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The theory of computable models is an intensively developing area of mathematics
that studies the interactions between the theory of models and computability theory. An-
alyzing the relationships between computable presentations of models, model-theoretic
definability and the computable complexity of relations is one of the central problems
in this area. A fundamental notion in the study of these problems is that of being com-
putable isomorphic or autoequivalent as first introduced by A.I. Malcev [5]. We call a
model B computable if its domain, basic predicates and operations are uniformly com-
putable. If a model B is computable and is isomorphic to a model A, then B is called
a computable presentation of A. Computable presentations B1 and B2 are computably
isomorphic (autoequivalent) if there exists a computable isomorphism between B1 and
B2. The maximal number of computable but not computably isomorphic presentations
of a model B is called the computable (algorithmic) dimension of B and is denoted by
dim(B). A model B is computably categorical (autostable) if dim(B) = 1. Atomless
Boolean algebras and dense linearly ordered sets are typical examples of computably
categorical models. The notion of computable dimension was introduced by Goncharov.
He proved that for any natural number n ≥ 1 there exists a model whose computable
dimension is n [2]. By an appropriate coding of these models of Goncharov, examples
of groups, partially ordered sets, unary and other algebras of computable dimension n
have been constructed in [2] [3] [6].

One of the important problems in this area is that of Goncharov-Millar about the re-
lationship between the computable dimension of any given model B that of its expansion
(B, c1, . . . , cm) by finitely many constants. We note that the following inequality always
holds: dim(B) ≤ dim(B, c1, . . . , cm). The following theorem gives a full solution to the
Goncharov-Millar problem.

Theorem 1 For any nonzero cardinal n ≤ ω there exists a computably categorical model
B such that the computable dimension of the model (B, c) is n for any given constant
c ∈ B.
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For finite n, this theorem is proved in [7]. The case n = ω requires some new ideas
and a new mechanism for constructing the desired model. It has been proved by the
authors in collaboration with D. Hirschfeldt. The following is a corollary to the proof of
the theorem.

Corollary 1 1. For all n,m ∈ ω there exists a model B such that dim(B) = n + 1
and dim(B, c) = n+m+ 1 for any constant c ∈ B.

2. For all n ∈ ω there exists a model B such that dim(B) = n+ 1 and dim(B, c) = ω

for any constant c ∈ B.

One of the central problems directly related to the study of computable dimension
is the problem of characterizing the computable complexity of a relation (which is not
included in the language) in computable presentations of a model. This problem was
informally stated by Nerode at the beginning of the 70s. In order to study this problem,
Harizanov and Millar [9] introduced the notion of the degree spectrum of a given relation.
The spectrum of a relation R on a model B, denoted by S(R), is the set of all Turing
degrees of images of R in computable presentations of the model B. The study of this
set is closely related to questions about the definability of R in the language Lω1,ω. It
has been extensively studied by Ash, Knight, Nerode and others. It is obvious that if
dim(B) < ω and R is fixed by each automorphism of the model, then the set S(R)
is finite. Harizanov noted in [9] that Goncharov’s model of computable dimension 2
provides an example of a relation R such that S(R) = {0, a}, where 0 is the Turing
degree of the recursive sets and a is the Turing degree of a set which is ∆0

3 in the Kleene-
Mostowski hierarchy. Using the construction from [1], she constructed in [9] a model B
with a relation R such that dim(B) = 2 and S(R) = {0, a}, where a is the degree of a
∆0

2-set. Goncharov and Khoussainov [4] improved this result by constructing a model B
with a relation R such that dim(B) = 2 and S(R) = {0, a}, where a is the degree of a
recursively enumerable set. However, the following two questions, formulated in [4], that
constitute the degree spectra problem had remained opened.

Question 1 Which finite partially ordered sets are isomorphic to partially ordered sets
of the type (S(R),≤), where ≤ is Turing reducibility?

Question 2 Which finite sets {a1, . . . , an} of recursively enumerable degrees coincide
with S(R), where R is a relation on a model whose computable dimension is n?

In [8] the authors give a full solution to Question 1. Very recently the authors have
also been able to answer the second question.

Theorem 2 For any finite set {a1, . . . , an} of recursively enumerable degrees there exists
a model B and a relation R on it such that dim(B) = n and S(R) = {a1, . . . , an}.

This theorem also answers the first question because any countable partially ordered
set can be embedded into the set of recursively enumerable Turing degrees. We note
that D. Hirschfeldt has also recently proved this theorem independently using somewhat
different ideas [10].

The main step in our proof of Theorem 2 consists of a construction that builds a
model B and a relation R on it with the following properties:
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1. dim(B) = 2,

2. S(R) = {0, a},

where a is the Turing degree of a given recursively enumerable set. In order to satisfy
these properties the construction must build two computable presentations B1 and B2 of
B, isomorphic relations R1 and R2 on B1 and B2, respectively, satisfying the following
requirements:

De) φe is not an isomorphism between B1 and B2,

Rj) If Cj is isomorphic to B, then Cj is computably isomorphic to either B1 or B2,

P1) The set R1 is recursive,

P2) The set R2 is recursively enumerable and of degree a,

where a is a given recursively enumerable degree; φe, e ∈ ω, is an enumeration of all
partial recursive functions; and Cj , j ∈ ω, is an enumeration of all recursively enumerable
models. In order to satisfy all these requirements, two problems must be solved. The
first problem arises from the conflicts between the requirements De and Rj , e, j ∈ ω.
The resolution of these conflicts allows us to control the computable dimension of B.
The ideas for controlling the computable dimension of B come from [8] and [1]. The
second problem arises in resolving the conflict between controlling the computable di-
mension of B and coding the degree a into R2. Two ideas are used in the solution of
this problem. First, the model B is taken from a special class of graphs so that algebraic
properties, in particular, various connectedness properties of B influence the construc-
tion’s outcomes at certain stages. Second, the requirements De, e ∈ ω, together with the
coding requirement P2, are satisfied by using a new procedure for modifying the graph
being constructed as numbers are enumerated into a fixed set A of degree a so as to code
A into the graph.

Now, all known computable models B of finite computable dimensions, if not com-
putably categorical, are at least ∆0

3–categorical, i.e. if A is computable and isomorphic
to B then there is an isomorphism from A to B which is ∆0

3. We conclude this paper
with the following question.

Question 3 Is there, for each n ≥ 3, a computable model of computable dimension 2
which is ∆0

n-categorical but not ∆0
n+1-categorical?

References

[1] S.S. Goncharov, Computable Univalent Numerations, Algebra and Logic 19 (1980),
N 5, 507-551.

3



[2] S.S. Goncharov, The Problem of Nonautoequivalent Constructivizations, Algebra
and Logic 19 (1980), N 6, 621-639.

[3] S.S. Goncharov, A.V. Molokov and N.C. Romanovsky, Nilpotent Groups of Finite
Algorithmic Dimensions, Siberian Math. Journal 30 (1989), N 1, 82-88.

[4] S.S. Goncharov and B. Khoussainov, Degree Spectra of Decidable Relations, Dokl.
Akadem. Nauk SSSR 352 (1997), N 3, 301-303.

[5] A.I. Malcev, Recursive Abelian Groups, Dokl. Akademii Nauk SSSR 146 (1961), N
5, 1009-1012.

[6] B. Khoussainov, Algorithmic Degrees of Unars, Algebra and Logic 27 (1988), N 4,
479-494.

[7] P. Cholak, S.S. Goncharov, B. Khoussainov and R.A. Shore. Computably Categor-
ical Structures and Expansions by Constants, J. Symbolic Logic. to appear.

[8] B. Khoussainov and R. Shore, Computable Isomorphisms, Degree Spectra of Re-
lations and Scott Families, Annals of Pure and Applied Logic 93 (1998), N 1-3,
153-193.

[9] V. Harizanov, The Possible Turing Degree of the Nonzero Member in a two Element
Degree Spectra, Annals of Pure and Applied Logic 55 (1991), N 1, 51-65.

[10] D. Hirschfeldt, Ph.D. Dissertation, Cornell University, 1999.

4


