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Abstract

Effective model theory studies model theoretic notions with an eye towards
issues of computability and effectiveness. We consider two possible starting
points. If the basic objects are taken to be theories, then the appropriate effective
version investigates decidable theories (the set of theorems is computable) and
decidable structures (ones with decidable theories). If the objects of initial
interest are typical mathematical structures, then the starting point is computable
structures. We present an introduction to both of these aspects of effective model
theory organized roughly around the themes of the number and types of models
of theories with particular attention to categoricity (as either a hypothesis or a
conclusion) and the analysis of various computability issues in families of models.

1. Basic Notions

The lectures on which this paper is based were intended to be a brief intro-
duction to effective model theory centered around one set of issues: the number

1 This paper is primarily based on the short course on efective model theory given by the sec-
ond author at the ASL summer meeting, Logic Colloquium '97, at the University of Leeds. Much of
the material was also presented by the authors in invited talks at a special session of the ASL an-
nual meeting, University of California, Irvine, USA, 1995; the Discrete Mathematics, Theoreti-
cal Computer Science, and Logic Conference, Victoria University, Wellington, New Zealand,
1996; the Special Session on Feasible Mathematics of the AMS annual meeting, Orlando, USA,
1996; the annual meeting of the ASL, University of Wisconsin, Madison, 1996, USA; and the Spe-
cial Session on Computable Mathematics and its Applications of the AMS annual meeting, Bal-
timore, January 1998.

2 Partially supported by ARO through MSI, Cornell University, DAAL03-91-C0027.

3 Partially supported by NSF Grants DMS-9204308, DMS-9503503, INT-9602579 and ARO
through MSI, Cornell University, DAAL03-91-C0027.



2 Bakhadyr Khoussainov and Richard A. Shore

of models of specified type and, in particular, the notion of categoricity. For more
general introductions we refer the readefMtue Handbook of Recursive Algebra
(Ershov et al. [1998]), especially the articles by Harizanov [1998] and Ershov
and Goncharov [1998]. Thidandbookalso contains other useful survey papers
on aspects of effective model theory and algebra and an extensive bibliography.
The one most closely related to the theme of this paper is Goncharov [1998]. An-
other interesting survey is Millar [1999] ithe Handbook of Computability Theory
(Griffor [1999]). Two books in progress on the subject are Ash and Knight [1999]
and Harizanov [2000]. These are all good sources for material and references. An
extensive and very useful bibliography prepared by I. Kalantari [1998] can also be
found in Ershov et al. [1998].

One might well begin with the question of what effective model theory is
about. Of course, it is about investigating the subjects of model theory with an eye
to questions of effectiveness. What then is model theory about and what does one
mean by effectiveness? As for model theory we simply quote from two standard
texts (to which we also refer the reader for the terminology, notation and results
of classical model theory). Chang and Keisler [1990] say “Model theory is the
branch of mathematical logic which deals with the connection between a formal
language and its interpretations, or models.” Hodges [1993] says “Model theory
Is the study of the construction and classification of structures within specified
classes of structures.” We can take these two definitions as expressing two views
of the proper subject of model theory. The first starts with formal languages and
S0 we may say with theories. (We takéhaoryT to be simply a set of sentences
in some (first-order) languade called thdanguage ofI". We say that a theory
iscompletaf T'+ o or T+ —o for every sentence of L.) The second starts with
mathematical structures. One might think of these views as, respectively, logical
and algebraic. They lead to a basic dichotomy in the approach to effective model
theory. Should we “effectivize” theories or structures. Of course, the answer is that
we should investigate both approaches and their interconnections. As for what one
means by “effectiveness,” there are many notions ranging from ones in computer
science to ones of descriptive set theory that have some claim to being versions
of effectiveness. Most, if not all, of them can be reasonably called in to analyze
different model theoretic questions. In this paper, we limit ourselves to what we
view as the primary notion of effectiveness: Turing computability (or, equivalently,
recursiveness). Thus we are lead to formal definitions of the two basic notions of
our subject, effective theories and structures.

Definition 1.1 A theoryT is decidableif the theorems ofl” form a computable

set. A structured (for a languagel) with underlying setor domair) A is de-
cidableif Th(A, a).c4, the complete(or elementary diagramof A4, i.e. the set

of all sentences (with constant symbols for each elemen) dfue in A, is com-
putable. A is computablef D(A, a).ca, the @tomig diagramof A, i.e. the set

of all atomic sentences or their negations (again with constant symbols for each
element of4) true inA4, is computable.
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For those whose basic object of interest, or at least starting point, consists
of theories, the decidable theories are the natural effective objects of study. In
line with standard model theoretic usage a structure whose complete theory has
some propertyP is often said to also have properyand so we have decidable
structures. This is the “logical” point of view. On the other hand, the algebraist
or general mathematician usually starts with structures. From this point of view,
the effective objects are the computable structures. After all, when one thinks of
what a computable group should be one thinks that it should be a group structure
for which the group operation is computable and similarly for all other typical
algebraic structures. One does certainly not assume that even the word problem,
let alone the complete diagram, is computable.

Note that we are deliberately avoiding all issues of coding or Godel number-
ing. There are two common approaches to this issue. The Eastern, and especially
the Russian, school favors numerations. One starts with a classical sttdciace
provides anumeration(or enumeratiol, that is a map from the natural numbers
N onto the underlying set of the structured. Thenumeratedor enumerateyl
structure(A, v) is calledconstructivef the (appropriately coded) atomic diagram
of A, with constant symbolsfor i € N interpreted ag(i), is computable (recur-
sive). (A, v) is strongly constructivéf the complete diagram afl with constant
symbols: for i € N interpreted ag (i) is computable. These notions essentially
correspond to what we call computable and decidable structures, respectively.

An established Western approach is to say that all elements are natural num-
bers, all sets are subsetsifand all functions are functions frofd to N. In this
view, languages are Gddel numbered, structures consist of a set of numbers and re-
lations and functions on that set. The formal definitions of computable or recursive
for subsets of, and functions oN,are then simply applied directly to theories and
structures. We adopt what might be viewed as a less formal version of the second
approach along the lines followed in Shoenfield [1971] and now, we think, preva-
lent in thinking (if not always in writing) about computability. Given that we are
not considering issues raised by the theory of enumerations, we see no reason to
explicitly code objects as numbers. After all, we now “know” what effective and
computable mean not only for numbers but for all kinds of data structures from
strings to arrays on arbitrary finite alphabets. Thus we talk about a computable
language without the formalities of Godel numbering and so about computable
theories, types, etc. Similarly, we have computable structures, lists of names for
their elements, diagrams and theories. These may or may not “be” sets of, or
functions on,N. Any reader who prefers explicit Godel numbering is certainly
able to make the appropriate translations. (We may at times, however, resort to in-
dices to clarify certain uniformity issues.) For those interested in the issues related
specifically to numerations we refer the reader to Ershov [1977].

Of course, the notions of effectiveness associated with Turing computability
only make sense in the countable setting.
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e All languages, sets, structures and the like are assumed to be countable unless
explicitly stated otherwise.

Even so, not all sets or structures are computable. Classically, one typically
identifies isomorphic structures. Of course, this eliminates all issues of effective-
ness and so is often not appropriate here. We will have to distinguish between
classically isomorphic models. The following definitions of presentations and pre-
sentability help us make these distinctions.

Definition 1.2 A structureA is computably (decidably) presentabfeA is iso-
morphic to a computable (decidable) structrerhich we call acomputable (de-
cidable) presentationf A.

Before launching into theorems and analyses, we present a few examples of
decidable or computable theories and structures. These theories and structures will
serve as examples for many of the notions and results we consider below. Proofs
for many of the facts we cite about these structures can be found in Chang and
Keisler [1990, 3.4].

Example 1.3 Our language here is that of (linear) orders with one binary predi-
cate<. We consider two theorieBe LO, dense linear orderings with no first or last
element andiLO, discrete linear orderings with first but no last elemém LO

is axiomatizablef,-categorical(i.e. all countable models are isomorphic) and so
complete and decidable):LO is axiomatizable and complete and so decidable
but notX,-categorical. The standard structures associated with these theories are
Q andN, respectively, with their natural orderings. Both are decidableDAEO

IS Ny-categorical every model (remember we are considering only countable struc-
tures) is isomorphic t@ and so decidably presentablee LO has effective quan-
tifier elimination and so every computable model is actually decidable. On the
other hand, not every model éfi LO is even computably presentable nor is every
computable model decidable as we shall see below (for example, in Proposition
6.1). (To see that not every model bfi LO is computably presentable, note that

at the cost of a couple of jumps we can form the quotient of a givebO by

the equivalence relation of being finitely far apart. This procedure can produce an
arbitrary ordering with first element. If the quotient ordering is not arithmetic, the
original model can’t be computably presented.)

Example 1.4 The next theory we mention idC'F;, algebraically closed fields

of characteristi®. The language is that of field theory with1, + and x. ACF,

is axiomatizable)X,-categorical i.e. all models of cardinalitit; are isomorphic,

and so complete and decidabld.C F; also has effective quantifier elimination
and so here too every computable model is actually decidable. Even tHAdugh

IS notX,-categorical, every model is decidably presentable and below we prove a
general theorem establishing this fact (Theorem 5.2).
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Example 1.5 Finally, we briefly discus$’ A, Peano Arithmetic or if one prefers

any suitable finitely axiomatized subtheory such as Robins@n$950]. The
language has8, 1, + and x with the usual axioms. Of courgeA is axiomatizable

but, by Godel's incompleteness theorem, it is neither complete nor decidable. It
IS notNy-categorical (the compactness theorem provides nonstandard models not
isomorphic toN). No model is decidable (again by the incompleteness theorem)
and only the standard modglis computably presentable.

Proposition 1.6 (Tennenbaum [1959]) No nonstandard modePA or even of
Robinson’s) is computably presentable.

Proof sketch. We assume that one has developed the th&aryquestion enough

to, say prove unique factorization into primes and that the standard universal partial
computable function is representable in that there is a formiGtaz, s, ) such

that, for eache, z,s,7 in N, ¢, (z) = iifand only if T = F(e, z,s,7). (We do

not bother to differentiate between a number and the numeral representing it.) One
now shows thaf’ proves the simple fact that

(*)VSE@V@([F(@, €5, 0) — pe|y /\p28+1 )( y] A [_'F(67 €S, O) — De 'f Y /\p2@+1|y])
wherep,|y is a formula saying that theé" prime dividesy.

Now let.4 be any nonstandard model 6f s any nonstandard element df
andy the element of4 guaranteed by). We define the functiorfi onN by f(e) =
1if A= pelyandf(e) = 0if A = paei1]y. Clearly f(e) is computable from the
atomic diagram of4 by searching for an elementsuch that4 = p. x z = y
or A | paet1 X z = y. (One must exist by«).) However, f is clearly not
computable. Indeed; is diagonally noncomputablére(f(e) # ¢.(e)). Thus.A
is not computably presentablel.

2.  TheEffective Completeness Theorem

A common theme in model theory is the investigation of questions about when
given theories have models with specified properties. Typical examples include
characterizing when theories have atomic, prime, universal, homogeneous or sat-
urated models. Other questions involve models of various ranks or dimension,
with or without indiscernibles or even more ambitiously attempts to characterize
all the models of a given theory. In effective model theory one naturally wants to
know when theories have decidable or computable models of each type or even
to attempt to characterize the decidable or computable models of a given theory.
We will investigate a few examples of such questions. We begin with the issue of
when a theory has a model at all - G6del's completeness theorem.

Theorem 2.1(Completeness Theorem) If a the@rys consistent it has a model.

We present one effective analog of the completeness theorem for decidable
theories with a proof modeled on Henkin’s proof of the classical completeness
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theorem. This method of construction is simple but basic for many results in both
classical and effective model theory and we will see several variants latter on.

Theorem 2.2 (Effective Completeness Theorem) If a thebris consistent and
decidable then it has a decidable model.

Proof. We assume that the classical Henkin construction is known and so provide
only a sketch so that we can check its effective content. Il.die the language

L of T extended by infinitely many new constantsnd leto, be a (computable)

list of the sentences df,.. We construct an increasing sequence of finite $etsf
sentences ok, (with AU, = ¢,) consistent witl{” with union ¥ as in the Henkin
proof of the completeness theorem. We need to satisfy the requireRefus
eache € N:

e P.:o.eVor—o, € ¥andifo, is of the form3zf(x) and in¥ thend(c;) € ¥
for some:.

Construction: At stages ask if o, is consistent withl” U W,. If so puto, into
U, and, ifog is 3z0(x), also putd(c;) into ¥, for some as yet unmentioned
¢;. If o4 is not consistent withl" U ¥, put—o, into ¥, ;.

Verifications. Obviously,¥ is complete and the standard argument shows that it
is consistent. As usual the elements of the desired mbodare the equivalence
classes of the; under the equivalence relatiengiven byc; = ¢; iff (¢; = ¢;) € ¥

and the relations and functions vt are determined in the natural way by the
formulas inW.

The only issue for us now is the effectiveness of the construction. First we
note that one can verify that if is decidable thenl is computable. The only
guestion we must answer at stages if o, is inconsistent withl’ U . This is
equivalent to whether or nat, — —o, (with new free variables; substituted in
for the constants; appearing in¥; or o) is a theorem ofl’. As T is decidable
the answer to these questions is a computable functien Dfius the equivalence
relationc; = ¢; is computable. (Just look dt,., wherec; = ¢; is 0,.) So the
equivalence classes form a computable set (the domaivipaind the relations
and functions onM are determined by. Indeed, as usual, a sentences true in
M ifand only if o € ¥ and soM is decidable as required]

One theme in effective model theory that we will not pursue investigates the
question of how hard it is (say in terms of Turing degree or levels of the (hy-
per)arithmetic hierarchy) to construct models of a given type when it is not possi-
ble to produce decidable or even computable ones. We consider the completeness
theorem as our only example. In the construction above the only noneffective step
was deciding iz, is consistent with" U W,. As one can always answer this ques-
tion computably inT” (the Turing jump ofT’), every consistent theory has a
model computable, indeed decidable]in
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Corollary 2.3 If T is consistent then there is a model of 7" such that the ele-
mentary theory ofM, Th(M, m) e, is computable il (and soAS in 7). In-
deed by the low basis theorem, there is always oneWit; (Th(M, m)men)’.

Proof. The first assertion follows immediately from the construction and discus-
sion above. For the second, instead of a siglee build a binary tree (of choices

of o, (and Henkin axioms as appropriate) 6#,). We terminate any path that
becomes inconsistent when we find a proof of inconsistency ffonT his pro-

duces an infinite binary tree computabl€linthe particulany constructed above

is an infinite path through this tree). The low basis theorem (Jockusch and Soare
[1972]) says that there is an infinite paththrough the tree witl?’ < T". As

above we can construct the desired model (and its complete diagram) computably
in P as required]

e For the sake of convenience we assume from now on that all theories are con-
sistent.

We can now say (in some sense) when a th&dhas a decidable model.

Corollary 24 A complete theory” has a decidable model if and only if it is
decidable. An arbitrary theor{/’ has a decidable model if and only if it has a
decidable complete extension.

Proof. If M is a model ofl" andT is complete then the set of theoremsIofs
simply the intersection df'h(M, m),,< s With the sentences of the languafef
T and soT is decidable ifM is decidable. Even if" is not complete, itM is a
decidable model of" then this set is a decidable complete extensiofi’ofThe
other (if) direction of both assertions in the Corollary follow from Theorem 212.

We will not in general assume that theories are complete. However, finite
models have little interest from the viewpoint of Turing computability.

e We assume from now on that all theories have only infinite models.

Now that we “know” when a theor§” has a decidable model, we might well
ask how many decidable models a theory can have. For now we identify models
up to classical isomorphisms and so we might better ask how many decidably pre-
sentable models can a theory have. The issues of identifying computable models
only when there is a computable isomorphism between them will be taken up in
86-7.

If T is incomplete then every decidable complete extension has a decidable
model by Theorem 2.2 and, of course, models of distinct extensions are not iso-
morphic. Moreover, every decidable model’Bfis a model of some complete
decidable extension df. Thus if one is interested in the number of decidably
presentable models of a theory, it suffices to consider only complete decidable the-
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ories. We begin with the possibility that there is only one as in our example)
of a decidableX,-categorical theory.

Proposition 2.5 If a theoryT is Xy-categorical then the following conditions are
equivalent:

1. T is decidable.
2.T has a decidable model.
3. All models of7" are decidably presentable.

Proof. As N,-categoricity implies completeness, the equivalences all follow di-
rectly from the hypothesis, definitions and Theorem 2]2.

Now, it is a remarkable classical theorem due to Vaught [1961] that no com-
plete theory has exactly two (isomorphism types of) models. The effective analog
for decidable models is, however, false.

Theorem 2.6 (Millar [1979], Kudaibergenov [1979]) There is a decidable the-
ory T with exactly two (isomorphism types of) decidably presentable models.

Proof sketch. Let f be a partial computable function whose rangé(isl } and
which does not have a total computable extension. Consider the (computably
enumerable but computably inseparable) sets= {z|f(z) = 0} andM; =
{z|f(x) = 1}. Let fo, C f1 C ... be an effective approximation tp such that
k ¢ dom(fs) forall k > s.

The language df’ contains infinitely many unary and binary predicaleand
R;, respectively, whereé € w. Consider first the theory; whose axioms are the
following set of statements:

1.VaPy(2)&Vy(Pii1(y) = Pi(y)), wherei € w.

2. If Ry(x,y), thenx # y and P, (z)& Py (y).

3. Ifz #y, Py(z)&Ps(y) and fs(k) = 0, thenRy(z, y).
4.1f z # y, Py(z)&Ps(y) and fs(k) = 1, then—Ry(z, y).

One can check that the following four properties hold gf

1.T, has a decidable model completi@h MoreoverT has a unique—type
(Definition 3.1)p such thatPy(z) € p forall k € w.

2. IfamodelA of T' has at least two elements realizinghenA is not decidably
presentable.

3. If a modelA of T has fewer than two elements realizinghen.A is decidably
presentable.

4. If A, and.A, are models of” with the same finite number of elements realizing
p, thenA; and.A, are isomorphic.

These properties show thathas exactly two decidably presentable models.
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The above proof can easily be generalized:

Corollary 2.7 For eachn < w, there exists a theory with exactlynonisomor-
phic decidable model$]

As for our examples above, an analysis of the structure of models b
as in Chang and Keisler [1990, 3.4] easily implies that there are countably many
distinct decidable models. The same is trueAdrF; as we shall see in Theorem
5.2.

Although the natural effective version of Vaught's theorem fails, the proof
(properly effectivized) can be used to give a similar result for decidable models
(Theorem 4.4 below). We first need to study another aspect of the question of how
many decidable models a thedfycan have: When are each of the classically
studied types of models such as prime, atomic or saturated models of a decidable
theory decidably presentable?

3. Decidable Prime M odels

We begin our study of specific types of models with prime and atomic models.
They will play a crucial role in the next two sections.

Definition 3.1 An n-typel or I'(x4, ..., x,) of a theoryT is a set of formulas
with n free variables in the language ®fwhich is consistent witll” such that
o(xy,...,x,) OFr —o(zx,...,x,) belongs tal for each such formula. An-type
[(zy,...,z,) of a theoryT is principal if there is a formula&d(zy, ..., z,) such
thatT - 6(xq,...,z,) — o(zy,...,z,) for everyo € I'. In this case we say that
0(zq,...,x,)is acomplete formulghatgenerated’.

Definition 3.2 A model A of a theoryT in the languagd. is aprime model of
T if it can be elementarily embedded into every model'ofA is atomicif every
n-tuple of elements from satisfies a complete formubdz, . . ., z,,) of L. (Each
of these models is unique (up to isomorphism) if it exists.)

The notions of prime and atomic coincide for countable models and so we
motivate our characterization of decidable prime models by two classical charac-
terizations.

Theorem 3.3 A complete theory' in a languagel. has a prime model if and only
if every formula of. consistent witl¥" is a member of a principal type ovét.

Theorem 3.4 A complete theor{’ in a languagel has an atomic model if and
only if every formula of. consistent witll” can be extended to a complete formula.

As the notions of atomic and prime coincide (for countable models), each of
these theorems provides a characterization of the theories with prime models. We
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now consider what might be the appropriate effective versions of these theorems.
In one direction, note that every type realized in a prime modé&l & principal

and all principal types are realized in every modelofThus, if7" has a decidable
prime model, not only is every formula consistent witha member of a prin-

cipal type (and so completable) but there is a uniformly computable list of these
principal types given by the ones realized in the decidable prime model.

The classical theorems at first glance suggest that this condition might be suffi-
cient. We should use this list of computable types to construct the model. However,
an additional possible uniformity is suggested by each classical characterization.
The characterization of prime models suggests that we might need to be able to
go uniformly effectively from formulas to (indices for) principal types contain-
ing them. The characterization of atomic models suggests that one might need to
be able to go uniformly effectively from formulas to generating formulas for the
principal types containing them. Although the two classical versions are equiva-
lent these two effective versions are not. The first is clearly necessary as given a
formulay consistent witHI” and a decidable prime modd we can computably
find ann-tuple of elements afd satisfyingy. The set of formulas satisfied by this
n-tuple A is then a computable principal type containing It turns out that this
condition is also sufficient. The second condition clearly implies the first and so is
sufficient but not, as it turns out, necessary.

Theorem 3.5 (Harrington [1974]; Goncharov and Nurtazin [1973]) A complete
decidable theoryl’ has a decidable prime model if and only if there is a com-
putable function taking each formula to (an index for) a computable principal
type containing it.

Proof. We construct the desired model by a priority argument reminiscent of that

for the Sacks splitting theorem for computably enumerable sets [1963] but instead
producing a Henkin construction that restricts the types realized to the principal
ones.

Let o, list the formulas ofL. the language of" extended by new constants
¢;. We construct in stages a sequence of finite $ets,, ..., c,,) of sentences
consistent withl" with union ¥ as in the proof of Theorem 2.2. Again we let
Yy, = AU, At each stage of the constructiorl’. ; will be a principale-type
containing the formul&ye1, . .., 3yn. ¥V (21, . .., Te, Yei1, - - -, Yn, ). OuUr goal is
to satisfy the requirement®, of Theorem 2.2 as well as new on@s that guar-
antee that the model constructed is prime by making sure that only principal types
are realized. We satisf§). by making sure thal’. ; is eventually constant and
so that[cy], ... [c,] satisfies the principal typE.(= lim,I'. ;). (We denote the
equivalence class @f in the model built from the constants as in Theorem 2.2 by

[Ci] )

e P.:o.eVor—o, € ¥andifo, is of the form3zf(x) and in¥ thend(c;) € ¥
for somei.
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o Q. : ([c1],...][cc]) realizes a principal typE, = lim,I', ;.

Construction: At stages, if only one of o, and—o, is consistent withl" U ¥
put it into ¥,,,. Suppose it ip that is put into¥,,, and soT" + ¢, — p. As
Wett, -, WYn Ws(T1, oo, Tey Yet1, - - - Yn,) 1S IN T Which is a complete type
overT, andT ¥, = p, Wet1s-- -, Wng Vo1 (T1, -+, Tes Yet 1y - - > Ynoyy) 1S
alsoinl'. ;. Sowe can let’, ., bel. ; for all e. If both o, and—o, are consistent
with T'U U, the problem is that adding, (or —o,) to ¥, to form ¥,,; may make

FWetts s Wng i ¥Vs(Z15 -+ -, Tey Yet1s - - -, Yny,, ) NOL DE @ member df, ; for var-
ious numberg. This would force us to change our choice of the type realized by
([e1], -+, [ce]) and so makd. ;.1 # I'. ;. We view this as an injury to require-

mentQ. (which requires thal'. ; eventually stabilize). As in the Sacks splitting
theorem we act so as to minimize the priority of the first requirement injured.

More precisely, we lep? . | bey Ao, andy., ; bew A—o,. We lete; ; (fori =
0,1) be the least < ssuchthaBye1, - - ., In, Vo1 (T1s ooy Ter Yeir s - - - s Ynors)
isnotinl, ;. (If none existse; s = s.) If eg s < ey letwy,.; = L., and otherwise
lety, ., =2 . Lete, = min{ep s, e1,5}. Fore < e, we canlefl, ;1 = I s as
for suche, Fyeq1, .- Wn, Vs (@15 -+ Tey Yet1s - - 3 Yngyr) € Leyse FOre > e
we redefind’, ., as the first in our uniformly computable list of principal types
which containsSiye1, - . ., IYn, 41V 1 (T1, - -+, Tes Yert 1, - - > Ynut1)-

If we have putzf(x) into ¥, we putf(c;) in as well for some unusegl. This
clearly does not require any change in the,; already defined.

Verifications: As T is decidable and the types on our list are uniformly com-
putable, the construction is clearly computable. We clearly satisfy’tmequire-
ments and so construct a decidable motieks in Theorem 2.2. As all sentences
o; involving only ¢4, . . ., ¢, that are put intol, at stages belong to the principal
typel. ;, if we can show thalim, I'. ; exists for eacle (and is sayl'.) then we
will have shown that, inV, ([¢1], . . . [c.]) realizes the principal typE. as required
to guarantee that1 is a prime model of .

We prove by induction oathat there is a stagesuch that, > eforall s > ¢,
andsd’., =T, forall s > t.. Suppose thdt_; exists. We need to show that
is greater tham for all sufficiently larges. Now, by the definition of._;, e < e,
for everys > t._; and so by the choice df_, in the construction’, s = I'. ;. =
I, forall s > t.. AsT. is principal, somer(zy,...,z.) iS a generator and so by
some stageé > t._, we have added to ¥;. We claim thak, > e for everys > t.
Considers, for anys > t. The only waye, could bee is if both o, and—o, are
consistent Withl” U W, but 3ye 1, - -+, . Vo (T1, -+ o Tey Yot 1y -+« » Ynayy) 1S
notinlc fori =00rl. AS3yei1,. ., IWn,  Vs(T15 -, Ty Yet1s- -+ Yngpr) —
o ando is complete this would mean that

Ely!i-i-lu SRR Ely’ﬂs+1¢s(m17 sy Ley Yet1y - - - 7y7’bs+1) —
_Elye-i—l: R ElynerlO-s(xly sy Tey Yed1y - - - 7yns+1)
or that
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Elye-i-l? SRR Elyn5+1ws(x17 sy Ley Yet1y - - - 7yns+1) —

Wet1s e W1 0(T15 -, Tes Yer1s -+ > Ynosr)
so thato, or —o, respectively, would be inconsistent with, contrary to our
assumption. Thusis the required stage. [

We finish this section with an alternative version of Theorem 3.5 and some
remarks about various uniformity conditions.

Corollary 3.6 A complete decidable theoffj has a decidable prime model if
and only ifT" has a prime model and the set of all principal typeg'a$ uniformly
computable.

Proof. The only if direction of this Corollary is clearly implied by the Theorem.
Suppose then thdl' has a prime model and the set of principal typesiois
uniformly computable. A§" has a prime model, every formujais a member of

a principal type and so the search among those in the given set for one containing
1 terminates and provides the computable function required in the thearem.

The effective uniformity in the listing of the computable principal types is
necessary as an explicit hypothesis:

Theorem 3.7 (Millar[1978]) There is a complete decidable thedFall of whose
types are computable with a prime model but no decidable (or even computable)
one.

Finally, we show that the possible alternate version of Theorem 3.5 that asks
for a computable way to go from a formula to a completion is false and so “uni-
formly atomic” is stronger than “uniformly prime” even for decidablecategor-
ical theories.

Proposition 3.8 There is a (complete) decidabig-categorical theoryl” with a
decidable prime model but with no computable function taking formulas to com-
plete extensions.

Proof. The language of" has infinitely many unary predicatés. The axioms of

T say that the cardinality of ead is exactly2 and thatR; andR; are disjoint for
distinct: and;j except for someéesignatedriples (i, j, k) such thatR;, consists of
one element from each &f; andR;. Moreover, no two distinct designated triples
have any entry in common. The actual list of axioms7ois thus determined by
the list of designated triples. This list will be defined recursively to diagonalize
against each possible computable partial funciowhich might be a candidate
for a function taking formulas to complete extensions. Thusill be axiomati-
zable. It is alsdX;-categorical. (The part of the model consisting of elements in
any R; is uniquely determined by the axioms. The rest just consists ahany
elements not in ang;.) ThusT is complete and decidable.



Effective Model Theory: The Number of Models and Their Complexity 13

The list of designated triples is effectively enumerated in increasing order (and
S0 is computable) by waiting to diagonalize edthat the formulaR,;(x). If
0;(Ry;(x)) converges at stage we choose, k larger than any number mentioned
already and designate the trigi&, 25 + 1,2k + 1). In particular, if6;(Rs;(x)) is
the generating formulé(z) (which impliesRy;(x)) thend cannot mentiorRyy 1.
We claim thatl’ can prove neither thah(x) implies Ry;.1(z) nor that it implies
—Ror+1(z) and sad; is not a function taking formulas to complete extensions. To
see that no information abofb 1 (x) can be implied by(z) consider the theory
T’ gotten by restrictingl” to the languagd.’ which is L without the predicate
Ror11. T is clearly alsoX;-categorical and consistent witl{z). Let A be a
model of 7" anda an element realizing(z). Letb be the other element dfy; in
A andc andd the elements o, 1. ( Ry; andR,; 4, are disjoint by construction.)
We can easily expand to a model ofl" by interpretingRy,1 as eithea, c} or
{b,d}. Thusf(z) cannot imply eitheRy; 1 (z) Or = Rog11(x). O

4. Satur ated M oddls and the Number of Decidable
M odels

Definition 4.1 A model A of a theoryT" in the languagé. is asaturatedmodel
of T if it realizes every type of”” with finitely many parameters from. (If it
exists, the saturated model @fis unique.)

The characterization of decidable theories with decidable saturated models is
somewhat easier than for prime ones.

Theorem 4.2 (Morley [1976], Millar [1978], Goncharov [1978a]) A decidable
theoryT has a decidable saturated model if and only if the typ&Sare uniformly
computable.

Proof sketch. If 7" has a decidable saturated modelthen the types of” are
uniformly computable as we can simply list theuples fromA and, for each of

them the set of formulas it satisfies. For the other direction, we can use the uni-
formly computable list of types to do an effective Henkin construction. As the
construction proceeds, we designate new constants to realize each potential type
over previously introduced constants. As all the potential types over new constants
are given uniformly computably as restrictions to a subset of their free variable of
ones on our given list this procedure can be effectively organized. Roughly speak-
ing, the plan is to continue to make the designated constants realize the appropriate
type until an inconsistency is reached. We can check for inconsistencies with pre-
viously assigned types since they are all uniformly computable. We use a priority
ordering to guarantee that, despite the need to cancel attempts at realizing certain
potential types, each actual type over the constants introduced is in fact realized.
Thus the model constructed is saturated as requiired.
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By Millar [1978], the explicit assumption of uniformity is necessary even if
one assumes that the decidable thebrigas a saturated model and all its types
are computable. Millar [1978, p. 63] suggests that the proof of this results can
be modified to show that there is no connection between the decidability of the
saturated and prime models (when both exist). We now show that, in fact, if there
is a decidable saturated model then there is a decidable prime model.

Proposition 4.3 (Ershov [1980, 381-382], see also Goncharov [1997, Theorem
3.4.4]) If a complete theory has a decidable saturated model then it has a de-
cidable prime model.

Proof. As T has a decidable model it is itself decidable by Corollary 2.4. As it has
a decidable saturated model, Theorem 4.2 gives us a uniformly computable list
of all the types off'. By Theorem 3.5, it suffices to prove that, given any formula
¢ consistent withl", we can go effectively to a principal tygécontainings. We
begin with the first typd’,,, on our list containing = ¢,. We proceed recursively
to extendyp to ¢, and define a typé&,, containingg,. Giveng,, I';,, ando; (from

the list of all formulas with the same number of free variableg)ase ask if both

o; and—o; are consistent witd’ U {¢,}. If not, ¢, , = ¢, andn,,; = n;. If so, we
find the firste, ande; such that, Ao; € T',, andg, A —o; € ', respectively. We
letn; 1 be the larger oé, ande; and letg, , be @, A o, or ¢; A —o; accordingly.

It is clear that the sequeneg is hondecreasing as at stepf the construction if

eo ande; are defined then one of themns and we always take the larger. As
this procedure is effectivd,|i: € w} generates a computable typecontaining

¢. If n; is not eventually constant; would be a type ofl’ not equal to anyl’.

for a contradiction. Once,; has stabilized say at we can defines; ande; at
only finitely many stages as each time we do so we extepdand eliminate one
possiblel’; for j < n from future consideration. Thus also eventually stabilizes
say at¢,. It is now clear thaip, generates the typE, which is therefore the
required principal type containing [

We now see what the proof of Vaught's theorem that a complete theory cannot
have exactly two models gives us.

Corollary 4.4 If a complete but noR,-categorical theoryl” has a decidable sat-
urated model then it has at least three decidable models.

Proof. Let A be a decidable saturated modelTof By Proposition 4.371" has

a decidable prime modé3. As T is not X,-categorical, the decidable saturated
model A of T is not a prime model and sd and B are not isomorphic. Thug
realizes a nonprincipal (but computable) typer). A can clearly be expanded

to a saturated model &f U I'(¢) by properly interpreting the constartand so
T'UI'(¢) has a decidable saturated model and hence a decidable prime@rindel
Proposition 4.3. Of course, the restriction(fs a decidable model df. As in

the proof of Vaught's theorem (as in Chang and Keisler [1990, Theorem 2.3.15]),
this model cannot be isomorphic to eithéror B. [J
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On the other hand, if a decidable thedfyhas no decidable prime model
(and so no decidable saturated model) then it has infinitely many decidable prime
models. To see this, we quote a simple case of Millar’s effective omitting types
theorem.

Theorem 4.5 (Millar [1983]) If T is a decidable theory anfll’;|i < n} a finite
set of computable nonprincipal typesBfthen there is a decidable model bf
omitting every (i.e. not realizing any),.

Corollary 4.6 If a decidable theoryl' does not have a decidable prime model
thenT has infinitely many decidable models.

Proof. By Theorem 2.27" has a decidable model. As A is not a prime model

it realizes some nonprincipal tyfg. By Theorem 4.5, there is a decidable model
A; of T'omittingl';. As .A,is not prime, it realizes a nonprincipal type distinct
from I'; by construction. We now get a decidabdig omitting bothI'; andT's.
Continuing in this way we get an infinite sequenigef computable nonprincipal
types of T and decidable nonisomorphic models of 7" as required. (Each;
realizesl’;;; but notI'; for any;j <i.) O

Another variation on the question of how many decidable models a decidable
theory can have asks when is every modél alecidably presentable. One obvious
necessary condition is that all typesinare computable. (Every type is realized
in some model and only computable types can be realized in a decidable model.)
Thus, in particular,l’ can have only countably many types. This condition is
not sufficient and the problem remains open in general. There are a couple of
partial answers. The answer is simple Ryrcategorical theories and is supplied
by Proposition 2.5. The nicest result is ®r-categorical theories to which we
now turn.

5. N;-Categorical Theories

If a theoryT is N;-categorical (and so complete) but ntcategorical then
the Baldwin-Lachlan theorem [1971] supplies us with a full classification of the
models ofT" in terms of a well defined notion of dimension. There are countably
many modelsA4; of T and they are arranged in a liner order of type- 1 with
respect to elementary embedding ascending with increasing dimension:

A A A=< 2A 2. XA

Ay, the model of dimension zero is the prime modelodnd. A, the unique
model of infinite dimension, is the saturated model'ofThe model4; for i > 0
is the model of dimension

The classic example of ad, but notR,- categorical theory iIAIC'F,. Here
the dimension of a model is its transcendence degree over the prim@fiedd,
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the prime model, is the algebraic closure(@f A, the saturated model, is the
algebraic closure of the rationals extended by infinitely many transcendental el-
ements. Eacld; for i > 0 is the algebraic closure @@ extended byi many
transcendentals.

The general problem we wish to address is the following:

Question 5.1 If T is X; but notX,-categorical theory when (and which of) its
models are decidably or computably presentable?

Decidable M odels of X;-Categorical Theories

Of course, ifT" is N;-categorical and so complete, it has a decidable model if
and only if it is itself decidable (Theorem 2.4). Actually, the decidabilityraf
enough to guarantee that every model is decidably presentable:

Theorem 5.2 (Harrington[1974], Khisamiev [1974]) Ifl" is N, -categorical and
decidable then every modelbfis decidably presentable.

Proof. We first use the results of Baldwin and Lachlan [1971] to show that we
can reduce the problem to that of the existence of decidable prime models for a
decidable theory’. (All the model theoretic facts we cite in this proof can be
found in Baldwin and Lachlan [1971].)

As T is N;-categorical, there is a principattype I'(x;, ..., x,) such that
T =TUT(c,-..,c,) (With ¢; new constants) hassirongly minimal formula
i.e. aformulag(x) of L’ (the languagd. of T' expanded by new constantg
such that for every modedl of 7" and every formula)(z) of L', exactly one of
{a € A|A = ¢(a) ANY(a)} and{a € A|A = ¢(a) A —¢(a)} is finite. Of course,
T’ is N;-categorical. Note that &8 is decidable and’ is principal,T” is also
decidableT' - ¢ < ¢ € I' & T F 6 — ¢ whered is a generator of). As all
models ofT" can be extended to ones 6f, we can assume for the proof of our
theorem thaf" has a strongly minimal formula.

Now each model of aiy;-categorical theory/" with a strongly minimal for-
mulag is the prime model of an extensidih of 7' by constantd; satisfying a type
A which says that(d;) holds for each and that thei; are algebraically inde-
pendent, i.e. there is no formulgz, ) € A such that for some, 35"z (¢p(x) A
¥(z,7)) € A. (In fact, the cardinality of the set df is the dimension of the model
and uniquely determines it.) Agaiff is clearlyX;-categorical. We must verify
that it is also decidable, i.\ is computable. We prove by induction on the num-
bern of d; that the corresponding typés, and theorie§,, = TUA,,(dy, ..., d,)
are uniformly decidable. (They are complete by definition.) ke 1, consider
any formulay(z, d, ..., d,). In each model of T,, exactly one ofa € A|A |
o(a) NY(a,dy, ..., d,)}and{a € A|A = é(a) A (a,dy, ..., d,)} is finite by
the strong minimality otp. By compactness, there is thenanc N such that
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T, + 3=mx(¢(z) A Y(z,d)) or T, - I=™x(¢(x) A —b(x,d)). AsT, is decid-

able, we can search for and find suchrarior ¢ or —1). The other is inA, i.e. if

T, - 35" z((z) AY(z, d)) then—)(z, d) € AandifT, - I z(d(z)A—(z, d))
theny(z,d) € A. Thus eacl,, andT,, = UT,, is decidable and the models Bf

are precisely the prime models of these theories. To prove our theorem it therefore
suffices to show that each of these theories has a decidable prime model.

By Theorem 3.5, it suffices to show that’if is a decidableX,-categorical
theory with a strongly minimal formula then there is a computable function
taking any formulas(z) to a computable principal typgé, containingo.

Giveno, we construct a computable typan stages by starting witho and
adding on eacly, in turn if it is consistent with what we have put Inso far
and, if o, is Jy(¥(y) A 0(y,x)), we also add indy(¢(y) A 0(y,T) A ¢(y)) for
some algebraig, i.e. one such thaf - 3="y(¢(y) A ¢(y)) for somen € w. Of
course, ifo, is not consistent with what we have so far we add-en. The point
here is that iFy (¢ (y) A 0(y,T)) is consistent with what we have so far then the
formula gotten by adding it on is realized in the prime modéel'sfay bye. Now
that model has only algebraic realizations/aéind so whatever element witnessed
Jy(v(y)Nb(y, ¢)) is algebraic and so also satisfies some algebraic forgnulaus
Jy(v(y) A O(y,T) A ¢(y)) can be consistently added on as desired.

We claim thafl" is principal and so the requirdtl. Consider the prime model
Aof TUTI'(¢) and anya € A such thatd | ¢(a). As A is a prime model
of T UT'(¢), a realizes a principal type ovér U I'(¢) generated say b§(y,¢).

If a is not algebraic then for every formutaand everyn € w, T UT'(¢)
0(y.@) — [6(y) — =3="y(¥(y) A $(y))]. On the other hand, ad |= v(a) A
0(a,c), Jy(v(y) NO(y,T)) € T and so by constructiody (¢ (y) A0(y,T) Ap(y)) €
I for some¢ such thatl’ = 3="y (¥ (y) A é(y)) for somen for a contradiction.
Thus.A has only algebraic solutions @f, i.e. it is the model of dimensiof, and
so A is actually the prime model &f. AsT is realized inA, it must be principal
overT as required.

(This last argument is attributed to Lachlan in Harrington [1974]. Harrington’s
own proof is also instructive. It begins with the observation that the function taking
a formulaos toits rank as defined in Baldwin [1973] can be seen to be a computable
map from formulas int&N by the arguments presented in that paper. Thus, given a
formulac consistent withHl’, we may computably define a type= UT'. contain-
ing o by putting in, for eacle in turn, eithero, or -0, S0 as to always preserve
consistency and to reduce the rank/of’. if possible. Eventually, the rank must
stabilize and so we produce a principal typeontainings.) O

Computable M odels

We now turn to the question of which models ofi&ncategorical but nog,-
categorical theor{y are computably presentablélifis not decidable. It is easy to
find such a theory with no computable models by coding a noncomputabfe set
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into every model. (For example, extend Ay adding on new unary predicates
P, and, for eachi € w, axiomsVz(P;(z) — = = 0) andP;(0) if « € S but—P;(0)

if ¢ ¢ S.) Thus the question is, i’ has a computable but no decidable model,
which of the models4; of T' can or cannot be computable. Only a few facts are
known.

Theorem 5.3 (Goncharov [1978], Kudaibergenov [1980]) For every= N there
is anX;-categorical but noty-categorical theoryl’ such thatA,, ..., A, are all
computably presentable but ndf for i > n.

Proof. Fix n € N. The language for the required thedrywill consist of a unary
predicatel, and ann-ary predicateR, for eachk € N. The axioms forT" will
code a computably enumerable but not computablé&setUB, into each model
of dimension greater tham while maintaining the possibility that the models of
dimension less than or equal#care computably presentable.

Axioms:

e The P, are nested downward with respectit@nd exactly one element drops
out at eaclk, i.e. for eachk € N we have the following axioms:

“Va(Prya(z) = Pi(z))
*H‘QT(Pk(l') A _|Pk+1(l'>)
e For eacht € N we wish to require that

Ri(z1,...,2,) & /\{xz #xli # 5} A ds(k € Bs Ay, ..., 5, € Py).
We enforce this requirement by the following axioms:

*Ri(z1,...,2,) = x; # x; fori # j.

*For eachs € Nandk € B, :

Az £ 25li 5} A Ty, 80 € Py = Bi(an, ..., 3).
*For eachs € Nandk ¢ B : \/{z; ¢ Ps|li <n} — —Rg(x1,...,2,).

Verifications: Itis easy to see that the cardinalityrof* uniquely determines the
isomorphism type of any model of 7" and that all modelsd of sizeX; haveX,
many elements imP;A. ThusT is X;-categorical. Indeed, the cardinality o
is the dimension ofA.

We claim that a model of T" is computably presentable if and only if there
are fewer tham distinct elements imP:*. For one direction, suppose that there
are distinctey, .. ., c, in NPA. Inthat casek € B & A = Ri(ci,...,c,) and so
A cannot be computably presentablefas not computable.

For the other direction, we wish to construct a computable mddzlT" with
m < n many elements,, ..., c,, in NPA. We let the other elements of the
desired model be the natural numbers and we jputt, if and only ifi > k. We
now only have to computably define the predical&s Given distinct elements
ai, . ..,a, from A, not all of them are from among thegand so we can effectively
find ans and indeed the smallestsuch that one of them is not i. We then let
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Ry(ay,...,a,) hold if and only ifk € B, ;. This clearly defines a computable
model.A of T with | N PA| = m as requiredd

Thus any initial segment of the modelsibtan be the computably presentable
ones. The obvious questions arise as to what else is possible.

Question 5.4 Which subsets ab + 1 can be the set of computably presentable
models of ank;-categorical but noR,-categorical theory” with a computable
model? In particular, must the prime model always be computably presentable?
Must the saturated model be computably presentable if all the others are?

The following theorem answers the two specific questions asked. All other
instances of the general question are open.

Theorem 5.5 (Khoussainov, Nies and Shore [1997]) There a%ecategorical
but notX,-categorical theoried; and7; such that

i)All models of T; except the prime one are computably presentable.
i)All models of T; except the saturated one are computably presentable.

Proof (For 77). GivenS C w we construct a structurds of signaturel, =
(R, P1, P», . ..), where eaclP, is a binary predicate symbol having the following
properties:

e The theoryTs of the structureds is X;- but notX,—categorical andis is the
prime model of7’s.

e Each nonprime model of Ts has a computable presentation if and only if
is 29.

e A computable prime model providéswith a certain recursion-theoretic prop-
erty but there exists A)—set which does not have this property.

The building blocks of our structureds will be finite structures that we call
n-cubes and now define by induction an

Definition 5.6 A 1—cubeC, is a structuré{a, b}, Fy) such thatPy(z, y) holds in
C, ifand only if (x = a andy = b) or (y = a andz = b). Given two disjoint
n-cubes we get an + 1-cubeas an expansion of their union by lettii be an
iIsomorphism between thecubes. Anv—cubeis an increasing union of—cubes,
n € w with signaturg P, Py, P, . . .)

Definition 5.7 If S C w, Ag is the disjoint union ofr-cubes forn € S and
Ts = Th(Ag).

Lemmab.8 If S is infinite, thenTs is N;- but notX,—categorical and the model
with now-cubes is its prime model.

Proof. It is easy to see that the moddk satisfies the following conditions which
are all expressible by a set of axioms in the langubge
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1.Vz3yPy(z,y) and for eachm, P, defines a partial one-to-one function. (We
abuse notation by also denoting this partial functionfhy)

2. For alln # m and for allz, P, (z) # P.(z).

3. For eactn and for allz if P,(z) is defined, thetPy(z), Pi(x), ..., P,_1(x) are
also defined.

4. For alln, m and for allz if P,(z) andP,,(P,(z)) are defined, theR,,(P,(z)) =
P,(P,(x)).

5.Forallk,n >n; >mng > ... >ng_1 > ng, Vo (P, (... (Po(2)...) # Py(x)).

6. For eactn € w, n € S if and only if there exists exactly one-cube which is
not contained in an + 1—cube.

Let M be a model which satisfies all the above statements. Foreacly,
M must have am—cube which is not contained in an+ 1—cube. If ane € M
does not belong to any—cube forn € S, thenz is in anw—cube. Thus any two
models which satisfy this list of axioms are isomorphic if and only if they have
the same number @f—cubes. In particular, iM; and M, are models ofl’s of
cardinalityX;, each ha&; manyw—cubes (as each cube is countable). This
and M, are isomorphic ands is anX;- but notX,—categorical theory. It is clear
that the prime model is the one with necubes.[]

Lemma5.9 Each nonprime model dfs is computably presentable if and only if
SisX9.

Proof. If M is a model ofTs, s € S if and only if M |= Jo3yVz(Ps(z,y)&
—P,1(z, 2)). Thus if M is computably presentablg is 39. For the other di-
rection, note that it suffices to construct a computable mddelwith one w-
cube whenS € 3. (We can computably add on matecubes as desired.) We
build M by putting in ann-cube when, according to the representation of as
{n|FxVyH (z,y,n)}, we seem to have a witnesghatn € S. When the witness
fails, we merge this-cube into thev-cube that we are building. More formally,
at staged we start to build a substructug that will be anm-cube for somen

at every stage and will at the end of the construction be arcube. At stage,

we first put intoM ann-cube for eacln < s for which we do not have one and
associate the cube with the first numhethat has not yet been associated with
n. Then, we mergé and the existingi-cubes for those. < s for which there
isay < s such thatd (z, y, n) fails for thex currently associated with into an
m-cube for somen larger than any number yet used in the construction. Clearly
the substructur® becomes the only-cube of M. Moreover, forn € w, there is
ann-cube in the final structurd if and only if 32VyH (z,y,n), i.e. if and only

if n € S as requiredd

We now provide the recursion theoretic propertydhat is guaranteed by the
existence of a computable prime modellgf(but not by any of the other models
being computably presentable).
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Definition 5.10 A function f is limitwise monotonidf there exists a computable
function¢(z, t) such that(z,t) < ¢(x,t + 1) for all z,t € w, lim; ¢(x, t) exists
for everyz € wandf(z) = lim; ¢(z, t).

Lemma5.11 If the prime model offs is computably presentable theéhis the
range of a limitwise monotonic function.

Proof. SupposeM is a computable prime model @k. Define¢(z, s) for each
x € M ands € N as the largest < s such thatP,(x, y) holds for somey < s. It
is clear that(z, s) is monotonic ins. As everyz € M is in ann-cube for some
n, ¢(x, s) is equal to this: for all sufficiently larges. O

Lemmab5.12 There exists a\) set A which is not the range of any limitwise
monotonic function.

Proof. Let ¢.(z,t) be a list of all candidates for representations of limitwise
monotonic functionsf.. At stages we define a finite setl, so thatA(y) =
limsAs(y) exists for ally (and henced is AY). We also satisfy the following
requirements to guarantee théis not the range of a limitwise monotonic func-
tion.

R, :If fo(z) = lim¢,(x,t) < w for all z, thenrange(f.) # A.

The strategy to satisfy a single, works as follows: At stage, pick a withess
me, €numeraten, into A (i.e. setA;(m.) = 1). Now R, is satisfied (sincen.
remains ind) unless at some later stagewe find anz such thaw, (z, ty) = m..

If so, R, ensures thatl(¢,(z,t)) = 0forallt > t,. Thus, eitherf.(z) 1 or f.(z) |
andf.(x) ¢ A.

Keeping¢,(z,t) out of A for all t > t, can conflict with a lower priority
(1 > e) requirementR; since it maybe the case that, = ¢.(z,t') for some
t' > to. However, if f.(x) |, then from some point on there is only one number
that R. prevents from being a candidate fos;. If f.(x) 1, then the restriction
is transitory, i.e. a®,(z,t) is monotonic int each candidate far; is eventually
released and never prevented from being chosen as the final valydbfis each
lower priority R; will eventually be able to choose a witness that it will never
have to change because of the action®ofin this way, every requirement can be
satisfied by a typical finite injury priority argumenil

Proof sketch (ForT3). We take d13 setS defined byk € S < VnamH (n,m, k)
which is notX. (H is some computable predicate bih.) We now codeS into a
computable structurd with unary predicate®,; and predicate®y, ; of arity & for
i,k,s € N. The relevant properties of that can be guaranteed by axioms in this
language are as follows:

e The PA form a descending chain of sets with one element dropping out at each
1.
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e The R,és code the approximatiofl (n, m, k) to k € S by requiring that ifj is
least such thatn < s3m < j(H(n,m, k))andz,,...,z; € P; are distinct for
i < kthenRy s(x1,...,x;) holds and not otherwise. (In particular,fif¢ S
then for somey, we have axioms saying th&y, ;(z1, . .., z;) does not hold for
anys > so and anyzy, . . ., xg.)

The theoryTs of Ag is Ni- but notX,-categorical with the dimension of a
model.A being once again determined by the cardinality)d¥*. The intuition is
that the more elements there arenif for a modelA of T, the more of thal3-
approximation taS that we can “recover” from the diagram gf. In particular,
if A is the saturated model @fs, NP is infinite andS is S, in A: k € S <
dxq,...x, € A[(Vi)(A = Pi(z1) A ... Pi(xr) ) N (Vs)(A = Ris(xa, ... xx))].
As S is notX9, the saturated model @ is not computably presentable. For each
t < w, however, we can (nonuniformly) build a computable madgbf 75 with
t many elements imP**. The information needed i§ N (¢ + 1) and, for each
k < t which is not inS the least: for which there is non such thatd (n, m, k)
holds.[]

All the theorems in this subsection about computable modets-ohtegorical
theories use infinite signatures. Not too much is known about the existence of
such structures and theories in finite signatures or for ones that are extensions
of standard algebraic theories. One interesting example is Herwig, Lempp and
Ziegler [1999] who have established Theorem 5.3rfoe 0 with 7" an extension
of the theory of groups in the standard signature.

6. Computable Dimension and Categoricity

Until now we have taken the classical approach of identifying models up to
classical isomorphism. However, it is not obvious that even two computable (or
decidable) models that happen to be isomorphic should be identified when one is
interested in effective procedures. There could well be (and indeed, as we shall
see, there are) structures with presentatidrend B such that the two presenta-
tions have different effective properties. For example, there are computable pre-
sentations ofN, <) on which the successor function is not computable.

Proposition 6.1 There is a computable presentatidn= (A, <,) of (N, <) such
that the successor function ohis not computable.

Proof. A will consist of the even numbers in their usual order plus an infinite set
of odd numbers determined and placed in the ordering by a procedure designed
to guarantee that no computable functignis the successor function od. At

stages we check, for each < s, if ¢,.(2¢) has converged at stagand is equal to

2e + 2. If so we pui2s + 1 into A and place it betwee2e and2e + 2. It is obvious

that A is computable and thaft, (2¢) is not the successor @t in A for anye. [J
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The natural approach to the issue raised by such examples is to identify struc-
tures or presentations only when there is a computable isomorphism between them.
Of course, this only makes sense when the structures themselves are computable.

e Henceforth all structures will be computable.

Definition 6.2 A is computably isomorphito B, A =, B, if there is a com-
putablef : A — B which is an isomorphism. We also say then tdaandB are
of the same computable isomorphism type

Definition 6.3 The (computable) dimensioof a structureA is number of its
computable isomorphism typesd is computably categoricaf its computable
dimension igl, i.e. everyl3 isomorphic taA is computably isomorphic tal.

Note that in a computably categorical structutevery definable relation that
is computable in any presentation.dfis computable in every presentation.df
and so for such structures the effectiveness of definable properties is independent
of the presentation.

Example6.4 Q (the rationals) with its usual linear order is computably categori-
cal: The standard back and forth argument showing that the theory of dense linear
orderings without endpoints is countably categorical is effective and so produces
computable isomorphisms between any two such orderings.

Example6.5 N as a model oiPA or indeed as a structure with only the suc-
cessor functior(x) (given ase + 1 in the language of arithmetic) is computably
categorical: Given any isomorphic toN, one defines the required computable
f : N — B by recursion.f(0) is the first element o8 and if f(n) is defined as

b € Bthenf(n+ 1) = s5(b). However, it is easy to see from Proposition 6.1
that(N, <) is not computably categorical. (#fis the successor function dhand

f : N —A were a computable isomorphism into tdeof Proposition 6.1fsf~!
would be a computable successor functionch

Example 6.6 Every finitely generated structure is computably categorical by the
natural generalization of the preceding argumen{Tars).

Example 6.7 Q, the algebraic closure of the rationals and so the prime model of
ACFy, is computably categorical b@, the countable saturated model 4€'F,

(i.e. the algebraic closure of the rationals extended by infinitely many transcen-
dentals) has computable dimensiogCorollary 6.12).

All of these examples have dimensioror w but, actually, everyr < w is
possible.

Theorem 6.8 (Goncharov [1980a]) For each, 1 < n < w there is a structure
of dimensiom.
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Goncharov uses a priority argument to construct families of uniformly com-
putably enumerable sets with (in a precise sense) exaatlgny distinct enumera-
tions and then codes them into structures so as preserve the dimension. We will see
other approaches to these results in Theorem 6.22 and Corollary 7.16. Although
there are interesting codings of these families into familiar types of mathematics
structures such as groups and rings (see 89), we do not know of any “natural”
structures with dimensionfor 1 < n < w. Indeed, for many classes of structures
it is possible to prove that they are computably categorical or have dimension
In most of these cases it is actually possible to characterize the structures that are
computably categorical.

Theorem 6.9 (Goncharov [1973], LaRoche [1977], Remmel [1981], Goncharov
and Dzgoev [1980]) A Boolean algebra is computably categorical if it has finitely
many atoms. If not, it has dimension

Theorem 6.10 (Remmel [1981a], Goncharov and Dzgoev [1980]) A linear order
is computably categorical if it has only finitely many pairs of adjacent elements. If
not, it has dimensiow.

We can deduce a similar result on algebraically closed fields from a general
theorem about computable categoricity among decidable presentations of a struc-
ture.

Theorem 6.11 (Nurtazin [1974]) Supposel is a decidable structure. If there
are finitely many elementsc A such that( A, ¢) is the prime model of the theory
Th(A,¢) and the set of complete formulas of this theory is computable, then any
two decidable presentations dgf are computably isomorphic. On the other hand,

if there are no sucia, then there are infinitely many decidable presentationd of

no two of which are computably isomorphic.

Corollary 6.12 (Nurtazin [1974]; Metakides and Nerode [1979]) An algebraic-
ally closed field of finite transcendence degree over its prime field is computably
categorical. One of infinite transcendence degree has dimension

Proof. Let 7" be the theory of algebraically closed fields of characteristiss T

has quantifier elimination every computable madedf 7" is decidable. (Given a
sentence with quantifiers (in the expanded language with constants for elements of
A) find the quantifier free equivalent. Its truth can be decided by the computability
of A. As T is X;-categorical every model is the prime model of" = T U

I'(¢) UA(d) for a computable principal typee providing the theory with a strongly
minimal formula and the typé\ of a sequence of transcendentals (independent
elements) as described in the proof of Theorem 5.2. (Actually, for this particular
T,T is not needed as it is already strongly minimal.) The sequéisgnite if and

only if the transcendence degreever its prime field is finite. In particular if

the transcendence degree is infinite, there is no finite sequence as required and so
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A would have infinite computable dimension. On the other hand, if the sequence is
actually finite, we can effectively decide if a given formdial, z) is an atom. As

in the proof of Theorem 5.2, we can go effectively to a computable principal type
I of T" containinge(d, z). For this particular theory, however, we can enumerate
the complete formulas. (In characteristicthey just say that (for some ordering

of thex’s), eachz in turn satisfies some irreducible polynomial over the previous
ones.) We can thus find such a generating formulal” and then ask i) — ~.

If so ¢ is complete and not otherwise. (Metakides and Nerode [1979] give a direct
proof of this Corollary.)d

An important program is thus to characterize or at least classify computably
categorical structures and theories whose models are computably categorical. One
major success along these lines is the characterization by Goncharov [1975] of
computably categorical structures whose two quantifier theory is decidable in terms
of Scott families.

Definition 6.13 A Scott family for a structureA is a computable sequence

¢O(aa T1yeeny xno)a ¢1(aa Tiyeeny xn1>7 R
of 3-formulas, i.e. prenex ones with only existential quantifiers, satisfiahkg in
wherea is a finite tuple of elements frord, such that every.-tuple of elements
from A satisfies one these formulas and any two tuples satisfying the same formula
from the above sequence can be interchanged by an automorphi$m of

Definition 6.14 A structure A is n-decidable(for n € N) if the set of prenex
sentences df'h(.A, a).c4 With n — 1 alternations of quantifiers is computable. So,
for example,A is 1-decidableif the set of prenex sentencesBh (A, a),c 4 With
either only existential or only universal quantifiers is decidable.

Proposition 6.15 If a structure A has a Scott family, thed is computably cate-
gorical.

Proof. Let ¢y(a,zi1,...,%n,), #1(a,21,...,2y,),... be a Scott family forA,
wherea = (ag,...,a,-1). Let A; and. A, be computable presentations 4f

We define a mapping : A; — A, by stages. We can assume that for each
j € {0,...,m — 1}, a! is the element iM4; corresponding to the constam.

At even stages we define images of elements ftémat odd stages we define
preimages of elements frop,.

Stage 0. Setfy = {(ag,ad), ..., (al 1,a%, )}

Stage 2k>0. We can suppose that the functigg,_; has been defined.
Assume thatfor, 1 = {(ag,ad),...,(al _,a2 1), (b1,dy),..., (bs,ds)} and that
far—1 can be extended to an isomorphism frotnto A,. Letb be the first num-
ber in A4; not in the domain offs,_;. Consider the tupléb,, ..., b, b). Find an
i such thatp,(a, by, ..., bs,b) holds inA;. Hencedz¢,(a,ds, ..., ds, z) holds in
As. Find the firstd € A, for which ¢,(a, dy, ..., ds, d) holds. Extendfs_1 by

letting for, = for—1 U{(b,d)}.
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Stage 2k+1. We definefy, 1 similarly so as to put the least element4f not
yet in the range ofs;, into that of fo; 1.

Finally, let f = J,.,, fi- Clearly, f is a computable isomorphisiil

Theorem 6.16 (Goncharov [1975]) IfA is 2-decidable then itis computably cat-
egorical if and only if it has a Scott family.

Of course, the if direction of this Theorem follows from the preceding Propo-
sition. For the other direction, one uses a priority argument to bulicaad aA)
isomorphism betweesd andB. Attempts are made to make sure thatgas an
isomorphism betweed andB. If one of the attempts fails, the construction builds
a Scott family forA. (See Ash and Knight [1999] for the details of an ingenious
but relatively simple proof.)

Note that the definition of computable categoricity is on its fadé& arop-
erty. This theorem gives &} equivalent (having a Scott family). Actually, the
property of having a Scott family can easily be seen to be arithmetic as the re-
quirement for an isomorphism can be replaced by the existence of a set of finite
partial isomorphisms with the back and forth property. Thus2fdecidable struc-
tures, Theorem 6.16 gives a characterization that is significantly simpler than the
underlying definition of computable categoricity.

We now turn to the specific issue of persistence of computable categoricity
under expansions by constants that will turn out to be a route into various results
and examples of the sorts listed above. In particular, it will lead us to a proof that
the existence of a Scott family is not necessary for computable categoricity.

Per sistence of Computable Categoricity

Classically, it is an easy consequence of the Ryll-Nardzewski Theorem that
having a countably categorical theorysrsistenti.e. preserved under expansions
by finitely many constants.

Theorem 6.17 If Th(.A), the theory of a structured, is countably categorical
then so is the theory of any expansiondby finitely many constants.

The natural question for computable categoricity has been considered by Mil-
lar, Goncharov and others. It is posed as the Millar-Goncharov problem in Ershov
and Goncharov [1986]:

Question 6.18 (Millar,Goncharov) Is computable categoricity persistent, i.e. if
A is computably categorical is also every expansiotddby finitely many con-
stants?

It is not hard to see that if a structushas a Scott family,(a, z1, ..., z,,)
then every expansion by finitely many constants. . ¢,, also has one. We simply
slightly modify the original Scott family. (Essentially, one replaces each formula
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(@, 1, ..., xy,) DY @, (a,c1,. .., Cm, 21, ... Ty, _m) @nd then lists only the satis-
fied formulas. Then, one can easily check that the sequgpeg, . . . is a Scott
family for the expanded structufed, ¢, ..., ¢, ).) Thus Theorem 6.16 gives us
an answer whet! is 2-decidable.

Corollary 6.19 (Goncharov [1975]) IfA is 2-decidable then the expansion.4f
by finitely many constants is also computably categorical.

Millar has improved this result by one quantifier by a quite different proof. So,
roughly speaking, it suffices to be able to solve systems of equalities and inequal-
ities.

Theorem 6.20 (Millar [1986]) If A is 1-decidable then the expansion dfby
finitely many constants is also computably categorical.

Proof (Hirschfeldt) Suppose we are giveA and53 isomorphic, computably cat-
egorical andl-decidable with(A,a) = (B,b). We will build C via a Henkin
construction, a sequengg of partial isomorphisms fron€ to B and, for each
potential isomorphisn®, : C — A, a partial mag:. : C — B such that

e either there is ar such thath, is total andh.®_! is an isomorphism from
(A, a)to (B,b),

e or g = lim, g, exists and is an isomorphism frothto B but no®, is an iso-
morphism fromC to A.

As the second alternative contradicts the hypothesis4hatcomputably cat-
egorical, we will have the desired computable isomorphism betwgen) and
(B,b). In the construction we actually act, when we can, to guaranteebthiat
not an isomorphism frorg to .4 (and so we do not have to worry about it). Thus
we let R, be the requirement thdt, is not an isomorphism froré@ to A. As the
construction proceeds, we say thatis satisfied (or not) depending on whether
we have a certain type of withess®g's not being an isomorphism frogto A.

For convenience, we assume that the domain of each model considered here
isN. Let {6, }.c. be an effective list of all atomic sentences in the languagé of
expanded by adding a constarior eachi € w. By #° and§), we mean-6,, and
0, respectively.

For any conjunctiol’ of literals containing no constaintor ; > m and partial
computable functio® with computable domain, we lgti(k) = n if &(k) |= n,
f(k) = z if (k) 1, and denote by'[®] the formuladz - - - 3z, I'(0/ f(0), . ..
...,m/f(m)). So, for example, i, is the sentence’(0,1,2,3) and® =
{(1,7),(3,5)}, then} [®] = FzoIz;IzoT2s P(0, 7, 22, 5), While, on the other
hand,@g[@] = EI:L'OEleEIxQEng—'P(xO, 7, Ta, 5)

We note a few immediate consequences of this definition. In what follows,
will always be eitheo or 1.
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Proposition 6.21

1. If M E I'[®] and® is an extension o then M FE I'[¥].

2. 1f M ET'[®@] andS D dom @ then there is an extensidnof & with domainS
such thatM E I'[V].

3. If M ET[®] and M E —((T' A 65)[®]) thenM E (T A 0279)[D].

. Letay,...,a,, andb,...,b,, be two sequences of natural numbersMf
—(C[{{n,a,) | n <m}])andN E T[{(n,b,) | n < m}]) then(M, ay,...,a,)
% <N7b07"'abn>-

5. Suppose thad is total and surjectivelom ¥ = {0,...,r — 1}, M F 0[® | ]
andN E —(0[¥]) for some literab. Then there is a total computabfevhich
is the identity on{0, ..., — 1} such thatM F 6[® o f]. Letd’ = =6[f]. Then
M E =(60'[®]) and N E =((—¢')[¥]). O

D

We now describe our construction.

Construction. At each stags, we define partial computable functiopsandh; s,

i € w.We also construct the atomic diagrafipy of C by adding on one of the
literals#° or 6} at each stage. We use the following notation$, is the conjunc-
tion of all the literals inA at the end of stage z. ; is the least number such that
P, s(z,5) = a, ifone existsz, ; = 0 otherwisey. ; = sup((|J,_, dom h; s )U{z; s |

i <e}uU{e}).

We say that a stageis e-expansionary if0, ; is injective, @, ((z.s) = a,
{0,...,7cs} Cdom®, s, dom P, s D {0,...,sup(dom P, 1)}, andrng ®. ; 2
{0,...,sup(rng @, s_1)}. (Thus, if there are infinitely martexpansionary stages,
®, is total, injective, and surjective.)

We begin ats = 0 with I'y = &, g0 = @ andh., = @ for eache € w. We
assume by induction th#& = I';[g;| and for eacte € w, B F I';[h.s]. At stage
s + 1 we find the least < s, if any, such thatR, is not satisfied and one of the
following conditions holds.

i<e

1. For some, B = (I A 65)[gsl re,s + 1] and A E —((I's A 05)[®. 4]) OF
BE =(Ls A O5)[gsl re,s + 1] @and A E ((I's A 07)[@es]).
2. Not 1 and for some,
@) BE (I's AO)[gs [re,s + 1],
(b) BE (I's A 67)[he,s), and
(c) s + 1is ane-expansionary stage.
3. Not (1 or 2 aand b), and for sorag
(a) B ': (FS /\ 92)[95 r T@,S + 1]1
(b) BE =((Ts A 0,7°)[gs I 7e,s +1]), and
(©) BE =((I's A 05)[he,s))-

If such ane exists, we say thatis active at stage + 1. Letr = r. ; + 1. For
eachi > e, leth; .., = @. For each < e, leth; .., = h; ;. Declare allR;, ¢ > e,
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to be unsatisfied.

If 1 or 3 holds we must abandon the current attempt at the isomorphism
and so leth. .11 = @. If 1 holds, we have a witness to fact th@t is not an
isomorphism fronT to .4 and we declaré?, to be satisfied.

If 2 holds, there are two cases. Hf ; = @, we restart our definition of,
using the assumed isomorphism betweégha) and (B, b): Find the least tuple
(ag, ..., a,—1) of distinct numbers such that_ . = b and if we define, ., to be
the partial function mapping eaeh< r to a,, then

1.BE Fs—l—l[he,s—f—l] and
2.forallt < sands € {0,1}, BE (T4 A 0)[hesi1] = AE Ty A 0[P, |
re,s + 1]1

and defineh. ;.1 in this manner. (Such a tuple exists because, siceés not
satisfied, A F I'y11[®. 5], so thatd F T's 11 [{(zes, @) }], @and(A, a) = (B, b).)

If h.s # @, we extendh, so as to keep, andh.®_! looking like isomor-
phisms. If|dom A, ;| is even, letk be the least number not imgh, ;, let n
be a number larger than any previously appearing in the construction, and de-
fine hest1 = hes U {(n,k)}. If |[dom~h.s| is odd, letp be the least number
not in dom h. 5, let m be such thaBB = I's (ke s U {(p,m)}], and leth, ;.1 =
he,s U {{p.m)}.

If no suche exists, let be such thaB = (I'; A6%)[g;s] and letmax(dom g;) + 1
=r. Foreach € w, leth; ;41 = h; ;.

In any case, we continue to extend the diagramand the isomorphism.
We addé: to Ac and letl's,; = I'; A 65, If [dom(gs [7)] is even, letk be the least
number not inmg(gs [ ), letn be a number larger than any previously appearing
in the construction, and let ., = g [ rU{(n, k)}. If |dom(g, [7)| is odd, letp be
the least number not iom (g, [ ), letm be such thaB F T's,1[gs [ U {(p, m)}],
and sey, 41 = g [ U {(p,m)}.

Notice that, whichever case holdS,F T',,[gs:1] and for eacke € w, B E
Ist1[hes+1), which are the induction hypotheses needed for the next stage of the
construction.

Verifications. Since at each stage+ 1 we added eithef, or its negation tQ\.,
Ac is the atomic diagram of a structufe Becaused andB are1-decidable, the
construction is effective and gbis computable.

Suppose first that there is arsuch thatR, is active infinitely often and let
be the least such number. We wish to show fhdt_ ! is the desired computable
isomorphism from( A, a) to (B, b). Let s, be a stage such that 1) is active for
i < e atany stage > so. It follows from the definition ofr. ; that there exists an
s1 > so such thatr., = r.,, forallt > s;. Letr, = r.,,. It follows from the
definition of g, that there exists; > s; suchthaty, [ r. +1 = g5, [ 7 + 1 for
all t > s5. As R, is active infinitely often it is never satisfied after stage So
condition 1 never holds after this stage. Thdis= I'[®.] for everys > s, and
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henced, is an isomorphism frord to A.

We claim that it is not possible for condition 3 to hold infinitely often. Suppose
otherwise. Letss > s, be such thatlom @, ,, O {0,...,r.}. Inspecting the way
he s+1 1s defined when case 2 holds ahd, = @, we see that there is an> s
such that. .11 = {(n,a,) | n < r.} for atuple(ay,...,ar,), a.,, = b, such that
forallt > s,

1.BETya[{{n,a,) | n <r.}| and
2.BE (T A0 ) {{n,a,) | n<re}] = AE (T AO;)[@e | e + 1].

Such a tuple exists becausd, a) = (B, b) and®,(z. ) = a.

Now suppose that+ 1 is the first stage after+ 1 at which condition 3 holds,
and lete be as in that condition. Thei = —((I'; A 65)[h.:]). On the other hand,
B E T'i[hey). ThusB E (I'y A 9t1*5)[he7t]. Sinceh,., is an extension oh, 41,
B E (Ty A0;7)[he.s11]- Butthen by 2 aboved = (T A 6} °)[®, | r. + 1]. But
by part b of condition 38 £ —((T'y A 6} )[g; | re + 1]). By Proposition 6.21(5),
there exists a and ane such thatd = —(65[®.]) andB E =(0. (g, | re + 1]).
But thend;, must be in",;,, so that4d # T, ,, contrary to our assumption.

So condition 3 holds only finitely often. Say it never holds after stage ss.
Since condition 2 holds infinitely often, there are infinitely mapgxpansionary
stages. Thus, sinck. is never satisfiedp, is a computable isomorphism froth
to A. Furthermoref,. = lim, k. ; is well-defined, and in fadi.(z) = h. s(z) for
the leasts > s, for which k. ;(z) is defined. Sincé8 = I';[h. | for all s > sy4, A,
is a computable isomorphism froghto 5.

Thush, o ®_ ! is a computable isomorphism fros to B. But if we letz =
lim, 2. 5, thenh, o ®;(a) = h.(z) = b. Thus in facth, o . is the desired
computable isomorphism frof#, a) to (3, b).

Finally, suppose for the sake of a contradiction that every active only
finitely often. It is not hard to see that at aenexpansionary stage, one of condi-
tions 1, 2, or 3 must hold. Thus, if there are infinitely margxpansionary stages
thenR, is eventually permanently satisfied.

As we have mentioned, ifis a stage such that, for eack: ¢ and each > s,
R, is not active at stageandr., = 7., thenforallt > s, g, [ res +1 = g5 |
res+1landB E I'[g: | 7. s+ 1]. So the fact that eachis active only finitely often
implies thatg = lim, g, exists and is an isomorphism frafrto B.

ThusC is isomorphic, but not computably isomorphic,4¢ contradicting the
computable categoricity ofl. (I

Thus 1-decidability suffices to guarantee the persistence of computable cate-
goricity. We will see in the next section that, without such an assumption, com-
putable categoricity need not be persistent. Moreover, the equivalence of com-
putable categoricity with having a Scott family established by Goncharov under
the assumption of 2-decidability does not hold for all 1-decidable structures (The-
orem 7.19).
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6.2 Nonpersistence of Computable Categoricity

We now see that the addition of even a single constant for any element of a
computably categorical structure can change its dimension.

Theorem 6.22 (Cholak, Goncharov, Khoussainov and Shore [1999]) For each
k € w there is a computably categorical such that the expansiaod’ of A gotten
by adding on a constant naming any elementidfas dimension exacthy.

Idea of Proof (for k = 2). We first construct a (uniformly) computably enumer-
able family of distinct pairs of setS = {f(i)|i € w} = {(A4;, B;)|i € w} which

is symmetrici.e. for everyi € w there is aj € w such thatf(i) = (4;, B;) =

(Bj, A;). In addition to the computable enumeratiénthere is one other natural
computable enumeration of this familydefined byf (i) = (B;, A;). This family

S'is constructed (by & type priority argument) to have dimensi2in the sense

that there is no computable functignsuch thatf = fg but, for every one-one
computable enumeratioi of the family, there is a computable functignsuch
that f = hg or f = hg. The two enumerations of this family are then coded sym-
metrically into a graph so that the whole structure is computably categorical. If one
adds on a constant, however, it distinguishes between the two coded enumerations
and so one has a structure of dimension]

For ik > 2, one can generalize the notion of symmetric family to one-one
enumerationg’ of families S of k-tuples of sets. The combinatorial details be-
come fairly complicated. A simpler approach to a proof of the general theorem is
provided in the next section as a corollary to some results on degree spectra.

7.  Degree Spectra of Relations

Another important topic in computable model theory that turns out to be closely
connected to computable categoricity is that of the dependence of the computabil-
ity properties of relations not included in the language of a given structure on its
presentation. For example, in “standard” presentation®of) the successor
function is computable but it is not computable in every presentation (Proposi-
tion 6.1). Similarly, standard presentations of the algebraically closedG@ielfl
characteristi® and infinite transcendence degree make the relation of algebraic
dependence computable but not all presentations do. (Indeed, if algebraic depen-
dence is computable in both of two isomorphic computable algebraically closed
fields then they are computably isomorphic. However, Corollary 6.12 says that if
they have infinite transcendence degree their dimension is infinite.) On the other
hand, these particular relations are easily seen to always be co-computably enu-
merable and computably enumerable respectively. Others remain computable or
computably enumerable in every presentation. Such relations were singled out and
studied by Ash and Nerode [1981].
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Definition 7.1 (Ash and Nerode) IR C A™ is ann-ary relation on a structure
A, R isintrinsically computable (computably enumerabife¥[R] is computable
(computably enumerable) for every isomorphigmA — B.

Example 7.2 (N, <): Successor is not intrinsically computable.
Example 7.3 (N, s): Every computable relation is intrinsically computable.

We know that the two structures discussed abéMe<) andQ, are not com-
putably categorical while similar ones (such @§ s) and algebraically closed
extension ofQ of finite transcendence degree) are computably categorical and in
each of them this phenomena (of a relation being computable in one presentation
and not in another) does not arise. One might naturally ask if computable cate-
goricity guarantees that a relation computable in one presentation is computable
in all. The answer is both yes and no. If we restrict our attention to relations that
are definable or evenvariantunder all automorphisms the answer is yes.

Proposition 7.4 If a structureA is computably categorical then every definable
relation R (or one invariant under automorphisms) ghthat is computable in any
presentation of4 is intrinsically computable, i.e. computable in every presenta-
tion of A.

Proof. SupposeA is computably categorical* is computable, and is an iso-
morphism fromA to B. We wish to show thay[R*] is computable. AsA is
computably categorical, there is a computable isomorplfisrtd — B. R4 and

R are computable and so their images unfl@re computably enumerable and
complementary and hence computable. g invariant under automorphisms,
in particular undep ', f[R*] = g[R*] and sog[R*] is also computable]

So for computably categorical structures the effectiveness of definable prop-
erties is independent of the presentation. If we ask instead that every computable
relation on.A (definable or not) be intrinsically computable, the answer to our
question is no. Computable categoricity does not suffice to guarantee that every
computable relation is intrinsically computable. (See Example 7.7 below.) Instead
we are led to a stronger notion.

Definition 7.5 A is computably stablé every isomorphisny : A — B is com-
putable.

Example 7.6 (N, s) is computably stable. Indeed, every isomorphism between
two presentations is uniquely determined by the computable procedure of send-
ing the least element in one presentation to the least one in the other and then
proceeding by recursion as in Example 6.5.

Example 7.7 (Q, <) is computably categorical but not computably stable. In
fact, given any two presentations @@, <), the usual back and forth argument
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shows that there are continuum many isomorphisms between them. Moreover, the
usual back and forth argument can be run in each of countably many intervals

to, for example, construct an automorphism taking a computable subset (such as
7)) to a noncomputable one (any set consisting of one element from each interval

(x,z+ 1) forz € Z).

Proposition 7.8 (Ash and Nerode [1981]M is computably stable if and only if
every computable relation @A is intrinsically computable.

Proof. As every isomorphism between presentationglaé computable, the ar-
gument of Proposition 7.4 shows that the image of any computable refatem
A under any isomorphism is computable. For the other (if) direction, congider
as a structure on the sitand the relatiorR giving, in A, the successor function
onN. If f: A — Bisanisomorphism an&® = f[R*] is computable then the
construction of Example 6.5 computés]

One can, in fact, give a more informative characterization of computable sta-
bility like that provided for computable categoricity in terms of Scott families by
Theorem 6.16. In place of a sequence of formulas each of which determines a
sequence of elements of the given structdrap to automorphisms, one needs a
sequence of formulas that uniquely define the elemeni$. ddn the other hand,
we now only need thé-decidability of A for the characterization.

Theorem 7.9 (Ash and Nerode [1981], Goncharov [1975]) K is 1-decidable
thenA is computably stable if and only if there are constahts A and a com-
putable sequence;(c, x) of existential formulas such that for ea¢hhere is a
uniquea € A satisfyingp, and eachu € A satisfies some,.

Proof sketch. It is easy to see that the existence of a family as described insures
that every isomorphisnfi : A — B is computable as, once the image of the con-
stantsc are fixed, f must send the unigue solution of eagltc, z) in A to the
solution of the same formula i8. The proof of the other direction (only if) of

this theorem involves a finite injury priority argument. One attempts to build a
B isomorphic to the givemd by a A, isomorphism but not by any computable
iIsomorphism. The least failure of this diagonalization requirement occurs only
because the elements on which we might diagonalize are uniquely defined from
those fixed by higher priority requirements. These already fixed elements are the
constantg required. The portions of the diagram®to which we have commit-

ted ourselves at various stages of the construction provide the desired forimulas
when various extra parameters are replaced by existentially quantified variables.
0

More generally, we would like to know when a specified computable (or com-
putably enumerable) relation is intrinsically computable or computably enumer-
able. An examination of the two examples considered ab®es) andQ, gives
us a clue as to when a relation is intrinsically c.e. The relakon y) onN saying
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thaty is not the immediate successornaf definable in the structur@, <) by the
existential formulaz((z < z < y)V(y < z < x)V(z = y)) and so is computably
enumerable in any presentation(®f, <). The binary relatiorD(z, y) saying that

x andy are algebraically dependent is equivalent to the disjunction of an infinite
computable list of existential formulas, each asserting (in the language of fields)

that there is a nonzero polynomial of degrei@ x andy which equal$). Any such

relation is again clearly computably enumerable in any presentation of a field. To
enumerate the dependent pairs, one simply dovetails the searches for witnesses for
each of the existential formulas,. These phenomena suggest a definition.

Definition 7.10 ArelationR(z1,...,x,) on astructured is formally computably
enumerabldf it is equivalent to a disjunctiof/ ¢;(z1, ..., z,) of a computable
sequence of existential formulas with free variablescy, ..., z,. R is formally

computablef both R andR are formally computably enumerable.

Clearly, any formally computable (computably enumerable) relation is intrin-
sically computable (computably enumerable). Ash and Nerode [1981] prove that,
under mild decidability conditions, this condition is also necessary.

Theorem 7.11 (Ash and Nerode [1981]) IR C A™ and (A, R) is 1-decidable,
then R is intrinsically computably enumerable if and only if it is formally com-
putably enumerable.R is intrinsically computable if and only if it is formally
computable.

Actually, the 1-decidability of(.4, R) is a bit stronger than what Ash and
Nerode need. They only need to be able to decide foreatH and each existen-
tial ¢(c, z) if there is ama ¢ R such thatd = ¢(¢,a). However, some conditions
are necessary as Goncharov [1980a] and Manasse [1982] have constructed exam-
ples of intrinsically c.e. relations which are not formally c.e. There has been a lot
of work, primarily by Ash, Ash and Knight and their students generalizing these
results (under stronger decidability conditions) to syntactic characterizations of
relations being intrinsically:, or A, for all levelsa of the hyperarithmetic hier-
archy. They also provide similar generalizations of the notions and results on com-
putable categoricity and stability to higher levels of the hierarchy of computable
infinitary formulas. These papers include Ash [1986], [1986a], [1987]; Ash and
Knight [1990], [1994], [1995], Barker [1988] and Chisholm [1990a]. Related re-
sults when the notions are relativized to the degree of noncomputable models can
be found in Ash, Knight, Manasse and Slaman [1989], Ash, Knight and Slaman
[1993] and Chisholm [1990]. Here the results are proven by forcing arguments
and the extra decidability hypotheses are not needed.

Faced with a computable (or c.e.) relati®non A which is not intrinsically
computable (or c.e.), what can we say about its image under isomorphisms? In
particular, how complicated cafiR] be for a (computable) relatiok on.4 and an
arbitrary isomorphisnf : A — B (with B computable, of course). An approach
to this question is suggested by the following definition.
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Definition 7.12 If R C A™ is ann-ary relation onA, thedegree spectrum ok,
DgSp(R), is{degs(f[R])| f : A — Bis anisomorphisrh

There are a number of results giving conditions under which the degree spec-
trum of a computable relation consists of precisely some particular standard class
of degrees such as all the degrees, the c.e. degrees, etc. We concentrate on the is-
sue of finding instances where the spectrum is finite and the connections between
this issue and the dimension of the given structure. The first results of this sort are
due to Harizanov. Here is one example.

Theorem 7.13 (Harizanov [1993]) There is al and anR on A suchA has ex-
actly two computable presentations abg.Sp(R) = {0, ¢} with c noncomputable
and AY.

The next problem (that remained open for some time) was whetheould
be replaced by c.e. in this result or, more generally, what is possible for intrin-
sically c.e. relations especially for structures of finite dimension. Goncharov has
announced a solution, based on work with Khoussainov, constructing a strdcture
of dimension 2 with a relatio® on .4 with degree spectrum consisting@and a
nonzero c.ec. He constructs families of c.e. sets and codes them into a structure.
Khoussainov and Shore have independently directly constructed directed graphs
of each finite dimension with relations having various degree spectra. Moreover,
these structures can be simply modified to provide examples of ones foneach
which are computably categorical but when expanded by a constant have dimen-
sionn. We first state the main result for dimension 2.

Theorem 7.14 (Khoussainov and Shore [1998]) There is a rigid directed graph
A (i.e. one with no nontrivial automorphisms) of dimensoand a subseR of

A such thatDgSp(R) = {0, c} with c noncomputable and c.e. Moreover, the
relation P = {(z,y)|z € R Ay € R* A there is an isomorphism fromd, to

A; which extends the map— y} is computable.

We sketch the proof of this theorem in 89. For now we give some generaliza-
tions and corollaries.

Theorem 7.15 (Khoussainov and Shore [1998]) For any computable partially
ordered se® there is a rigid directed grapt of dimension the cardinality d
and a subseR? of A such thatDgSp(R) = D. (The ordering onDgSp(R) is
given by Turing reducibility.) Indeed, we can also guarantee #fts c.e. for
every computable presentatidh of A and that, ifD has a least element, then
the least element igSp(R) is 0. Moreover, there is a uniformly computable
sequenced; of representatives of the computable isomorphism type4 sdich
that the relationP = {(z,y)|z € R* Ay € R4 A there is an isomorphism from
A; to A; which extends the map— y} is computable.
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Corollary 7.16 For each natural numbek > 2 there exists a computably cate-
gorical structureB whose expansion by finitely many constants has exaatigny
computable isomorphism types.

Proof. Take the structurel given by Theorem 7.15 for the partial order consisting
of £ many incomparable elements. L4&t, 1 < i < k be the computable represen-
tatives of the computable isomorphism types4fSo, in particular the setB4:

are Turing incomparable. We use the computability’aio paste the4; together

to produce &3 as required. More preciselg consists of the disjoint union of the
A; and the edges df are the ones in eacH;. In addition,5 has an extra binary
predicate defined by the relatidhin the theorem and an equivalence relation
whose equivalence classes are the

Clearly B is a computable structure. Now IBt be any computable presenta-
tion of B. Let A} and.4), be two equivalence classes  These two substruc-
tures of B’ considered as graphs are isomorphic4o Hence 4] is computably
isomorphic to one of4,, ..., A;. Without loss of generality suppose thd} is
computably isomorphic ted; via a computable functiorf; : A; — Aj. If A
were computably isomorphic td; via a computable functiofy, : A; — A’, then
we would be able to decidB* in 4, as follows:z in A; belongs toR*! if and
only if (fi(z), fo(z)) € P. Hence all the structured, .. ., A, are pairwise non-
computably isomorphic and so represent all the computable isomorphism types of
A, i.e. are computably isomorphic td,, ..., A; (in some order). Henc#' is
clearly computably isomorphic 8 and soB is computably categorical.

Now leta be any element from;. Consider the expanded structuigon-
sisting of B with the new constant interpreted as the image ofu in A;. Itis
clear that all theB; are isomorphic but not computably so. Thus the dimension of
B; is at leastt. On the other hand, a4 is rigid there are no choices other than
thea; as the interpretation af in B. Thus, by the computable categoricity 6f
any structure isomorphic to s#8f must be computably isomorphic to one of the
B; and so the dimension of these structures is precisaly required]

Corollary 7.17 (Khoussainov and Shore [1998]) There exists a computably cat-
egorical structure without a Scott family.

Proof. If structure of previous corollary had a Scott family it would remain com-
putably categorical when constants were added.

A similar construction provides an example showing that even if the structure
is persistently computably categorical it need not have a Scott family.

Theorem 7.18 (Khoussainov and Shore [1998]) There exists a structure without
a Scott family such that every expansion of the structure by a finite number of
constants is computably categorical.

Kudinov independently proved more.
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Theorem 7.19 (Kudinov [1996]) There is a computably categoridatiecidable
structure.A with no Scott family.

Proof sketch. Kudinov slightly modifies a family of computable enumerations
constructed by Selivanov [1976] and then codes the family as a unary algebra
in such a way as to produce a computably categorical structure with a decidable
existential theory but no Scott family]

Of course, this Theorem shows that the assumptichagcidability was nec-
essary in Goncharov’s characterization (Theorem 6.16) of computably categorical
structures as ones with Scott families. By Millar’s result on persistence (Theorem
6.20), Kudinov’s structure is persistently computably categorical and so is also a
witness to Theorem 7.18.

A very natural question is whether every c.e. degree can be realizedQwith
as a degree spectrum. Hirschfeldt has recently answered this question by adapting
and extending the methods presented here.

Theorem 7.20 (Hirschfeldt [1999]) For every c.e. degreethere is and and a
relation R on A such thatDgSp(R) = {0, c}. Indeedc can be replaced by any
uniformly c.e. array of c.e. degrees.

Hirschfeldt’s construction precisely controls the degree spectrum of the rela-
tion R but does not control dimension of. Thus the following question is still
open.

Question 7.21 (Goncharov and Khoussainov [1997]) Whigkuples of c.e. de-
grees can be realized as the degree spectrum of a relation on a structure of dimen-
sionn?

If we move beyond the c.e. degrees there are a few results by Harizanov on
possible degree spectra but not much is known. However, we should point out that
several natural strengthenings of these results can ruled out by classical descriptive
set theoretic results.

Remark 1 For a given relationR on a computable structurd, the set{ R®| B

is a computable presentation gf} is 1 in R. Thus, there are countable partial
orderings that cannot be realized in the c.e. degrees as the degree spectrum of any
relation R on any computable structurd. (Just consider one that is too compli-
cated to bexl.) Similarly, such a partial ordering with least element cannot be
realized anywhere in the Turing degrees as the degree spectrum of a computable
relation R on a computable structurgl. Nor can it be true that any finite set

of degrees can be realized as the degree spectrum of any relRtiom a com-
putable structured. Indeed, any degree spectrum containing both a hyperarith-
metic degree and a nonhyperarithmetic degree is uncountable a&jasgt with

a nonhyperarithmetic member is uncountable.
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8.  Algebraic Examples

In 86 we saw several examples of theories whose models all have dimension
1 or w and algebraic conditions characterizing the models in each class. The the-
ories of this sort considered there were linear orderings, Boolean algebras and
algebraically closed fields. We cite two more.

Theorem 8.1 A real closed field of finite transcendence degree d@yes com-
putably stable. One of infinite transcendence degree has dimension

Proof. If a real closed field4 has finite transcendence degree o@eand f :

A — B is an isomorphism, let,, ..., a, be a transcendence basis féroverQ
andb,, ..., b, be theirimage ir3. Calculatef(a) for any element of A by first
finding an equation ove®|a4, . .., a,] satisfied by. Find all its solutions and the
place ofa among these solutions in the ordet4f Now, f(a) must be the solution
of the same equation ov@ib,, . . ., b,] which lies in the same place among all the
solutions inB listed in order. Thug is computable. On the other hand Afis

of infinite transcendence degree then by Theorem 6.11, it has dimens{blote
that as the theory of real closed fields has effective quantifier elimination, every
computable model is decidable. Moreover, the prime modé&l/at4, c) for any
finite list ¢ of elements of4 is of finite transcendence degree and sodiself.)

0

Theorem 8.2 (Goncharov [1981]) IfA4 is an abelian group then it has dimension
lorw.

The proof of this result is particularly interesting because it relies on important
sufficient condition for a structure to have dimensian

Theorem 8.3 (Goncharov [1982]) If there is &\ isomorphism betweed and
B but no computable one thefthas dimensiow.

On the other hand, the results described in 86.2 and 87, as well as many earlier
papers, supply examples of structures of dimensitor eachn € w. Indeed, our
results supply examples of structures of dimensiovhose presentations are char-
acterized by the Turing degree of a specific relation on the structure. Moreover,
representatives of the many computable isomorphism types of these structures
can be pasted together to produce a single computably categorical structure such
that an expansion by constants yields a structure of dimensi@f course, when
there are characterization theorems that show that the dimension mustrbe
such constructions are not possible. On the other hand, for many familiar algebraic
theories for which we cannot provide such a dichotomy and characterization, it is
possible to construct examples of models not only of each finite dimension but
also ones exhibiting the additional properties enjoyed by the examples in §7.
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Theorem 8.4 (Goncharov [1980a], [1981]; Goncharov and Dobrotun [1989],
Goncharov, Molokov and Romanovski [1989]; Kudinov (personal communica-
tion); Hirschfeldt, Khoussainov, Slinko and Shore [1999]) For each of the fol-
lowing theories and each € w, there is a modeld with a subsetRk such that

the dimension ofd is n and the degree spectrum &fconsists of: different c.e.
degrees. Moreover, for eachthere is a modeM which is computably categorical

but some expansion by constants has dimensigmnaphs, lattices, partial orders,
nilpotent groups, rings (with zero divisors) and integral domains. In each case the
subsetk can be taken to be a substructure of the appropriate type.

The results on the existence of models of each of these theories of each finite
dimension are due to various people (most to Goncharov and his coauthors, the
one for integral domains is due to Kudinov). They were typically first proved by
codings of families of c.e. sets. For graphs, the results involving degree spectra
and extensions by constants are due to Khoussainov and Shore and are described
in 87. (Actually, the original paper used directed graphs but an examination of the
construction shows that it is possible to use undirected graphs instead.) All the
other ones involving degree spectra and extensions by constants have been proven
by Hirschfeldt, Khoussainov, Slinko and Shore [1999].

Although direct constructions are sometimes possible, these results can all be
derived from the results on graphs by finding a sufficiently effective coding of
graphs into models of each theory. The idea is that, if the coding is sufficiently ef-
fective, all the computability properties involved carry over. Thus all these theories
are not only undecidable but the codings (of say graphs) needed to prove that they
are universal (i.e. code all of predicate logic) are highly effective. (In addition to
simple codings of the domain and edge relation on the initial graph, an important
issue is the effective reversibility of the coding. That is, one wants the model cod-
ing a given graph to effectively determine the original graph.) On the other hand,
the theories discussed in 86 whose models are all either computably categorical or
of dimensionw are decidable and have strong structure theorems that are used in
the proofs. We expect that there are natural theories that are neither “so decidable”
as those of 86 nor “so undecidable” as the ones in Theorem 8.4. In particular, we
suggest the theory of fields as a good test case as it is undecidable but the proofs
of undecidability (that we know) interpréf in a rather specific way rather than
arbitrary structures.

9. TheBasic Theorem on Degree Spectra

In this section we sketch the proof of the Theorem 7.14, thecase of our
main theorem on degree spectra.

Theorem 7.14 (Khoussainov and Shore [1998]) There is a rigid directed graph
of dimensior2 with computable (but not computably isomorphic) presentatiéins
and.4,and a subser of A such thatDgSp(R) = {0, c} with c noncomputable
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and c.e. Moreover, the relatioR = {(z,y)|z € R Ay € R A there is an
isomorphism fron4, to .4; which extends the map— y} is computable.

Proof sketch. Our directed graptd will consist of disjoint componentss;] all
of one special type. The graph we denote[BY is uniquely determined by the
setB C {n|n > 5}. It consists of on&-cycle and one:-cycle for eachn € B.
In addition, there is one element of tRecycle, called theop of the graph, from
which there is an edge to one element of eadlycle forn € B. This element of
then-cycle is called thecoding location forn. For convenience, we also denote
[{n}] by [n]. We build up our graph using two operations,and-. The sum
[A] + [B] of two graphs is simply their disjoint union. The produfd] - [B],
of two graphs of our special form is gotten by taking disjoint copiegAdfand
[B — A] and identifying the top elements (and the associateycles) in each of
the two graphs. For examp|g] - [6] = [{5,6}] and[{5,6,7}] - [{6,7,8,9}] =
[{5,6,7,8,9}]. Note thaf A] - [B] = [B] - [A].

Our plan is to construct our graph = [By| + [By] + - - - + [B,] + - - - together
with enumerations of the sef3; so thatB; — B; # (0 for i # j (and indeed we
guarantee thabB; ; — B; ; # () for everys andi # j). So clearly

e Aisrigid.

The requiredR will be a subset of the coding points i#. We enumerate two
presentations!, and.A; of A asA, ; and.A; ; each isomorphic t@B, ;| + [B1,s] +
--- and the interpretationB; (asR; ;) of R in A; so that

e R, is computably enumerable but not computable: As the construction pro-
ceeds we enumerate the elementsf R, so as to make the set enumerated
noncomputable by a standard diagonalization procedure.

e R;iscomputable: As we enumerate a numbéanto R, we make sure that the
corresponding elemenptof .4, is a new large number. Thug, is enumerated
in increasing order.

o P={(z,y)lr€e RyAy e Ry AN(3f : Ay = A)(f(z) = y)} is computable:
By the procedure alluded to above for choosingihe R; corresponding to a
givenz € Ry, the pairs(z, y) € P are enumerated in increasing order.

o A, #. A;: This is guaranteed by the previous requirements iyas com-
putable butR; is not. By the rigidity ofA4, there is only one isomorphism from
Ap to A; and it must takeR, to R;. If it were computable it would preserve the
computability of the interpretation ag.

e Every computable presentatigin of A is computably isomorphic tal, or A;:
Our plan here is to define maps, so that at every stageof the construction at
which it still looks as ifG; might be isomorphic to4, r; ; is @ monomorphism
from g, into A, ; (for « = 0 or 1) and that, at the end of stageif we cannot
extend the current map ; then we switch so that; , ., is @ monomorphism
from G, .41 Into A;_; ,41. If, after some stagg we never switch our potential
isomorphismthen{r; ;|t < s} is, in fact, the desired computable isomorphism
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from G; to A,. On the other hand, if we switch infinitely often we guarantee
that there is apecial componert; of G; which is not a component ofl and
sog; is not isomorphic toA.

The crucial idea needed for the construction is how to diagonalize to make
R, noncomputable while its isomorphic imagg remains computable and also
maintain control over the potential isomorphisms betw@eand.4,. The diago-
nalization procedure is based on two symmetric operafio(isft) andR (right)
on sequences of graphB;|.

Definition 9.1 L([Bi],...,[B,)) is the graph
[B] - [Bo] 4+ + [Buoa] - [Bn] + [By] - [Bi]-
R([Bi],...,[Bx]) is the graph

[By] - [Bn] + [B1] - [B2] + ... + +[Bn-1] - [Bu)-

We apply theL: operation, for example, to a graghwhose components in-
clude the[B;] by removing all thgB;] and insertingL([B,], . .., [B,]). We also
adopt the convention that the elements of the compofightare the same ones
in the corresponding subgraph in the compon&t: [B;;:] of L([B4], ..., [Bn))
while those elements in the new graph corresponding to orés.in of the orig-
inal graph are new elements|i8;] - [B;.1] (with 1 for n + 1 wheni = n). This
convention is important for establishing computability properties of the graphs be-
ing constructed.

We will apply anR operation in the construction (td;) only when we also
apply anL one (to.4,). We also have the corresponding convention that the ele-
ments of the componenB;_,] are the same ones in the corresponding graph in the
componentB;_+]-[B;] of R([By], ..., [B,]) while those elements in the new graph
corresponding to ones [®;] of the original graph are new elementg®)_,]- [B;]

(with 0 for n wheni = 1).

The following lemma is immediate from the definitions.

Lemma9.2 For any sequenceB|, ..., [B,] of graphs,L([Bi],...,[B,]) and
R([Bi],...,[B.]) are isomorphic and extend3,| + - -- + [B,]. Moreover, ifG
has the[B;] as components then replacing their sum Wit(iB}, ..., [B,]) or
R([Bi],...,[Bx]) produces two isomorphic graphs each extending’

The plan for diagonalization is now easily described. To make surdhgt
¢., We choose numbers, b, andc, and insert copies dk.|, [b.] and[c.] into A,
and.A;. For definiteness, say that is the (number which is) the coding location
for a. in these graphs. We now wait fgr (z.) to converge td. If it never does
we do nothing and so win as is not in Ry. If ¢.(z.) converges td at stages,
we replace the components], [b.] and|c.] in A and.A; by L([b.], [a.], [c.]) and
R([be], [ael, [ce]), respectively; put:. into Ry and its image inA4, into R;. The
crucial point here is that, by our conventions, the image.ofas an element of
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L([be], [ae], [ce]) N Ap) in R([be], [ae], [ce]) and so inA; is a new large number.
Thus we diagonalize faR, but keepR; computable.

The remaining issue is how to simultaneously satisfy the requirements that,
if isomorphic to.A, G; is computably isomorphic tal, or A,. Consider the re-
quirement for a singl€. Following the idea described above, we choospexcial
componentS] of G and make its image in thd; participate in infinitely many of
the left and right operations done for diagonalizations. We have some definition
of expansionary stage that measures the extent of a possible isomorphism between
G and A. If there are only finitely many such expansionary stages ¢hennot
isomorphic ta4 and no other actions are necessary. So suppose there are infinitely
many expansionary stages.

At each expansionary stageve have a monomorphismfrom G into A; and
componentssS; ;] of A; (for ¢ = 0 or 1) corresponding to the special component
[S] of G. If we wish to diagonalize at a coding locatiep in the range of-, we
wait for the next expansionary stageand performL and R operations inA,
and.A,, respectively, on the sequenég), [a.], [c.], [P.], [Sis], [Qc].- HereP, and
Q. are either numbers chosen in advance for the requiremerdt torsets that
have participated in one of these two locations in a previous operatiah. fam
any case, all of these components are in the range wfhen we perform the
operations. Suppose mapped into A;. The crucial point is that when we next
get an expansionary stagetaand it is possible to extend so as to keeps]
mapped intdsS; ;] then it is possible to extened, to be a map ofj into A; at¢.

The key idea here is that each component in the original sequence can “grow into”
only one of two components in the final one, itself or the one immediately to its
left (or right depending on whethér= 0 or 1). Thus if the image of one of the
components remains fixed then we can see (in the reverse order of the operation
performed) that each component in turn remains fixed as it has no other place to
go. In this case, we extend to r; still mappingg into A;. If it is not possible

to keep[S] mapped intdS; ;| then we change so as to define, as a map from

G into A;_;. This also means th&s; ;] is not the same component i, as was

[S;.s] (or we could have kept it fixed). (Actually it is the component that had been
[P.] or [Q.] depending on the specifics of the situation.) We now guarantee never
to use the oldsS; ;] component in any future operation.

The ultimate consequence of such a procedure is that, if we change the range
of r; infinitely often, [S] becomes infinite iG but each componens; ;| that is a
potential image ofS] in A; is involved in only finitely many operations and so is
itself finite. Thus, in this casé; is not isomorphic te4. On the other hand, i
actually is isomorphic to4, we keep extending, from some stage on while never
changing the4; to which it mapsj. In this case, we arrange the definitionof
so that if it eventually maps ontd; and so determines the required computable
isomorphism frong to A;.

We have, of course, omitted some of the combinatorics (particularly the way
in which we extend the domain @} even in this case of on@ requirement. The
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full construction consists of using a module of this sort for each requirement on a
typical0” priority tree. Of course, the precise actions for a diagonalization require-
ment at a nodex (e.g. which special components have to go into the sequence on
which the operations are performed and in what order they go on this list) depend
on the outcome of nodegsof higher priority contained ilax which are devoted to
variousg,. (The choices here are whether there are infinitely many expansionary
stages or not and if so whether the range.ast fixed asi from some point on or
we change it infinitely often.) The details can be found in Khoussainov and Shore
[1993].

We take this opportunity to point out two corrections that should be made
to the details of the general construction found in Khoussainov and Shore [1998].
The first is that whenever one applies (or considers the application of) an operation
for a nodes to a sequence of the form

BrIiJrl?Xk Cr]erl? k [S]ﬁ t+170k : leaBk [S]ﬁl t+1aCk

one should instead use itstransformwhich is defined to be the sequent
[S]Z t+1?0k Bk [S]ﬁz ,t+1?0k Bk [S]ﬁz t+1aC B7]§+1?X Cn—i—l? Jla

117 127 27
[S]Zjl,t—i-la Cﬁ) B;CQ; [S]ﬂ 1 C;;, ey B;-gr, [S]ﬁjrvt"’l’ Cfr Wherell, 19,... ,Zm I|St,
in order, thei such that the designated isomorphism for/he- 5 | (3i+ 1) such
that3(3i +1) # w att +1isrg ,, andji, ja, - . ., j, list, in order, thej such that

the designated isomorphism for the= 3 I (35 + 1) such thai3(3j + 1) # wis
1

r .
Bit+1

The second concerns the marking of numbers with the synifiihiNo num-
bers should be marked in Case 1 of the construction. As a result, condition 1 in
Subcase 2.1 should be weakened by not requiring that the imaggtgf has
nonempty intersection witlf? if the designated isomorphism fg is rg 441 OF
with C¥ if the designated isomorphism fg is r Bt Instead, the marking take
place at the end of each stage of the construction as follows:

At the end of stage + 1 we do some additional cancelation and marking.
Suppose + 1 is a~y recovery stage. If there are any uncancelled components
isomorphic tobg -,.,] Of [cs4..] fOr u < t (ands 2 +) which, necessarily, have not
participated in any operation, we cancel them and appoint new [ofes, | or
[cs~.t41], respectively. We now mark all of the following witfi), if they are not
already so marked:

1. Any cancelled component.

2. Any component associated with a nggito the left of~.

3. Any component of the forryg ;1] with 8 D ~.

4. Any components of the forfg 1], [cs,+1] OF [pg41] fOr 5 2 7.

5. Any components of the forbg 5. +11] OF [ca 5, +41) fOr 82 5; D 7.

6. Any components of the forfhs , .11] if 3 O v and the designated isomorphism
for v is r;mor of the form[cg+41] if 5 O v and the designated isomorphism



44 Bakhadyr Khoussainov and Richard A. Shore

foryisr),.,.

7.1f, att + 1, we performed an operation on tltetransform of a sequence
Bp1, X%, Co oy, By, [S15 G- DY, BY, [S]5, 440, CF (@nd soy C ), then,
for k = 0,1, we markBF or C* if 3, C v and it has previously participated in
an operation; we mark? if 5, C ~ and the designated isomorphism f)ris
rh 141 We markCF if §; C ~ and the designated isomorphism fyris 5 . ;;

and we mark bottBF andC¥ for 3, = ~.

The changes needed in the verifications to take advantage of these corrections
are straightforward. A complete corrected version of the paper can be found at
http://math.cornell.edu/~shoréy.
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