88868888

CDMTCS
Research
Report
Series

On Computable Theoretic
Properties of Structures and
Their Cartesian Products

Bakhadyr Khoussainov
Department of Computer Science
University of Auckland

CDMTCS-125
March 2000

Centre for Discrete Mathematics and
Theoretical Computer Science

On Computable Theoretic Properties of
Structures and Their Cartesian Products

Bakhadyr Khoussainov*

Abstract: In this paper we show that for any set X C w there exists a struc-
ture A that has no presentation computable in X such that 4% has a computable
presentation. We also show that there exists a structure A with infinitely many
computable isomorphism types such that A% has exactly one computable isomor-
phism type.

Keywords: Computable structure, Computable isomorphism.

1 Introduction, Basic Notions and Results

The Cartesian product operation occurs in many areas of mathematics, in
algebra, model theory, topology, etc. The operation usually preserves many
properties of the underlying structures from a certain class and is a source of
constructions of new structures from given ones. For example, the Cartesian
product of any two structures from a given variety (e.g. from the variety of
groups, rings, etc.) is a structure from the same variety. In general, it is
of a particular interest to find the relationship between structures and their
Cartesian products. This is usually done by studying whether a certain
property is shared by both a given class of structures and their Cartesian
products. In this paper we study the relationship between computability—
theoretic properties of structures and their cartesian products. The goal of
this paper is to answer the following two questions:

Question 1 How complicated, from the computability theory point of view,
can a structure A be if A% has a computable presentation? In particular,
can A have a computable presentation if A% has one?

*Computer Science Department, The School of Mathematical and Information Sciences,
The University of Auckland, Auckland, New Zealand. E-mail: bmk@cs.auckland.ac.nz

Question 2 What is the relationship between the computable isomorphism
types of A and A%? In particular, if A® is computably categorical is then A
computably categorical?

Theorem 1 and Theorem 2, formulated at the end of the introduction, give
answers to both questions, respectively. Their proofs are given in Section 2
and Section 3.

We now present some basic notions from the theory of computable struc-
tures. Fix a computable language with the sign for equality.

Definition 1 A structure of the language is computable if its domain and
the atomic diagram are computable sets.

For example, any structure of a finite language, whose domain is w and
whose predicates and operations are computable, is a computable structure.
If a structure B is isomorphic to a computable structure A then B is called
computably presentable. Then any isomorphism from B into a com-
putable structure is called a computable presentation of B. Of course,
structures with uncountable domains are not computably presentable, as
well as there are countable structures without computable presentations.

A natural way to identify two computable structures is to say that they
are computably isomorphic. Here is a formal definition.

Definition 2 Computable structures A and B are computably isomor-
phic if there exists a computable isomorphism from A onto B.

This definition allows one to introduce the notion of computable iso-
morphism types of structures similar to how classical algebra or model the-
ory introduces the isomorphism types of structures. Thus, if A and B are
computably isomorphic then we say that they have the same computable
isomorphism type.

Definition 3 The dimension of a computable structure A is the number
of its computable isomorphism types. A is computably categorical if
its dimenion is 1, i.e. every computable structure B isomorphic to A is
computably isomorphic to A.

Rational numbers with the natural order, atomless Boolean algebras,
finitely generated computable algebras are all examples of computably cat-
egorical structures.

Now we recall that A2 is the structure whose domain is the set of all
pairs (a,b) from the domain of A such that for any n-ary predicate P
of the language, P holds true on any given n—tuple of pairs of elements
((a1,b1),...,(an,by)) if and only if P holds on the n-tuples (ai,...,a,) and
(b1,...,b,) in structure A. The language operations are defined in a similar
manner. If now A is a computable structure then clearly A% is also com-
putable. The corollary of Theorem 1 gives an example where the converse
does not hold. On the other hand, if A is computably categorical then .42
may or may not be computably categorical. For example, if A is a structure
of pure equality symbol then clearly A is computably categorical and so is
A?. However, the structure (w, S), where S is the successor function on w,
is clearly computably categorical, and it can be proved that the Cartesian
product of the structure (w, S) to itself is not computably categorical. Our
Theorem 2 gives an example of a noncomputably categorical structure A
such that A% is computably categorical thus answering the second question
asked above.

In some cases it can be proved that computatbility of A% implies com-
putable presentablity of A. We say that B is existentially definable in
A if there are existential formulas D(Z,a), F(Z,y,a), and quantifier free
formulas ®;(z1,...,Zn,;,a), where a is tuple in A, and g, z, and all Z; have
the length as Z, such that the following properties hold:

1. The formula D(Z,a) defines the domain D of all tuples in A that make
the formula D(Z,a) true,

2. E(y,Zz,a) defines an equavalence relation on D,

3. Uniformly on ¢, each ®,(Z1,...,Zy,,a) defines the predicate (or the
graph of the operation) P; of the language of A so that P; is well-
defined on the E—equivalence classes (for a binary relation P; for ex-
ample this means that if E(y1,21,a) and E(y2, Z2,a) are true then
P(y1,y2) is true if and only if P;(z1, Z2) is true),

4. The structure, whose domain is the E—equivalence classes and whose
predicates and operations are P;’s defined in the previous item, is
isomorphic to B.

It is not hard to see that the following proposition is true:

Proposition 1 Assume that B is existentially definable in A by formu-
las D(z,a), E(z,y,a), ®i(Z1,...,Zn,,a) such that E(Z,y) defines a com-
putable relation in A. Then B is a computably presentable structure. O

Now we give several examples to which the proposition above can be
applied. The first example is due to Denis Hirschfeldt [6].

Corollary 1.1 Let R be a commutative ring with a unity element 1. Then
R? has a computable presentation if and only if R has a computable presen-
tation.

Proof. Consider the formula * = az, where a = (1,0) and 1 is the
unity element of the ring. FE(z,y) is the formula ax = ay. Note that if
E(z,y) holds in R? then the left coordinates of 2 and y coincide. Clearly
E(z,7) defines an equivalence relation in the domain of the ring R2. If R?
is computable then so is the equivalence relation. It is not hard to see that
the operations 4+ and x of the ring R? define well-behaved operations on
the E—equivalence classes. By the proposition above, R has a computable
presentation.O

Similar to the proof of the above result one can show the following

Corollary 1.2 A Boolean algebra A has a computable presentation if and
only if A? has a computable presentation. O

The next corollary shows that each structure can be expanded in a nat-
ural way so that the computability of A and the Cartesian product of the
expanded structure are equivalent.

Corollary 1.3 Let A be a structure of a pure functional language with
equality. Expand the structure A to the structure A’ by adding the binary
function Eq so that Eq(a,b) = ag if a # b and Eq(a,b) = a1 if a = b,
where ag and a1 are two distinct elements in A. If (A')? has a computable
presentation then so does A.

Proof. Let (A')? be computable. Define in this structure the following
relation E(x,y):

Eq(z,y) = (a1,a0) \/ E(z,y) = (a1, a1).

Note that if E(z,y) holds in (A’)? then the left coordinates of x and y
coincide. It is not hard to see that E(x,y) defines an equivalence relation

4

in the domain of the structure (A')2. If (A’)? is computable then so is the
equivalence relation.

One can check that the operations in (A")? are well-behaved on the equiv-
alence classes. Hence by the proposition, the structure A’ has a computable
presentation. O

Here are now the formulations of our next results whose proofs will be
given in the next two sections. The theorem below and the corollary answer
the first question.

Theorem 1 Let X be a subset of w. Then there exists a structure A such
that the following properties hold:

1. X is Turing equivalent to the set of all existential sentences true in A.
2. A? has a computable presentation.

Corollary 1.4 For every X C w there exists a structure A which does
not have a presentation computable in X such that A*? has a computable
presentation.

Proof. Take the double jump X” of X. By the theorem above there
exists a structure A for which the set of all existential sentences true in
A is Turing equivalent to X” and .42 has a computable presentation. The
structure A can not have a presentation computable in X. Otherwise, the
set of all existential sentences true in A would be computable in X’. This
would be a contradiction. O

Corollary 1.5 There exists a structure A without computable presentations
such that A% has a computable presentation.O

Proof. In the proof of the previous corollary take X so that the Turing
degree of X is not a c.e. degree. O

The theorem below answers the second question.

Theorem 2 There exists a computable structure A with w computable iso-
morphism types such that the structure A? is computably categorical, that
is, A% has exactly one computable isomorphism type.

Finally, we refer the reader interested in the subject of the theory of
computable structures to the Handbook of Recursive Mathematics [5] and
the Handbook of Computability Theory [2]

2 Proof of Theorem 1

The structure A will be a graph consisting of the union of finite graphs called
cycles. We always assume that N is the set of natural numbers without 0.
An n——cycle, n € N, is a directed graph isomorphic to the following graph:

({0,1,2,...,n — 1}, E),

where the edge relation E holds the following pairs only: (0,1), (1,2), (2,3),
.., (n—=1,0), (i,a). n is the length of the cycle. For every subset B C N,
we define the graph G(B) that has the following properties:

1. For each n € B there are countably many n—cycles in G(B).
2. G(B) is a disjoint union of all cycles that belong to G(B).

3. If x and y are in G(B) that belong to distinct cycles then there is no
edge between x and y.

4. If G(B) contains an n—cycle then n € B.

It is not hard to see that all the four properties above define the graph G(B)
up to isomorphism.
Consider the following set C:

C = {pq| p, q are distinct prime numbers greater than 2}.

Clearly C' is a computable set. Let ¢, c1,ca,... be a computable list of all
elements from C without repetition. Take a set X C N. For the set X we
want to construct a structure A whose existence is stated in the theorem.

Let X; be the set {¢;|i € X}. Clearly X and X; have the same Turing
degree. Let A be the structure isomorphic to the graph G(N \ X1). Now the
theorem follows from the following three claims that prove that the graph
A is a desired structure.

Claim 2.1 The graph A has a presentation computable in X.
Proof. Indeed, let us list all elements not in X; without repetition:
no, N1, N2, ...

Uniformly on ¢ construct the graph G({n;}) such that the domains of G({n;})
and G({n;}), for all i # j, have no elements in common. Hence the union
of all G({n;}) is a presentation of .A. By the construction, the presentation
is clearly computable in X. This proves the claim.O

Claim 2.2 The set X is Turing equivalent to the set T5(A) of all existential
sentences true in A.

Proof. Indeed take a sentence ¢,, n € N, that states that there are n
distinct elements that form an n-cycle. Then n € X if and only if ¢., does
not belong to 75(.A). This proves the claim.O

Claim 2.3 The Cartesian product of A to itself, that is A%, is isomorphic
to G(N), and hence is computably presentable.

Proof. Consider the structure A%. It is not hard to see that A% has the
following properties:

1. Every element in A% belongs to a cycle.

2. No two elements of A2 that belong to distinct cycles are connected via
an edge.

Hence A? is a disjoint union of cycles. If n ¢ X, then G has infinitely many
cycles of length n because the Cartesian product of a 1-cycle and an n—cycle
is again an n—cycle, and we know that A has infinitely many n—cycles and
1-cycles. Assume that n € X;. Then n = pq for some prime p,q € w\ C.
Now note that the Cartesian product of a p—cycle and a g—cycle is a pg—cycle.
Since A has infinitely many p—cycles and g—cycles, G has infinitely many pg—
cycles. Therefore A? is isomorphic to G(N). Clearly, G has a computable
presentation. The claim, and hence the theorem are proved. O

3 Proof of Theorem 2

The structure A will be a graph expanded with an equivalence relation F
on the nodes of the graph. In constructing A we follow the notions and
notations introduced in the proof of Theorem 1. The structure A will be
isomorphic to an infinite disjoint union of graphs of the type G(B;), B; C N,
i € w, that is, A will be of the form:

G(Bo) +G(B1) +G(B2) +G(B3) + - .-,

where + represents the union operation of disjoint graphs. We call the
graphs G(B;) E-components. These components will be the E—equivalence

classes. Each F—component, by the definition of G(B;), consists of cycles.
Consider the set C:

C = {pq| p, q are distinct prime numbers greater than 2}.

We construct structures A;, i € w, that are pairwise isomorphic but not
computably isomorphic. The desired structure A will then be the structure
Ai. Let ¢g, ¢1, @2, ... be an enumeration of all computable partial functions
on w. We construct the structures 4; by stages and will satisfy the following
requirements:

Rijk: ¢k is not an isomorphism from A4; into A;, i # j, 1,5,k € w.

A strategy to satisfy the requirement R; ;. is the followmg The construc-
tion picks up two isomorphic cycles c(9 D A; and c(ik in Aj; that belong

to isomorphic E—components and waits for ¢, to be deﬁned on c(J) These
cycles are called witnesses for R; ;5. Once picked the witnesses will never

be changed. Let Q(B(l k) Q(Bi]),) be the E—components that contain the

(@) ()

ik respectively. The components in each A4; ¢ are also

E; Sfequlvalence classses, [< s. If ¢y s maps c()k isomorphically onto c(J])k

at some stage s then we say that R; ; ; requires attentlon When R; ; . re-

cycles ¢; ik and c;

quires attention the strategy attacks R; ; ; by making g(i k:) and Q(BZ(]]) k)

not isomorphic, and constructs new isomorphic copies of G (Bl(lj) e) G (Bi(Jj) i)
in A; and A;, respectively. This change is passed then to all other 4;’s
which are being constructed. More formally we proceed as follows.

Stage s + 1. At stage s, the construction has constructed isomorphic
structures A,, s, m < s, such that each A,, ; is of the form:

g(Bm,O,s) + g(Bm,l,s) + g(Bm,2,s) + g(Bm,S,s) +...+ g(Bm,ts,s)a

where each G(B,, ;) is an equivalence class (E—component) of the equiva-

lence relation E,, ;. We assume that the witnesses c(9 ik and c(J)k, 1,5,k <s
are all in the structures constructed so far and Wltnesses for dlstlnct require-
ments have no entries in common. Take the minimal R; ;x, 4, j,k < s, that
requires attention. If it exists then attack it as follows:

1. Extend the F—component Q(i g, k) by putting countably many n-
cycles into it, where n is the first element ¢ in C' for which Q(Bl(lj)k)

has no a t—cycle. Prohibit putting an n—cycle into the E—component
Q’(Bi(Jj) i) Call n prohibited number for the E—component Q(Bi(]j) k)

2. Extend G (Bf]])k) by putting countably many r-cycles into it, where r
is the first element ¢ in C' for which Q(Bz(]]{k) has no a t—cycle and
t # n. Prohibit putting an r—cycle into G(B{},). Call r prohibited
number for the E-component G (Bz(f]) k)

3. Construct new isomorphic copies of Q(Bl(?k), Q(Bl(]])k) in A and
A; s, respectively. These new added E—components now have the same
prohibited numbers as their isomorphic copies. These are also new E;
and Ej; ;—equivalence classes. Pass this change to every other A,, s so
that all are still isomorphic, m <'s.

4. Extend each E-component in all A, s, m < s, by putting into it
infinitely many [-cycles, where [is the least unused and unprohibited
number for the component.

5. Extend now each A,, s to Ay, s+1, I < s+ 1, so that Cz(,]j),k’ 1,5,k <
s + 1 all appear in these structures, and make all these structures
isomorphic.

If no R; j j requires attention then extend now each A; s to A o11,1 < s+1,

so that cz(-’]j{k, 1,7,k < s+ 1 all appear in these structures and make all these
structures isomorphic. This ends the stage s + 1 of the construction. Set

A=A

Now we list several properties of these structures in the next series of claims.

Claim 3.1 Fach E-component in every A; is either isomorphic to G(N) or
G(N \ {m}) for some m € C.

Proof. Take any E-component in A;. If at no stage the construction
prohibits a number for the component then the component is isomorphic
to G(IN). Otherwise, by the construction the E—component will have only
one prohibited number. By the construction the number must belong to
C. Moreover, by the construction, no other number is prohibited for the
component. This proves the claim. O

Claim 3.2 Fach R;;, is satisfied.

Proof. We first note that if R;;, is attacked then, by the construction,
R; ;1. is satisfied. So assume that ¢, is an isomorphism between A; and A;.

Then at some stage s, gbks(cz(f])k) = z(,]])k Hence ¢ must be attacked at

some stage s’ > s. This is a contradication. The claim is proved. O

Claim 3.3 The structures A; and A; are isomorphic but not computably
isomorphic.

Proof. From the previous claim we see that the structures A; and A; are not
computably isomorphic. The construction guarantees that the structures are
isomorphic. O

Let A be the structure isomorphic to A;. Thus, we see that A has in-
finitely many computable isomorphism types. Consider the Cartesian prod-
uct A2

Claim 3.4 The structure A? is isomorphic to the disjoint union of struc-
tures of the type G(N) which are also E-equivalence classes in A2,

Proof. Let G(B;) and G(B2) be E—components of \A. Then one can check
that G(B1) X G(B2) is isomorphic G(IV) using the same reasoning as in Claim
2.3. Morover, since G(Bj) and G(B2) are equivalence classes G(Bj) x G(Ba)
is an equivalence class in the Cartesian product. Now note that in A2 there
are infinitely many components. Each of the components is an equivalnece
class and is isomorphic to G(NV).

Claim 3.5 The structure A? is computably categorical.

Proof. Take any two computable presentations of A%. Effectively map in
a one-to—one manner all the equivalence classes in one presentation onto
the equivalence classes in the other presentation. Then the map can be
effectively extended, as can be seen from the previous claim, to an isomor-
phism between the two presentations. This proves the claim, and hence the
theorem. O

4 Conclusion and Acknowledgement

We conclude the paper with the following two hypothesis. The first hypoth-
esis belongs to Goncharov and is stated in [3].

10

Hypothesis 1 If a structure A is computably categorical then the dimen-
sion of A2 is either 1 or w.

We think that the next hypothesis can be proved by modifying constructions
of noncomputably categorical structures of finite dimension from [4] [1].

Hypothesis 2 For every natural number n > 1 there exists a computable
structure A such that the dimension of A? isn.

The paper was written while the author was visiting the mathematics
and computer science departments at the University of Chicago during the
winter of 1999. The author thanks Professor Robert Soare for the invitation
and many helpful discussions on computability theory and the theory of
computable structures.

References

[1] P. Cholak, S. Goncharov, B. Khoussainov, R. Shore. Computably Cat-
egorical Structures and Expansions by Constants, to appear in Journal
of Symbolic Logic, 1999.

[2] E. Griffor. ed., Handbook of Computability Theory, Studies in Logic and
Foundations of Mathematics Series, North-Holland, 1999.

[3] Yu. Ershov and S. S. Goncharov, eds., Logic Notebook: Problems in
Mathematical Logic, Novosibirsk University, 1986.

[4] B. Khoussainov, R. Shore. Computable isomorphisms, Degree Spectra
of Relations, and Scott Families,Annals of Pure and Applied Logic 93,
1998, p.153-193.

[5] Yu.Ershov, S. Goncharov, A.Nerode, J.Remmel eds., Marek V. assoc.ed.
Handbook of Recursive Mathematics, Volume 1-2. North-Holland, 1999.

[6] D. Hirschfeldt. Personal Communications.

[7] R. Soare. Recursively Enumerable Sets and Degrees. Springer—Verlag,
New York, 1987.

11

