A simpler approach to a proof of the general theorem is
provided in the next section as a corollary to some results on degree spectra.

7. Degree Spectra of Relations

Another important topic in computable model theory that turns out to be closely
connected to computable categoricity is that of the dependence of the computabil-
ity properties of relations not included in the language of a given structure on its
presentation. For example, in “standard” presentations of〈N ,≤〉 the successor
function is computable but it is not computable in every presentation (Proposi-
tion 6.1). Similarly, standard presentations of the algebraically closed fieldQ̃ of
characteristic0 and infinite transcendence degree make the relation of algebraic
dependence computable but not all presentations do. (Indeed, if algebraic depen-
dence is computable in both of two isomorphic computable algebraically closed
fields then they are computably isomorphic. However, Corollary 6.12 says that if
they have infinite transcendence degree their dimension is infinite.) On the other
hand, these particular relations are easily seen to always be co-computably enu-
merable and computably enumerable respectively. Others remain computable or
computably enumerable in every presentation. Such relations were singled out and
studied by Ash and Nerode [1981].
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Definition 7.1 (Ash and Nerode) IfR ⊆ An is ann-ary relation on a structure
A, R is intrinsically computable (computably enumerable)if f [R] is computable
(computably enumerable) for every isomorphismf : A → B.

Example 7.2 〈N,≤〉: Successor is not intrinsically computable.

Example 7.3 〈N, s〉: Every computable relation is intrinsically computable.

We know that the two structures discussed above,〈N ,≤〉 andQ̃ , are not com-
putably categorical while similar ones (such as〈N , s〉 and algebraically closed
extension ofQ of finite transcendence degree) are computably categorical and in
each of them this phenomena (of a relation being computable in one presentation
and not in another) does not arise. One might naturally ask if computable cate-
goricity guarantees that a relation computable in one presentation is computable
in all. The answer is both yes and no. If we restrict our attention to relations that
are definable or eveninvariantunder all automorphisms the answer is yes.

Proposition 7.4 If a structureA is computably categorical then every definable
relationR (or one invariant under automorphisms) onA that is computable in any
presentation ofA is intrinsically computable, i.e. computable in every presenta-
tion ofA.

Proof. SupposeA is computably categorical,RA is computable, andg is an iso-
morphism fromA to B. We wish to show thatg[RA] is computable. AsA is
computably categorical, there is a computable isomorphismf : A → B. RA and
R
A

are computable and so their images underf are computably enumerable and
complementary and hence computable. AsR is invariant under automorphisms,
in particular underg−1f , f [RA] = g[RA] and sog[RA] is also computable.�

So for computably categorical structures the effectiveness of definable prop-
erties is independent of the presentation. If we ask instead that every computable
relation onA (definable or not) be intrinsically computable, the answer to our
question is no. Computable categoricity does not suffice to guarantee that every
computable relation is intrinsically computable. (See Example 7.7 below.) Instead
we are led to a stronger notion.

Definition 7.5 A is computably stableif every isomorphismf : A → B is com-
putable.

Example 7.6 〈N, s〉 is computably stable. Indeed, every isomorphism between
two presentations is uniquely determined by the computable procedure of send-
ing the least element in one presentation to the least one in the other and then
proceeding by recursion as in Example 6.5.

Example 7.7 〈Q ,≤〉 is computably categorical but not computably stable. In
fact, given any two presentations of〈Q ,≤〉, the usual back and forth argument
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shows that there are continuum many isomorphisms between them. Moreover, the
usual back and forth argument can be run in each of countably many intervals
to, for example, construct an automorphism taking a computable subset (such as
Z) to a noncomputable one (any set consisting of one element from each interval
(x, x + 1) for x ∈ Z).

Proposition 7.8 (Ash and Nerode [1981])A is computably stable if and only if
every computable relation onA is intrinsically computable.

Proof. As every isomorphism between presentations ofA is computable, the ar-
gument of Proposition 7.4 shows that the image of any computable relationR on
A under any isomorphism is computable. For the other (if) direction, considerA
as a structure on the setN and the relationR giving, inA, the successor function
onN . If f : A → B is an isomorphism andRB = f [RA] is computable then the
construction of Example 6.5 computesf . �

One can, in fact, give a more informative characterization of computable sta-
bility like that provided for computable categoricity in terms of Scott families by
Theorem 6.16. In place of a sequence of formulas each of which determines a
sequence of elements of the given structureA up to automorphisms, one needs a
sequence of formulas that uniquely define the elements ofA. On the other hand,
we now only need the1-decidability ofA for the characterization.

Theorem 7.9 (Ash and Nerode [1981], Goncharov [1975]) IfA is 1-decidable
thenA is computably stable if and only if there are constantsc ∈ A and a com-
putable sequenceφi(c, x) of existential formulas such that for eachi there is a
uniquea ∈ A satisfyingφi and eacha ∈ A satisfies someφi.

Proof sketch. It is easy to see that the existence of a family as described insures
that every isomorphismf : A → B is computable as, once the image of the con-
stantsc are fixed,f must send the unique solution of eachφi(c, x) in A to the
solution of the same formula inB. The proof of the other direction (only if) of
this theorem involves a finite injury priority argument. One attempts to build a
B isomorphic to the givenA by a ∆2 isomorphism but not by any computable
isomorphism. The least failure of this diagonalization requirement occurs only
because the elements on which we might diagonalize are uniquely defined from
those fixed by higher priority requirements. These already fixed elements are the
constantsc required. The portions of the diagram ofB to which we have commit-
ted ourselves at various stages of the construction provide the desired formulasφi
when various extra parameters are replaced by existentially quantified variables.
�

More generally, we would like to know when a specified computable (or com-
putably enumerable) relation is intrinsically computable or computably enumer-
able. An examination of the two examples considered above,〈N ,≤〉 andQ̃ , gives
us a clue as to when a relation is intrinsically c.e. The relationP (x, y) onN saying
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thaty is not the immediate successor ofx is definable in the structure〈N,≤〉 by the
existential formula∃z((x < z < y)∨(y < z < x)∨(x = y)) and so is computably
enumerable in any presentation of〈N ,≤〉. The binary relationD(x, y) saying that
x andy are algebraically dependent is equivalent to the disjunction of an infinite
computable list of existential formulasφn each asserting (in the language of fields)
that there is a nonzero polynomial of degreen in x andy which equals0. Any such
relation is again clearly computably enumerable in any presentation of a field. To
enumerate the dependent pairs, one simply dovetails the searches for witnesses for
each of the existential formulasφn. These phenomena suggest a definition.

Definition 7.10 A relationR(x1, . . . , xn) on a structureA is formally computably
enumerableif it is equivalent to a disjunction

∨
φi(x1, . . . , xn) of a computable

sequence of existential formulasφi with free variablesx1, . . . , xn. R is formally
computableif bothR andR are formally computably enumerable.

Clearly, any formally computable (computably enumerable) relation is intrin-
sically computable (computably enumerable). Ash and Nerode [1981] prove that,
under mild decidability conditions, this condition is also necessary.

Theorem 7.11 (Ash and Nerode [1981]) IfR ⊆ An and 〈A, R〉 is 1-decidable,
thenR is intrinsically computably enumerable if and only if it is formally com-
putably enumerable.R is intrinsically computable if and only if it is formally
computable.

Actually, the 1-decidability of〈A, R〉 is a bit stronger than what Ash and
Nerode need. They only need to be able to decide for eachc in A and each existen-
tial φ(c, x) if there is ana /∈ R such thatA |= φ(c, a). However, some conditions
are necessary as Goncharov [1980a] and Manasse [1982] have constructed exam-
ples of intrinsically c.e. relations which are not formally c.e. There has been a lot
of work, primarily by Ash, Ash and Knight and their students generalizing these
results (under stronger decidability conditions) to syntactic characterizations of
relations being intrinsicallyΣα or ∆α for all levelsα of the hyperarithmetic hier-
archy. They also provide similar generalizations of the notions and results on com-
putable categoricity and stability to higher levels of the hierarchy of computable
infinitary formulas. These papers include Ash [1986], [1986a], [1987]; Ash and
Knight [1990], [1994], [1995], Barker [1988] and Chisholm [1990a]. Related re-
sults when the notions are relativized to the degree of noncomputable models can
be found in Ash, Knight, Manasse and Slaman [1989], Ash, Knight and Slaman
[1993] and Chisholm [1990]. Here the results are proven by forcing arguments
and the extra decidability hypotheses are not needed.

Faced with a computable (or c.e.) relationR onA which is not intrinsically
computable (or c.e.), what can we say about its image under isomorphisms? In
particular, how complicated canf [R] be for a (computable) relationR onA and an
arbitrary isomorphismf : A → B (with B computable, of course). An approach
to this question is suggested by the following definition.



Effective Model Theory: The Number of Models and Their Complexity 35

Definition 7.12 If R ⊆ An is ann-ary relation onA, thedegree spectrum ofR,
DgSp(R), is {degT (f [R]) | f : A → B is an isomorphism}.

There are a number of results giving conditions under which the degree spec-
trum of a computable relation consists of precisely some particular standard class
of degrees such as all the degrees, the c.e. degrees, etc. We concentrate on the is-
sue of finding instances where the spectrum is finite and the connections between
this issue and the dimension of the given structure. The first results of this sort are
due to Harizanov. Here is one example.

Theorem 7.13 (Harizanov [1993]) There is anA and anR onA suchA has ex-
actly two computable presentations andDgSp(R) = {0, c} withc noncomputable
and∆02.

The next problem (that remained open for some time) was whether∆02 could
be replaced by c.e. in this result or, more generally, what is possible for intrin-
sically c.e. relations especially for structures of finite dimension. Goncharov has
announced a solution, based on work with Khoussainov, constructing a structureA
of dimension 2 with a relationR onA with degree spectrum consisting of0 and a
nonzero c.e.c. He constructs families of c.e. sets and codes them into a structure.
Khoussainov and Shore have independently directly constructed directed graphs
of each finite dimensionn with relations having various degree spectra. Moreover,
these structures can be simply modified to provide examples of ones for eachn
which are computably categorical but when expanded by a constant have dimen-
sionn. We first state the main result for dimension 2.

Theorem 7.14 (Khoussainov and Shore [1998]) There is a rigid directed graph
A (i.e. one with no nontrivial automorphisms) of dimension2 and a subsetR of
A such thatDgSp(R) = {0, c} with c noncomputable and c.e. Moreover, the
relationP = {(x, y)|x ∈ RA0 ∧ y ∈ RA1 ∧ there is an isomorphism fromA0 to
A1 which extends the mapx *→ y} is computable.

We sketch the proof of this theorem in §9. For now we give some generaliza-
tions and corollaries.

Theorem 7.15 (Khoussainov and Shore [1998]) For any computable partially
ordered setD there is a rigid directed graphA of dimension the cardinality ofD
and a subsetR of A such thatDgSp(R) ∼= D. (The ordering onDgSp(R) is
given by Turing reducibility.) Indeed, we can also guarantee thatRB is c.e. for
every computable presentationB of A and that, ifD has a least element, then
the least element inDgSp(R) is 0. Moreover, there is a uniformly computable
sequenceAi of representatives of the computable isomorphism types ofA such
that the relationP = {(x, y)|x ∈ RAi ∧ y ∈ RAj ∧ there is an isomorphism from
Ai toAj which extends the mapx *→ y} is computable.
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Corollary 7.16 For each natural numberk ≥ 2 there exists a computably cate-
gorical structureB whose expansion by finitely many constants has exactlyk many
computable isomorphism types.

Proof. Take the structureA given by Theorem 7.15 for the partial order consisting
of k many incomparable elements. LetAi, 1 ≤ i ≤ k be the computable represen-
tatives of the computable isomorphism types ofA. So, in particular the setsRAi

are Turing incomparable. We use the computability ofP to paste theAi together
to produce aB as required. More precisely,B consists of the disjoint union of the
Ai and the edges ofB are the ones in eachAi. In addition,B has an extra binary
predicate defined by the relationP in the theorem and an equivalence relationE
whose equivalence classes are theAi.

ClearlyB is a computable structure. Now letB′ be any computable presenta-
tion of B. Let A′1 andA′2 be two equivalence classes inB′. These two substruc-
tures ofB′ considered as graphs are isomorphic toA. HenceA′1 is computably
isomorphic to one ofA1, . . ., Ak. Without loss of generality suppose thatA′1 is
computably isomorphic toA1 via a computable functionf1 : A1 → A′1. If A′2
were computably isomorphic toA1 via a computable functionf2 : A1 → A′2, then
we would be able to decideRA1 in A1 as follows:x in A1 belongs toRA1 if and
only if (f1(x), f2(x)) ∈ P . Hence all the structuresA′1, . . ., A

′
k are pairwise non-

computably isomorphic and so represent all the computable isomorphism types of
A, i.e. are computably isomorphic toA1, . . . ,Ak (in some order). HenceB′ is
clearly computably isomorphic toB and soB is computably categorical.

Now leta be any element fromA1. Consider the expanded structuresBi con-
sisting ofB with the new constant interpreted asai, the image ofa in Ai. It is
clear that all theBi are isomorphic but not computably so. Thus the dimension of
Bi is at leastk. On the other hand, asA is rigid there are no choices other than
theai as the interpretation ofa in B. Thus, by the computable categoricity ofB,
any structure isomorphic to sayB1 must be computably isomorphic to one of the
Bi and so the dimension of these structures is preciselyk as required.�

Corollary 7.17 (Khoussainov and Shore [1998]) There exists a computably cat-
egorical structure without a Scott family.

Proof. If structure of previous corollary had a Scott family it would remain com-
putably categorical when constants were added.�

A similar construction provides an example showing that even if the structure
is persistently computably categorical it need not have a Scott family.

Theorem 7.18 (Khoussainov and Shore [1998]) There exists a structure without
a Scott family such that every expansion of the structure by a finite number of
constants is computably categorical.

Kudinov independently proved more.
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Theorem 7.19 (Kudinov [1996]) There is a computably categorical1-decidable
structureA with no Scott family.

Proof sketch. Kudinov slightly modifies a family of computable enumerations
constructed by Selivanov [1976] and then codes the family as a unary algebra
in such a way as to produce a computably categorical structure with a decidable
existential theory but no Scott family.�

Of course, this Theorem shows that the assumption of2-decidability was nec-
essary in Goncharov’s characterization (Theorem 6.16) of computably categorical
structures as ones with Scott families. By Millar’s result on persistence (Theorem
6.20), Kudinov’s structure is persistently computably categorical and so is also a
witness to Theorem 7.18.

A very natural question is whether every c.e. degree can be realized (with0)
as a degree spectrum. Hirschfeldt has recently answered this question by adapting
and extending the methods presented here.

Theorem 7.20 (Hirschfeldt [1999]) For every c.e. degreec there is anA and a
relationR onA such thatDgSp(R) = {0, c}. Indeedc can be replaced by any
uniformly c.e. array of c.e. degrees.

Hirschfeldt’s construction precisely controls the degree spectrum of the rela-
tion R but does not control dimension ofA. Thus the following question is still
open.

Question 7.21 (Goncharov and Khoussainov [1997]) Whichn-tuples of c.e. de-
grees can be realized as the degree spectrum of a relation on a structure of dimen-
sionn?

If we move beyond the c.e. degrees there are a few results by Harizanov on
possible degree spectra but not much is known. However, we should point out that
several natural strengthenings of these results can ruled out by classical descriptive
set theoretic results.

Remark 1 For a given relationR on a computable structureA, the set{RB| B
is a computable presentation ofA} is Σ11 in R. Thus, there are countable partial
orderings that cannot be realized in the c.e. degrees as the degree spectrum of any
relationR on any computable structureA. (Just consider one that is too compli-
cated to beΣ11.) Similarly, such a partial ordering with least element cannot be
realized anywhere in the Turing degrees as the degree spectrum of a computable
relation R on a computable structureA. Nor can it be true that any finite set
of degrees can be realized as the degree spectrum of any relationR on a com-
putable structureA. Indeed, any degree spectrum containing both a hyperarith-
metic degree and a nonhyperarithmetic degree is uncountable as anyΣ11 set with
a nonhyperarithmetic member is uncountable.
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8. Algebraic Examples

In §6 we saw several examples of theories whose models all have dimension
1 or ω and algebraic conditions characterizing the models in each class. The the-
ories of this sort considered there were linear orderings, Boolean algebras and
algebraically closed fields. We cite two more.

Theorem 8.1 A real closed field of finite transcendence degree overQ is com-
putably stable. One of infinite transcendence degree has dimensionω.

Proof. If a real closed fieldA has finite transcendence degree overQ andf :
A → B is an isomorphism, leta1, . . . , an be a transcendence basis forA overQ
andb1, . . . , bn be their image inB. Calculatef(a) for any elementa of A by first
finding an equation overQ [a1 , . . . , an] satisfied bya. Find all its solutions and the
place ofa among these solutions in the order ofA. Now,f(a) must be the solution
of the same equation overQ [b1 , . . . , bn] which lies in the same place among all the
solutions inB listed in order. Thusf is computable. On the other hand, ifA is
of infinite transcendence degree then by Theorem 6.11, it has dimensionω. (Note
that as the theory of real closed fields has effective quantifier elimination, every
computable model is decidable. Moreover, the prime model ofTh(A, c) for any
finite list c of elements ofA is of finite transcendence degree and so notA itself.)
�

Theorem 8.2 (Goncharov [1981]) IfA is an abelian group then it has dimension
1 or ω.

The proof of this result is particularly interesting because it relies on important
sufficient condition for a structure to have dimensionω.

Theorem 8.3 (Goncharov [1982]) If there is a∆02 isomorphism betweenA and
B but no computable one thenA has dimensionω.

On the other hand, the results described in §6.2 and §7, as well as many earlier
papers, supply examples of structures of dimensionn for eachn ∈ ω. Indeed, our
results supply examples of structures of dimensionn whose presentations are char-
acterized by the Turing degree of a specific relation on the structure. Moreover,
representatives of then many computable isomorphism types of these structures
can be pasted together to produce a single computably categorical structure such
that an expansion by constants yields a structure of dimensionn. Of course, when
there are characterization theorems that show that the dimension must be1 or ω
such constructions are not possible. On the other hand, for many familiar algebraic
theories for which we cannot provide such a dichotomy and characterization, it is
possible to construct examples of models not only of each finite dimension but
also ones exhibiting the additional properties enjoyed by the examples in §7.
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Theorem 8.4 (Goncharov [1980a], [1981]; Goncharov and Dobrotun [1989],
Goncharov, Molokov and Romanovski [1989]; Kudinov (personal communica-
tion); Hirschfeldt, Khoussainov, Slinko and Shore [1999]) For each of the fol-
lowing theories and eachn ∈ ω, there is a modelA with a subsetR such that
the dimension ofA is n and the degree spectrum ofR consists ofn different c.e.
degrees. Moreover, for eachn there is a modelA which is computably categorical
but some expansion by constants has dimensionn: graphs, lattices, partial orders,
nilpotent groups, rings (with zero divisors) and integral domains. In each case the
subsetR can be taken to be a substructure of the appropriate type.

The results on the existence of models of each of these theories of each finite
dimension are due to various people (most to Goncharov and his coauthors, the
one for integral domains is due to Kudinov). They were typically first proved by
codings of families of c.e. sets. For graphs, the results involving degree spectra
and extensions by constants are due to Khoussainov and Shore and are described
in §7. (Actually, the original paper used directed graphs but an examination of the
construction shows that it is possible to use undirected graphs instead.) All the
other ones involving degree spectra and extensions by constants have been proven
by Hirschfeldt, Khoussainov, Slinko and Shore [1999].

Although direct constructions are sometimes possible, these results can all be
derived from the results on graphs by finding a sufficiently effective coding of
graphs into models of each theory. The idea is that, if the coding is sufficiently ef-
fective, all the computability properties involved carry over. Thus all these theories
are not only undecidable but the codings (of say graphs) needed to prove that they
are universal (i.e. code all of predicate logic) are highly effective. (In addition to
simple codings of the domain and edge relation on the initial graph, an important
issue is the effective reversibility of the coding. That is, one wants the model cod-
ing a given graph to effectively determine the original graph.) On the other hand,
the theories discussed in §6 whose models are all either computably categorical or
of dimensionω are decidable and have strong structure theorems that are used in
the proofs. We expect that there are natural theories that are neither “so decidable”
as those of §6 nor “so undecidable” as the ones in Theorem 8.4. In particular, we
suggest the theory of fields as a good test case as it is undecidable but the proofs
of undecidability (that we know) interpretN in a rather specific way rather than
arbitrary structures.

9. The Basic Theorem on Degree Spectra

In this section we sketch the proof of the Theorem 7.14, the casen = 2 of our
main theorem on degree spectra.

Theorem 7.14 (Khoussainov and Shore [1998]) There is a rigid directed graphA
of dimension2 with computable (but not computably isomorphic) presentationsA0
andA1and a subsetR of A such thatDgSp(R) = {0, c} with c noncomputable
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and c.e. Moreover, the relationP = {(x, y)|x ∈ RA0 ∧ y ∈ RA1 ∧ there is an
isomorphism fromA0 toA1 which extends the mapx *→ y} is computable.

Proof sketch. Our directed graphA will consist of disjoint components[Bi] all
of one special type. The graph we denote by[B] is uniquely determined by the
setB ⊆ {n|n ≥ 5}. It consists of one3-cycle and onen-cycle for eachn ∈ B.
In addition, there is one element of the3-cycle, called thetop of the graph, from
which there is an edge to one element of eachn-cycle forn ∈ B. This element of
then-cycle is called thecoding location forn. For convenience, we also denote
[{n}] by [n]. We build up our graph using two operations,+ and ·. The sum
[A] + [B] of two graphs is simply their disjoint union. The product,[A] · [B],
of two graphs of our special form is gotten by taking disjoint copies of[A] and
[B − A] and identifying the top elements (and the associated3-cycles) in each of
the two graphs. For example[5] · [6] ∼= [{5, 6}] and [{5, 6, 7}] · [{6, 7, 8, 9}] ∼=
[{5, 6, 7, 8, 9}]. Note that[A] · [B] ∼= [B] · [A].

Our plan is to construct our graphA = [B0] + [B1] + · · ·+ [Bn] + · · · together
with enumerations of the setsBi so thatBi − Bj �= ∅ for i �= j (and indeed we
guarantee thatBi,s −Bj,s �= ∅ for everys andi �= j). So clearly

• A is rigid.

The requiredR will be a subset of the coding points inA. We enumerate two
presentationsA0 andA1 of A asA0,s andA1,s each isomorphic to[B0,s]+[B1,s]+
· · · and the interpretationsRi (asRi,s) of R in Ai so that

• R0 is computably enumerable but not computable: As the construction pro-
ceeds we enumerate the elementsx of R0 so as to make the set enumerated
noncomputable by a standard diagonalization procedure.

• R1 is computable: As we enumerate a numberx intoR0, we make sure that the
corresponding elementy of A1 is a new large number. ThusR1 is enumerated
in increasing order.

• P = {〈x, y〉 |x ∈ R0 ∧ y ∈ R1 ∧ (∃f : A0 ∼= A1)(f(x) = y)} is computable:
By the procedure alluded to above for choosing they ∈ R1 corresponding to a
givenx ∈ R0, the pairs〈x, y〉 ∈ P are enumerated in increasing order.

• A0 �c A1: This is guaranteed by the previous requirements thatR0 is com-
putable butR1 is not. By the rigidity ofA, there is only one isomorphism from
A0 toA1 and it must takeR0 toR1. If it were computable it would preserve the
computability of the interpretation ofR.

• Every computable presentationGj of A is computably isomorphic toA0 orA1:
Our plan here is to define mapsrj,s so that at every stages of the construction at
which it still looks as ifGj might be isomorphic toA, rj,s is a monomorphism
from Gj,s into Ai,s (for i = 0 or 1) and that, at the end of stages, if we cannot
extend the current maprj,s then we switch so thatrj,s+1 is a monomorphism
from Gj,s+1 into A1−i,s+1. If, after some staget, we never switch our potential
isomorphism then∪{rj,s|t ≤ s} is, in fact, the desired computable isomorphism
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from Gj to Ai. On the other hand, if we switch infinitely often we guarantee
that there is aspecial componentSj of Gj which is not a component ofA and
soGj is not isomorphic toA.

The crucial idea needed for the construction is how to diagonalize to make
R0 noncomputable while its isomorphic imageR1 remains computable and also
maintain control over the potential isomorphisms betweenGj andAi. The diago-
nalization procedure is based on two symmetric operationsL (left) andR (right)
on sequences of graphs[Bi].

Definition 9.1 L([B1], . . . , [Bn]) is the graph

[B1] · [B2] + · · · + [Bn−1] · [Bn] + [Bn] · [B1].

R([B1], . . . , [Bn]) is the graph

[B1] · [Bn] + [B1] · [B2] + . . . + +[Bn−1] · [Bn].

We apply theL operation, for example, to a graphG whose components in-
clude the[Bi] by removing all the[Bi] and insertingL([B1], . . . , [Bn]). We also
adopt the convention that the elements of the component[Bi] are the same ones
in the corresponding subgraph in the component[Bi] · [Bi+1] of L([B1], . . . , [Bn])
while those elements in the new graph corresponding to ones in[Bi+1] of the orig-
inal graph are new elements in[Bi] · [Bi+1] (with 1 for n + 1 wheni = n). This
convention is important for establishing computability properties of the graphs be-
ing constructed.

We will apply anR operation in the construction (toA1) only when we also
apply anL one (toA0). We also have the corresponding convention that the ele-
ments of the component[Bi−1] are the same ones in the corresponding graph in the
component[Bi−1]·[Bi] ofR([B1], . . . , [Bn]) while those elements in the new graph
corresponding to ones in[Bi] of the original graph are new elements in[Bi−1] · [Bi]
(with 0 for n wheni = 1).

The following lemma is immediate from the definitions.

Lemma 9.2 For any sequence[B1], . . . , [Bn] of graphs,L([B1], . . . , [Bn]) and
R([B1], . . . , [Bn]) are isomorphic and extend[B1] + · · · + [Bn]. Moreover, ifG
has the[Bi] as components then replacing their sum withL([B1], . . . , [Bn]) or
R([B1], . . . , [Bn]) produces two isomorphic graphs each extendingG. �

The plan for diagonalization is now easily described. To make sure thatR0 �=
φe, we choose numbersae, be andce and insert copies of[ae], [be] and[ce] into A0
andA1. For definiteness, say thatxe is the (number which is) the coding location
for ae in these graphs. We now wait forφe(xe) to converge to0. If it never does
we do nothing and so win asxe is not inR0. If φe(xe) converges to0 at stages,
we replace the components[ae], [be] and[ce] in A0 andA1 byL([be], [ae], [ce]) and
R([be], [ae], [ce]), respectively; putxe into R0 and its image inA1 into R1. The
crucial point here is that, by our conventions, the image ofxe (as an element of
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L([be], [ae], [ce]) in A0) in R([be], [ae], [ce]) and so inA1 is a new large number.
Thus we diagonalize forR0 but keepR1 computable.

The remaining issue is how to simultaneously satisfy the requirements that,
if isomorphic toA, Gj is computably isomorphic toA0 or A1. Consider the re-
quirement for a singleG. Following the idea described above, we choose aspecial
component[S] of G and make its image in theAi participate in infinitely many of
the left and right operations done for diagonalizations. We have some definition
of expansionary stage that measures the extent of a possible isomorphism between
G andA. If there are only finitely many such expansionary stages thenG is not
isomorphic toA and no other actions are necessary. So suppose there are infinitely
many expansionary stages.

At each expansionary stages we have a monomorphismrs fromG intoAi and
components[Si,s] of Ai (for i = 0 or 1) corresponding to the special component
[S] of G. If we wish to diagonalize at a coding locationxe in the range ofr, we
wait for the next expansionary stages and performL andR operations inA0
andA1, respectively, on the sequence[be], [ae], [ce], [Pe], [Si,s], [Qe]. HerePe and
Qe are either numbers chosen in advance for the requirement forG or sets that
have participated in one of these two locations in a previous operation forG. In
any case, all of these components are in the range ofrs when we perform the
operations. Supposers mappedG intoAi. The crucial point is that when we next
get an expansionary stage att and it is possible to extendrs so as to keep[S]
mapped into[Si,s] then it is possible to extendrs to be a map ofG into Ai at t.
The key idea here is that each component in the original sequence can “grow into”
only one of two components in the final one, itself or the one immediately to its
left (or right depending on whetheri = 0 or 1). Thus if the image of one of the
components remains fixed then we can see (in the reverse order of the operation
performed) that each component in turn remains fixed as it has no other place to
go. In this case, we extendrs to rt still mappingG into Ai. If it is not possible
to keep[S] mapped into[Si,s] then we changer so as to definert as a map from
G into A1−i. This also means that[Si,t] is not the same component inAi as was
[Si,s] (or we could have kept it fixed). (Actually it is the component that had been
[Pe] or [Qe] depending on the specifics of the situation.) We now guarantee never
to use the old[Si,s] component in any future operation.

The ultimate consequence of such a procedure is that, if we change the range
of rt infinitely often,[S] becomes infinite inG but each component[Si,s] that is a
potential image of[S] in Ai is involved in only finitely many operations and so is
itself finite. Thus, in this case,G is not isomorphic toA. On the other hand, ifG
actually is isomorphic toA, we keep extendingrs from some stage on while never
changing theAi to which it mapsG. In this case, we arrange the definition ofrs
so that if it eventually maps ontoAi and so determines the required computable
isomorphism fromG toAi.

We have, of course, omitted some of the combinatorics (particularly the way
in which we extend the domain ofr) even in this case of oneG requirement. The
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full construction consists of using a module of this sort for each requirement on a
typical0′′ priority tree. Of course, the precise actions for a diagonalization require-
ment at a nodeα (e.g. which special components have to go into the sequence on
which the operations are performed and in what order they go on this list) depend
on the outcome of nodesβ of higher priority contained inα which are devoted to
variousGj. (The choices here are whether there are infinitely many expansionary
stages or not and if so whether the range ofrs is fixed asi from some point on or
we change it infinitely often.) The details can be found in Khoussainov and Shore
[1998].

We take this opportunity to point out two corrections that should be made
to the details of the general construction found in Khoussainov and Shore [1998].
The first is that whenever one applies (or considers the application of) an operation
for a nodeβ to a sequence of the form

Bkn+1, X
k, Ckn+1, B

k
n, [S]kβn,t+1, C

k
n, . . .D

k
1 , B

k
1 , [S]kβ1,t+1, C

k
1

one should instead use itsβ-transformwhich is defined to be the sequenceBki1 ,
[S]kβi1 ,t+1

, Cki1, B
k
i2
, [S]kβi2 ,t+1

, Cki2, . . . , B
k
im , [S]kβim ,t+1

, Ckim, B
k
n+1, X

k, Ckn+1, B
k
j1
,

[S]kβj1 ,t+1
, Ckj1, B

k
j2
, [S]kβj2 ,t+1

, Ckj2, . . . , B
k
jr
, [S]kβjr ,t+1

, Ckjr wherei1, i2, . . . , im list,

in order, thei such that the designated isomorphism for theβi = β � (3i+ 1) such
thatβ(3i+ 1) �= w at t+ 1 is r0βi,t+1 andj1, j2, . . . , jr list, in order, thej such that
the designated isomorphism for theβj = β � (3j + 1) such thatβ(3j + 1) �= w is
r1βi,t+1.

The second concerns the marking of numbers with the symbols�βw. No num-
bers should be marked in Case 1 of the construction. As a result, condition 1 in
Subcase 2.1 should be weakened by not requiring that the image ofrkβi,t+1 has
nonempty intersection withBki if the designated isomorphism forβi is r0βi,t+1 or
with Cki if the designated isomorphism forβi is r1βi,t+1. Instead, the marking take
place at the end of each stage of the construction as follows:

At the end of staget + 1 we do some additional cancelation and marking.
Supposet + 1 is a γ recovery stage. If there are any uncancelled components
isomorphic to[bβ,γ,u] or [cβ,γ,u] for u ≤ t (andβ ⊇ γ) which, necessarily, have not
participated in any operation, we cancel them and appoint new ones[bβ,γ,t+1] or
[cβ,γ,t+1], respectively. We now mark all of the following with�γw if they are not
already so marked:

1. Any cancelled component.
2. Any component associated with a nodeβ to the left ofγ.
3. Any component of the form[qβ,t+1] with β ⊇ γ.
4. Any components of the form[bβ,t+1], [cβ,t+1] or [pβ,t+1] for β ⊇ γ.
5. Any components of the form[bβ,βi,t+1] or [cβ,βi,t+1] for β ⊇ βi ⊃ γ.
6. Any components of the form[bβ,γ,t+1] if β ⊇ γ and the designated isomorphism

for γ is r1γ,t+1or of the form[cβ,t+1] if β ⊇ γ and the designated isomorphism
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for γ is r0γ,t+1.
7. If, at t + 1, we performed an operation on theβ-transform of a sequence
B0n+1, X

0, C0n+1, B
0
n, [S]0βn , C

0
n, . . .D

0
1, B

0
1 , [S]0β1,t+1, C

0
1 (and soγ ⊆ β), then,

for k = 0, 1, we markBki or Cki if βi ⊆ γ and it has previously participated in
an operation; we markBki if βi ⊆ γ and the designated isomorphism forβi is
r1βi,t+1; we markCki if βi ⊆ γ and the designated isomorphism forβi is r0βi,t+1;
and we mark bothBki andCki for βi = γ.

The changes needed in the verifications to take advantage of these corrections
are straightforward. A complete corrected version of the paper can be found at
http://math.cornell.edu/~shore/.�
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