
CDMTCS
Research
Report
Series

Computing with Membranes:
P Systems with
Worm-Objects

Juan Castellanos
Department of Artificial Intelligence,
Faculty of Computer Science, Politechnical
University of Madrid

Gheorghe Păun
Institute of Mathematics of the Romanian
Academy, Bucureşti, Romania

Alfonso Rodŕiguez-Paton
Department of Artificial Intelligence,
Faculty of Computer Science, Politechnical
University of Madrid

CDMTCS-123
February 2000

Centre for Discrete Mathematics and
Theoretical Computer Science

Computing with Membranes:

P Systems with Worm-Objects1

Juan CASTELLANOSa, Gheorghe PĂUNb,
Alfonso RODRÍGUEZ-PATONa

aDepartment of Artificial Intelligence, Faculty of Computer Science
Politechnical University of Madrid

Campus de Montegancedo, Boadilla del Monte 28660, Madrid, Spain
E-mails: jcastellanos/arpaton@fi.upm.es

bInstitute of Mathematics of the Romanian Academy
PO Box 1 – 764, 70700 Bucureşti, Romania

E-mail: gpaun@imar.ro

Abstract. We consider a combination of P systems with objects described
by symbols with P systems with objects described by strings. Namely, we
work with multisets of strings and consider as the result of a computation
the number of strings in a given output membrane. The strings (also called
worms) are processed by replication, splitting, mutation, and recombination;
no priority among rules and no other ingredient is used. In these circum-
stances, it is proved that (1) P systems of this type can generate all recur-
sively enumerable sets of numbers, and, moreover, (2) the Hamiltonian Path
Problem in a directed graph can be solved in a quadratic time, while the SAT
problem can be solved in a linear time.

1 Introduction

P systems are a class of distributed parallel computing models inspired from the way the
alive cells process chemical compounds, energy, and information. In short, in the regions
delimited by a membrane structure (see Figure 1 for an illustration of what this means),
are placed multisets of objects, which evolve according to evolution rules associated with
the regions; the objects can also be communicated from a region to another one, according
to certain target indications, while the membranes can be dissolved (and then the objects
of the dissolved membrane remain free in the region immediately outside it) and divided
(then the contents of the divided membrane is copied in each of the resulting membranes);
the rules are applied in the maximally parallel manner (in each time unit, all objects
which can evolve should evolve); a computation consists of transitions among system
configurations, while a complete computation is a halting one; the result of a complete
computation is either the number of objects present in the halting configuration in a
specified output membrane, or it is read outside the system, as the sequence of objects

1Research supported by the Direcció General de Recerca, Generalitat de Catalunya (PIV), and the
Politechnical University of Madrid

1

leaving the system during the computation. The application of rules can be regulated
by a priority relation among them, while the communication can be controlled in various
ways. We do not enter here into details; the reader is referred to [10], [11], and, mainly,
to Chapter 3 of [2], which contains a first synthesis of the domain.

P systems as above are also called transition P systems. They use objects identified
by symbols from a given alphabet.

'

&

$

%

'

&

$

%

'

&

$

%
'
&
$
%

�
�

�
�

�
�

�
�

'
&

$
%

�
�
�
�
�
�
�
�

�

@
@
@@R

�
�

�
�
�	

membrane

A
AU

skin elementary membranemembrane

region �
��*

HHHHHHHHHHj

@
@
@
@@R

Figure 1: A membrane structure

1 2

3

4
5

6

7

8

9

It is also possible to consider objects described by strings. This was already done
in [10]. Important differences from the transition P systems appear. First, we have to
consider string processing operations; in the case of rewriting we get rewriting P systems,
when using splicing, in the sense of [5] (see [15] for a comprehensive investigation of this
operation), we obtain splicing P systems, [10], [16]. Moreover, we do not work with
multisets, but with usual languages. Also the result of a computation is a language.

Both transition and rewriting/splicing P systems are computationaly complete (equal
in power to Turing machines), for various variants. In the case of symbol-objects, this
means that each set of natural numbers which can be computed by a Turing machine can
be generated by a P system, in the case of string-objects this means that each recursively
enumerable language can be generated by a P system.

It is of interest to note that in the case when membrane division is considered, NP-
complete problems can be solved in linear time; this is the case with SAT (see [13]), the
Hamiltonian Path Problem and the Node Covering Problem (see [6]); also DES can be
broken in linear time by such systems (see [7]). In all cases, one needs exponentially
many membranes; here we try to avoid this, of course, without being possible not to use
an exponential resource (here, strings in the membranes of the system).

We combine here the two classes of P systems: we work with multisets of string-
objects and we consider the result of a computation as the number of strings in a given

2

output membrane. Because we need to increase and decrease the number of strings
in the regions of the system, rewriting and splicing rules are not useful (they can at
most decrease the number of strings, by sending them outside the system, but cannot
increase this number). We take a suggestion from [20] and consider replication, splitting,
mutation, and merging (here, recombination) operations on strings. The precise meaning
of these operations will be defined in the next section. The formal details are significantly
different from those in [20], where one works with strings – called worms, which also
suggested the terminology we use here – composed of binary symbols and which move
on a grid, in a cellular automata framework. For instance, recombination means here
crossing-over at a common block, in the sense of [19] and the simple splicing systems [9]:
x1ux2, y1uy2 lead to x1uy2, y1ux2.

Two features of our systems seem to be very powerful: the possibility to exponentially
increase the number of strings, by replication and splitting operations, and the context-
sensitivity brought by the recombination operation. This operation is of a very restricted
type, for instance, in comparison with the general splicing operation, but the fact that
the crossing-over block (the string u in the previous example) can be of a length greater
than one can be used in a surprisingly efficient manner.

Making use of these features – but no other control on rules application, such as a
priority relation (or the membrane thickness control, like in [12]) – we get two (already
expected in P system area, but important) results: computational completeness and
polynomial solutions to NP-complete problems. The latter result does not use membrane
division, but the exponential space is provided by the replication and splitting operations;
the number of membranes is fixed, but their contents can increase exponentially.

Our proof of the computational completeness does not provide a bound on the num-
ber of membranes; this remains as an open problem. Some other open problems are
formulated, too.

2 Handling (the Number of) Worms

We start by a preliminary discussion about the string operations we will use in order to
increase and decrease the number of strings in the systems we shall define in the next
section. The reader can find many analogies with operations on DNA molecules, but we
do not enter here such details.

For formal language theory prerequisites we refer to [18]. We only mention that
we denote by V ∗ the free monoid generated by the alphabet V under the operation of
concatenation; the empty string is denoted by λ, V + = V ∗−{λ} is the set of non-empty
strings over V , and |x| is the length of x ∈ V ∗.

Given an alphabet V , we consider the following operations on strings over V :

1. Replication. If a ∈ V and u1, u2 ∈ V +, then r : a → u1||u2 is called a replication
rule. For strings w1, w2, w3 ∈ V + we write w1 =⇒r (w2, w3) (and we say that w1

is replicated with respect to rule r) if w1 = x1ax2, w2 = x1u1x2, w3 = x1u2x2, for
some x1, x2 ∈ V ∗.

3

2. Splitting. If a ∈ V and u1, u2 ∈ V +, then r : a → u1 : u2 is called a splitting
rule. For strings w1, w2, w3 ∈ V + we write w1 =⇒r (w2, w3) (and we say that w1

is splitted with respect to rule r) if w1 = x1ax2, w2 = x1u1, w3 = u2x2, for some
x1, x2 ∈ V ∗.

3. Mutation. A mutation rule is a context-free rewriting rule, a → u, over V . For
strings w1, w2 ∈ V + we write w1 =⇒r w2 if w1 = x1ax2, w2 = x1ux2, for some
x1, x2 ∈ V ∗.

4. Recombination. Consider a string z ∈ V + (as a crossing-over block) and four strings
w1, w2, w3, w4 ∈ V +. We write (w1, w2) `z (w3, w4) if w1 = x1zx2, w2 = y1zy2, and
w3 = x1zy2, w4 = y1zx2, for some x1, x2, y1, y2 ∈ V ∗.

When no ambiguity appears, the rule r and the block z are not specified when writing
=⇒ and `. Note that replication and splitting increase the number of strings, mutation
and recombination not. Note also that the strings u1, u2 from replication and splitting
rules, as well as z in the recombination case, are non-empty strings, but mutation rules
can delete symbols.

When we will consider such operations in P systems, target indications will be added
to rules and crossing-over blocks, indicating the regions where the resulting strings will
be placed at the next time unit. Here we briefly consider these operations as formal
operations on strings and languages.

For a language L ⊆ V ∗ and a finite set R of replication/splitting/mutation rules,
denote by R(L) the set of all strings obtained by iteratively applying the rules from R,
starting from strings in L; similarly, for a finite set C ⊆ V + of crossing-over blocks, we
denote by C(L) the language of all strings obtained by iterated recombinations, starting
from the strings of L.

The proof of the following auxiliary result is an easy exercise.

Lemma 1. If L ⊆ V ∗ is a context-free language and R is a finite set of context-free
rules over V, then also R(L) is context-free.

Theorem 1. All the previous four operations, with respect to finite sets of rules
and of crossing-over blocks, lead to context-free languages when iterated on context-free
languages.

Proof. (1) Consider a context-free language L and a finite set R of replication rules.
For each rule r : a→ u1||u2 ∈ R we consider the rules r′ : a→ u1 and r′′ : a → u2. Let
R′ be the set of these rules. It is clear that if w ∈ L can lead by a sequence of replications
to a string w′, then we can also obtain w′ by using the rules from R′ (note that we do not
work with multisets, hence instead of w1 =⇒r (w2, w3) we can perform w1 =⇒r′ w2 and
w1 =⇒r′′ w3 separately, because we have as many copies of w1 as necessary). Conversely,
if a string w′ can be obtained by iteratively using rules from R′, starting from some
string w ∈ L, then this can be also done by means of rules in R: for each w1 =⇒r′ w2,
with r′ ∈ R′, there is r ∈ R such that w1 =⇒r (w2, w3) or w1 =⇒r (w3, w2).

Therefore, R(L) = R′(L), which, according to Lemma 1, implies that R(L) is context-
free.

4

(2) Instead of a splitting rule r ∈ R, r = u1 : u2, consider the context-free rule
a → u1cu2, where c is a new symbol; let R′ be the set of these rules. Consider also a
gsm g which leads a string of the form x = x1cx2c . . . cxk, k ≥ 1, nondeterministically to
any of the strings xi, 1 ≤ i ≤ k (that is, g(x) = {xi | 1 ≤ i ≤ k}). The language R′(L) is
context-free (Lemma 1) and we have R(L) = g(R′(L)), an equality which is easy to be
proven.

(3) Directly from Lemma 1.

(4) The crossing-over with respect to a string (from a given finite set), in the sense
of the recombination operation considered above, is a particular case of the splicing
operation. The iterated splicing with respect to a finite set of rules preserves the context-
freeness – see [17]. 2

Therefore, these operations are not of much interest at the level of languages. We
will immediately see that the situation is completely different if we consider them for
multisets, in the framework of P systems.

3 P Systems with Worm-Objects; Definition and

Examples

Because we will work here only with multisets of a finite support (only finitely many
elements will have a non-null multiplicity), we will specify the multisets σ : V ∗ −→ N
in the form A = {(x1, s1), . . . , (xk, sk)}, where xi ∈ V ∗ are those elements for which
σ(xi) = si > 0. The multiset with an empty support (the empty multiset) is denoted by
∅.

A P system (of degree m,m ≥ 1) with worm-objects is a construct

Π = (V, µ,A1, . . . , Am, (R1, S1,M1, C1), . . . , (Rm, Sm,Mm, Cm), i0),

where:

– V is an alphabet;

– µ is a membrane structure of degree m (that is, with m membranes);

– A1, . . . , Am are multisets of finite support over V ∗, associated with the regions of
µ (the initial populations of worms);

– for each 1 ≤ i ≤ m, Ri, Si,Mi, Ci are finite sets of replication rules, splitting rules,
mutation rules, and crossing-over blocks, respectively, given in the following forms:

a. replication rules: (a→ u1||u2; tar1, tar2) or (a→ u1||u2; tar1, tar2)δ, for tar1,
tar2 ∈ {here, out} ∪ {inj | 1 ≤ j ≤ m};

b. spliting rules: (a → u1 : u2; tar1, tar2) or (a → u1 : u2; tar1, tar2)δ, for tar1,
tar2 ∈ {here, out} ∪ {inj | 1 ≤ j ≤ m};

5

c. mutation rules: (a → u; tar) or (a → u; tar)δ, for tar ∈ {here, out} ∪ {inj |
1 ≤ j ≤ m};

d. crossing-over blocks: (z; tar1, tar2) or (z; tar1, tar2)δ, for tar1, tar2 ∈
{here, out} ∪ {inj | 1 ≤ j ≤ m};

– i0 ∈ {1, 2, . . . ,m} specifies the output membrane of the system.

The (m+ 1)-tuple (µ,A1, . . . , Am) constitutes the initial configuration of the system.
By applicating the operations defined by the components (Ri, Si,Mi, Ci), 1 ≤ i ≤ m,
we can pass from a configuration to another one. This is done as usual in P systems
area, according to the following principles (instead of a formal definition, we prefer an
informal one, followed by examples):

1. The work of the system is synchronized, in each time unit (the clock is the same for
the whole system), in each region, all strings which can be processed by means of
rules in that region are processed; that is, the operations are applied in a maximally
parallel manner.

2. The rules to be used and the copies of strings to be processed are choosen in a non-
deterministic manner (observing the restriction of maximal parallelism). A string
which enters an operation is “consumed” by that operation, its multiplicity is de-
creased by one. The multiplicity of strings produced by an operation is accordingly
increased.

3. A string is processed by only one operation. For instance, we cannot apply two
mutation rules, or a mutation rule and a replication one, to the same string.

4. The strings resulting from an operation (two in the case of replication, splitting,
and recombination, one in the case of mutation) are communicated to the region
specified by the target indications associated with rules: here means that the string
remains in the same region where the rule has been applied, out means that the
string is sent out that region (in this way, a string can leave also the skin mem-
brane), while inj means that the string is sent to membrane j, providing that this
membrane is adjacent to the region where the rule is applied, directly inside this
membrane; if there is no such a membrane with label j, then the rule cannot be
applied (we can send strings only from a region to an adjacent region, through a
single membrane, not at a larger distance).

5. When a rule is applied which also contains the symbol δ, the current membrane is
dissolved; all its strings are left free in the membrane directly above it, while its
rules and crossing-over blocks are lost. The skin membrane is never dissolved. The
application of rules is supposed to take place from bottom-up: we first process all
strings in a region which can be processed and then we dissolve the membrane (so,
in the upper region, we send the result of all the possible operations).

A sequence of transitions, starting from the initial configuration, is called a compu-
tation. A computation is complete if it halts, no further rule can be applied to strings in

6

the last configuration. If at the end of a complete computation membrane i0 is present
in the system (it was not dissolved during the computation) and it is an elementary one,
then the number of strings from region i0 is the result of the computation. Note that
a non-halting computation provides no output. For a system Π, we denote by N(Π)
the set of numbers computed in this way. By NCPm(δ),m ≥ 1, we denote the sets of
numbers computed by all P systems with at most m membranes. When the number
of membranes is not bounded, the subscript is removed. If the dissolving action is not
used, then δ is replaced by nδ.

Before starting to investigate the size of families NCP (α), NCPm(α),m ≥ 1, α ∈
{δ, nδ}, let us consider two examples.

Example 1. For the P system (of degree 2)

Π1 = ({a}, [1[2]2]1, ∅, {(a, 1)}, (∅, ∅, ∅, ∅), (R2, ∅, ∅, ∅), 1)

with
R2 = {(a→ a||a;here, here), (a→ a||a;here, here)δ},

(no operation will take place in region 1, while region 2 has only replication rules) we
obtain N(Π1) = {2i | i ≥ 1}. This can be easily seen: the one-letter strings are
duplicated at each step; when the rule which introduces the symbol δ is used, membrane
2 is dissolved, the strings are sent to membrane 1, and the computation stops (note that
in that moment membrane 1 is an elementary one).

Of course, instead of the replication rule a → a||a we can use the splitting rule
a→ a : a and the result is the same.

Example 2. Consider the P system (of degree 5)

Π2 = (V, µ,A1, . . . , A5, (R1, S1,M1, C1), . . . , (R5, S5,M5, C5), 4),

with:

V = {a, b, c, c′, d, f},

µ = [
1
[
2
[
3

]
3
[
4

]
4
[
5

]
5
]
2
]
1
,

A1 = A2 = A4 = A5 = ∅, A3 = {(d, 1), (ab, 1)},

R1 = S1 = M1 = ∅, C1 = {(a;here, here)},

R2 = {(c→ c||f ;here, in4)}, S2 = ∅, M2 = {(c′ → c;here)},

C2 = {(a;here, in5), (b;here, here)δ},

R3 = {(a→ a||a;here, here), {(d→ d||c′;here, here), (d→ b||c′;here, here)δ},

S3 = M3 = C3 = ∅,

R4 = S4 = M4 = C4 = ∅,

R5 = S5 = M5 = C5 = ∅.

Let us examine in some detail the work of this system. Initially, we have string-
objects only in region 3, namely a copy of ab and one of d. At each time unit, a entails
the duplication of ab, while d introduces a copy of c′. Therefore, after n steps (n ≥ 0)

7

we will have here n copies of c′ and 2n copies of ab (plus one copy of d). At any moment,
d can be reduplicated into b and c′ and the membrane is dissolved.

This means that in membrane 2 we will have the multiset characterized by
{(b, 1), (ab, 2n+1), (c′, n + 1)}, for some n ≥ 0. At the next step, all symbols c′ are
replaced by c, while a recombination takes place among all possible pairs of strings ab.
There are 2n such pairs. If all of them are recombined by using the crossing-over block a,
that is, without producing δ, then we get 2n copies of ab in membrane 2, while 2n copies
of the same string are sent to membrane 5, where nothing happens to them (membrane
5 is a sort of storage, for keeping copies of strings which we do not need in membrane
2). If the recombination is done by using the crossing-over block b, then the membrane
is dissolved. At least two copies of the string ab arrive in membrane 1, where the recom-
bination according to a can be done forever. The computation will never stop, we get
no result.

In order to get a halting computation, we have to use in region 2 as much as possible
the crossing-over block a. This means that the number of copies of ab is always divided
by two. At each step, each symbol c will be reduplicated, reproducing itself and sending
a copy of f to the output membrane 4; at each step, n + 1 copies of f enter membrane
4.

Such steps can be done as long as we have at least two copies of ab in region 2. When
we have only one string ab, the recombination with respect to a is no longer possible, we
have to recombine ab with the copy of b always present here. In parallel, further n + 1
copies of f are collected in membrane 4. Membrane 2 is dissolved. No rule can be applied
in membrane 1, because we have only one occurrence of a in the present strings. The
computation is complete. Because we have sent symbols f to membrane 4 during n+ 1
steps (starting from 2n copies of ab, to 20 copies, and then in the step when membrane
2 was dissolved), we get (n+ 1)2 copies of f . In conclusion, N(Π2) = {m2 | m ≥ 1}.

Note that in the first example we have used one-symbol strings, like in usual transition
P systems, but in the second example we have two-symbol worms.

4 Computational Completeness

For a family FL of languages, we denote by lFL the family of length sets of languages
in FL, that is, lFL = {length(L) | L ∈ FL}, for length(L) = {|x| | x ∈ L}. Obviously,
a set of natural numbers, M ⊆ N, is recursively enumerable (can be enumerated by a
Turing machine) if and only if it is the length set of a recursively enumerable language.
Let us denote by REG, CF, RE the families of regular, context-free, and recursively
enumerable languages, respectively.

Because lREG = lCF and this family contains only ultimately periodic sequences,
it follows from Example 1 that NCP2(δ)− lCF 6= ∅.

If arbitrarily many membranes are used, then we can compute all computable sets of
numbers. In the proof of this result we will use the notion of a matrix grammar.

A matrix grammar with appearance checking is a constructG = (N, T, S,M, F), where
N, T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the form (A1 → x1,

. . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with Ai ∈ N, xi ∈ (N ∪ T)∗, in

8

all cases), and F is a set of occurrences of rules in M (N is the nonterminal alphabet, T
is the terminal alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn)
in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and,
for all 1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T)∗, or

wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears in F . (The rules of a
matrix are applied in order, possibly skipping the rules in F if they cannot be applied;
we say that these rules are applied in the appearance checking mode.) If F = ∅, then the
grammar is said to be without appearance checking (and F is no longer mentioned).

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The family
of languages of this form is denoted by MATac. When we use only grammars without
appearance checking, then the obtained family is denoted by MAT .

It is known that CF ⊂ MAT ⊂ MATac = RE and that each one-letter language in
the family MAT is regular, [4]. (As a consequence of this last result, from Example 2
we have that NCP2 − lMAT 6= ∅. We do not know which is the smallest m such that
NCPm(nδ) − lMAT 6= ∅.) Further details about matrix grammars can be found in [3]
and in [18].

A matrix grammar G = (N, T, S,M, F) is said to be in the binary normal form if
N = N1 ∪ N2 ∪ {S,#}, with these three sets mutually disjoint, and the matrices in M
are of one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y,A→ x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗,

3. (X → Y,A→ #), with X, Y ∈ N1, A ∈ N2,

4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules A→ #
appearing in matrices of type 3; # is a trap-symbol, once introduced, it is never removed.
A matrix of type 4 is used only once, at the last step of a derivation.

According to Lemma 1.3.7 in [3], for each matrix grammar there is an equivalent
matrix grammar in the binary normal form.

We are now ready to give the main result of this section.

Theorem 2. NCP (δ) = NCP (nδ) = lRE.

Proof. The inclusion NCP (δ) ⊆ lRE follows from Turing-Church thesis or can be
proved directly, in a straightforward (but involving a long construction) way. The inclu-
sion NCP (nδ) ⊆ NCP (δ) follows from the definitions. So, we only have to prove the
inclusion lRE ⊆ NCP (nδ). To this aim, we make use of the equality RE = MATac.
More exactly, we have lRE = lMATac = {length(L) | L ∈ MATac, L ⊆ a∗}. Conse-
quently, it is sufficient to consider matrix languages over the one-letter alphabet.

Let G = (N, {a}, S,M, F) be a matrix grammar with appearance checking in the
binary normal form, with N = N1∪N2∪{S,#} and matrices of the four forms mentioned
above. Assume that we have p matrices of the form (X → α,A → x), with X ∈
N1, Y ∈ N1 ∪ {λ}, x ∈ (N2 ∪ {a})∗, and q matrices of the form (X → Y,A → #),

9

X, Y ∈ N1, A ∈ N2. (That is, we consider separately the matrices having rules used in
the appearance checking mode and the matrices not having such rules.)

We construct the P system (of degree s = p+ 2 · q + 4)

Π = (V, µ,A1, . . . , As, (R1, S1,M1, C1), . . . , (Rs, Ss,Ms, Cs), 4),

with the following elements:

1. V = N1 ∪N2 ∪ {E, a, c, †} ∪ {Ej | 1 ≤ j ≤ q}.

2. µ = [1[2[3[h1
]
h1

. . . [
hp

]
hp

[
g1

[
g′1

]
g′1

]
g1
. . . [

gq
[
g′q

]
g′q

]
gq

[4]4]3]2]1

(the skin membrane is labeled with 1; with each matrix mi : (X → α,A →
x), 1 ≤ i ≤ p, we associate a membrane with the label hi, and with each matrix
mi : (X → Y,A → #), 1 ≤ i ≤ q, we associate two membranes, with the labels
gi, g

′
i).

3. A1 = {(aa, 1)},
A3 = {(XAcE, 1)}, for (S → XA) the initial matrix of G;
all other initial multisets are empty.

4. R1 = S1 = ∅,
M1 = {(Z → Z;here) | for all Z ∈ N1 ∪N2},
C1 = {(aa;here, here)}.

5. R2 = {(a→ a||a; out, in4)},
S2 = {(a→ a :c;here, here)},
M2 = {(Z → Z;here) | for all Z ∈ N1 ∪N2},
C2 = ∅.

6. R4 = S4 = M4 = C4 = ∅.

7. For each matrix mi : (X → α,A→ x), 1 ≤ i ≤ p (not to be used in the appearance
checking mode), we introduce in M3 the mutation rule
(X → α; inhi),
and in Mhi the mutation rules
(A→ x; out), (E → E;here).

8. For each matrix mj : (X → Y,A → #), 1 ≤ j ≤ q (to be used in the appearance
checking mode), we introduce in S3 the splitting rule
(X → Ej :Y ;here, ingj),
and in M3 the mutation rule
(Ej → E; ingj),
while in Mgj we introduce the mutation rules
(A→ †;here), († → †;here),
and in Cgj the recombination rule (E; out, ing′j).
At the same time, in Mg′j

we introduce the mutation rules

(Y → †;here), († → †;here).

10

9. In S3 we also introduce the splitting rule
(c→ c :c; out, out).

10. No other replication rules, splitting rules, mutation rules, or crossing-over blocks
appear in the membranes of the system Π.

The shape of the membrane structure is presented in Figure 2.
Let us examine in detail the work of the system Π.
Assume that at a given moment in membrane 3 we have a string of the form XwcE,

for some w ∈ (N2 ∪ {a})∗; initially, X = X0 and w = A, for (S → X0A) ∈M .
If the splitting rule (c → c : c; out, out) is used, then we send to membrane 2 the

strings Xwc and cE. If the string w contains occurrences of the terminal a, then the
rules (a → a : c;here, here), (a → a||a; out, in4) must be used; eventually, substrings of
XwcE arrive in region 1, where the mutation rule (X → X;here) can be used forever.
The same happens if we start from membrane 3 with a string of the form wcE and w
contains at least one occurrence of a symbol from N2.

'

&

$

%

'

&

$

%
�
�

�
�

'

&

$

%

�
�
�
��

�
�
��

�
�
�

�
�

�
��

�
�
��

�
�
�

�� �
�� �

�� �

1
2

3

4

h1

h2

hp
.

g1

g2

gq

g′1

g′2

g′q

Figure 2: The membrane structure in the proof of Theorem 2

Thus, assume that we do not apply the rule (c → c : c; out, out), but we start simu-
lating matrices of G.

If we replace the symbol X with some α ∈ N1 ∪ {λ}, corresponding to a matrix
mi : (X → α,A → x), then the obtained string, αwcE, is sent to membrane hi. The
rule (E → E;here) can be applied forever. The string can leave this membrane only by
applying the mutation rule (A → x; out). This precisely corresponds to simulating the
matrix mi.

If in membrane 3 we use the splitting rule (X → Ej :Y, here, ingj), for some Y ∈ N1

such that we have a matrix mj : (X → Y,A → #) in G, then we get the string Ej in
membrane 3 and the string Y wcE is sent to the membrane with the label gj. If the
symbol A appears in w, then the trap-symbol † is introduced and the rule † → † is used

11

forever in this membrane. If the symbol A does not appear, then no rule can be applied
in membrane gj , the string Y wcE waits unchanged one step. At this time, in membrane
3 we use the rule (Ej → E; ingj) and a copy of E is sent to membrane gj. Now, the
recombination with respect to E can be performed. This can be done in two ways:

(Y wcE,E) ` (Y wcE,E), and (E, Y wcE) ` (E, Y wcE).

In the first case we send the string Y wcE out and the string E to membrane g′j , in the
second case the two strings change the destinations. In the second case, the computation
never stops, because of the rules (Y → †;here), († → †;here) from membrane g′j. In the
first case, we have returned to membrane 3 with the string Y wcE, which is a correct
simulation of the matrix mj .

We proceed in this way, by iteratively simulating matrices of G. If we get a string of
the form ancE, then we can apply the rule (c→ c :c; out, out) and send out of membrane
3 the strings anc, cE. The latter string will enter no further operation. The former string
can be cut by using the rule (a→ a :c;here, here) in strings of the form a, ca, cac. If all
the n occurrences of a are separated in this way, then each piece can be processed with
the rule (a → a||a; out, in4). In this way, a copy of each piece is sent to membrane 4
and another copy is sent to membrane 1. Because we have to get a halting computation,
all the fragments must be processed in this way. This means that exactly n strings are
sent to the output membrane, hence the result of the computation is n, the length of the
string from L(G) whose derivation was simulated by the system Π.

If the splitting of the string anc is not complete, that is we have fragments of the form
x1aax2, and we apply to them the rule (a → a||a; out, in4), then, clearly, we will send
outside membrane 2 a copy of the string x1aax2. This string can be recombined with the
string aa (which waits here from the beginning of the computation). The two obtained
strings will again contain the substring aa, hence they can be recombined again. The
process never stops.

Consequently, each derivation in G can be simulated in Π and each halting compu-
tation in Π corresponds to a terminal derivation in G; moreover, we can only stop when
for the string an derived by G we send to membrane 4 exactly n strings. In conclusion,
length(L(G)) = N(Π). 2

The proof of Theorem 2 does not give a bound on the number of membranes in the
system Π. It remains as an open problem whether or not the hierarchies NCP1(α) ⊆
NCP2(α) ⊆ . . . ⊆ NCP (α) = lRE, α ∈ {δ, nδ}, is or not an infinite one. (Note that
the usual argument proving that such hierarchies collapse by starting from universal
grammars is not applicable in this case, because no universal matrix grammar with
appearance checking is known; in particular, in the proof we have made an essential
use of the binary normal form, which assumes that there is a unique and short “initial
string”, XA, for the matrix (S → XA); universal results are based on introducing the
“code” of a particular grammar as a starting string of the universal grammar.)

Another open problem of interest is whether or not the maximal length of strings
appearing in a P system with worm-objects induces an infinite hierarchy on the family
of computed sets of numbers.

12

5 Solving HPP in Quadratic Time

Consider a directed graph γ = (U,E) and two distinct nodes in U , iin and iout. The
Hamiltonian Path Problem (HPP, for short) for γ asks whether or not there is a path
from iin to iout which passes exactly once through all nodes of the graph. Note that we
do not ask for actually finding a Hamiltonian path, but only whether or not such a path
exists. This was the problem also addressed in the Adleman’s historical experiment, [1];
we will solve here the problem in a quadratic time by following an algorithm similar in
many respects to that used in [1].

Assume that U contains n nodes, identified with the numbers 1, 2, . . . , n (hence the
Hamiltonian paths will consist of n − 1 arcs) and that the maximum outdegree of the
graph (the number of arcs having the origin in a given node) is equal to k. Because the
arcs of the form (i, i) are useless, we can ignore them, hence we can suppose that we
have k ≤ n− 1.

By a simple renumbering, assume that iin = 1 and that iout = n.
We construct the P system with worm-objects Πγ (of degree n), associated with γ,

with the following components:

V = {〈i, r〉, [i, r], 〈i, r; j1, . . . , js〉 |

1 ≤ i ≤ n, 0 ≤ r ≤ k, {j1, . . . , js} ⊆ {j ∈ U | (i, j) ∈ E}},

µ = [
n−1[n]

n
[
n−2 . . . [2[0]0]2 . . .]n−2]n−1,

A0 = {(〈1, 0〉, 1)}; all other initial multisets are empty,

R0 = {(〈i, r〉 → [i, r]〈j1, r + 1〉||〈i, r; j2, . . . , js〉;here, here),

(〈i, r; jh, . . . , js〉 → [i, r]〈jh, r + 1〉||〈i, r; jh+1, . . . , js〉;here, here),

(〈i, r; js−1, js〉 → [i, r]〈js−1, r + 1〉||[i, r]〈js, r + 1〉;here, here) |

for all 1 ≤ i ≤ n− 1, 0 ≤ r ≤ n− 2, where j1, . . . , js are all the nodes

such that (i, jl) ∈ E, 1 ≤ l ≤ s},

M0 = {(〈n, n− 1〉 → [n, n− 1]; out)},

S0 = C0 = ∅,

Ri = Si = Ci = ∅, for all 2 ≤ i ≤ n− 1,

Mi = {([i, j]→ [i, j]; out) | 1 ≤ j ≤ n− 1}, for all 2 ≤ i ≤ n− 2,

Mn−1 = {([n, n− 1]→ [n, n− 1]; inn)},

Rn = Sn = Mn = Cn = ∅.

The membrane structure of the system Πγ is given in Figure 3. (The skin membrane
is labeled with n − 1.) The system works in the following way. We start from the
unique object 〈1, 0〉, present in the inner membrane, that with the label 0, by repeatedly
using replication rules. These rules always prolong a string which represents a path
in the graph starting from node 1. For instance, if we have a string of the form x =
[1, 0][i2, 1] . . . [ir, r − 1]〈j, r〉, then we can pass to the strings x1 = [1, 0][i2, 1] . . . [ir, r −
1]〈j1, r〉, x2 = [1, 0][i2, 1] . . . [ir, r− 1]〈ir, r− 1; j2, . . . , js〉, where (ir, j1) ∈ E, . . . , (ir, js) ∈
E. Similarly, from a string of the form y = [1, 0][i2, 1] . . . [ir, r − 1]〈ir, r − 1; j2, . . . , js〉

13

we can pass to two strings y1 = [1, 0][i2, 1] . . . [ir, r − 1]〈j2, r〉, y2 = [1, 0][i2, 1] . . . [ir, r −
1]〈ir, r − 1; j3, . . . , js〉. In both cases, the path has been correctly continued.

No such a path can be continued if either it reaches node n or we have already made
n− 1 steps (hence the path already passes through n nodes, any further step will surely
repeat a node). In this way, we can generate all paths in the graph γ starting in node 1
and of length (as the number of arcs) at most n− 1.

Only strings which end with 〈n, n− 1〉 can be sent outside membrane 0.
In each membrane i, 2 ≤ i ≤ n − 2, a string can be only processed if it contains a

symbol of the form [i, t], for some 1 ≤ t ≤ n− 1 (this means that node i was vizited at
time t). If this is the case, then the string is sent unmodified to the next membrane. If a
string reaches the skin membrane, then it can be sent to the output membrane providing
that it contains the symbol [n, n − 1] (this means that the corresponding path ends in
node n).

'

&

$

%

�
�

�
�'

&

$

%

'

&

$

%

'

&

$

%

'
&

$
%

n− 1

n

n− 2

. . .
3

2

0

Figure 3: The membrane structure for solving HPP

Therefore, the computation always stops, but we do not always have a string in
the output membrane. This happens (that is, N(Πγ) 6= ∅) if and only if at least a
Hamiltonian path exists in the graph γ, from node 1 to node n.

Let us now compute the maximum number of steps a computation in Πγ can have.
It is clear that after obtaining a symbol 〈i, r〉 we need at most k − 1 steps for obtaining
all the possible continuations of a path which has reached node i (the outdegree of the
graph is k): in each step we prolong one path, while when we have only two further
paths to continue, we prolong both of them at the same time; write the tree representing
all paths in γ of length at most n− 1, such that each path from the root of the tree to
a leaf corresponds to a path in γ and conversely; this tree has at most n levels; in k − 1
computation steps in Πγ we pass (at least) from a level to the next one. Consequently,
we cover the tree (which means that we generate all paths in γ of length less than or
equal to n − 1) in at most (k − 1)n steps. In one more step we send out of membrane
0 the strings which are ended with 〈n, n− 1〉, then we need further n− 2 steps in order

14

to send a string to the output membrane. In total, we perform at most n2 − n− 1 steps
(make use of the fact that k ≤ n− 1).

In conclusion, we have an answer whether or not the Hamiltonian Path Problem for
γ has a solution after at most n2 − n − 1 steps performed by the P system Πγ. This
conclusion deserves to be stated as a theorem:

Theorem 3. The HPP problem can be solved by P systems with worm-objects (with-
out membrane dissolving) in a quadratic time with respect to the number of nodes.

The two phases of our computation, generating all candidate paths (in membrane 0)
and then check whether or not at least a path is Hamiltonian (in membranes 2, 3, . . . , n−
1), are similar to the two phases of Adleman’s algorithm [1], with the difference that we
need a quadratic time for producing the candidate solutions (Adleman performs this in
a constant parallel biochemical time); however, we grow only candidate solutions of a
prescribed length.

6 Solving SAT in Linear Time

Now, we can proceed as Lipton [8], extending the previous procedure to the SAT problem.
Because the truth-assignments to n variables x1, . . . , xn correspond to the paths from
a given node to another given node in a graph with outdegree 2 (see [8]), the solution
is obtained in linear time: n steps for generating all truths-assignments and m steps to
check the truth value of each of the m clauses. (Note that, in general, if we have a graph
with n nodes and the outdegree bounded by a constant k, then also the HPP problem is
solved in linear time: the system Πγ in the proof of Theorem 3 performs at most kn− 1
steps.)

Theorem 4. The SAT problem can be solved by a P system with worm-objects (and
without using the dissolving action) in a linear time (depending both on the number of
variables and the number of clauses).

Although the reader can surely figure out the P system proving this result, for the
sake of the completeness we present the construction.

Let σ = C1 ∧ C2 ∧ . . . ∧ Cm, where each clause Ci, 1 ≤ i ≤ m, is a disjunction
Ci = y1 ∨ y2 ∨ . . . ∨ yr, with each yj being either a propositional variable, xs, or its
negation, ∼ xs, for s ∈ {1, 2, . . . , n}.

We construct the P system Πσ (of degree m+ 2) with the following components:

V = {ti, fi | 1 ≤ i ≤ n},

µ = [
m

[
m+1]

m+1[m−1 . . . [2[1[0]0]1]2 . . .]
m−1]m,

A0 = {(t1, 1), (f1, 1)}; all other initial multisets are empty,

R0 = {(ti → titi+1||tifi+1;here, here),

(fi → fiti+1||fifi+1;here, here) | for all 1 ≤ i ≤ n− 2}

∪ {(tn−1 → tn−1tn||tn−1fn; out, out),

(fn−1 → fn−1tn||fn−1fn; out, out)},

15

S0 = M0 = C0 = ∅,

Mj = {(ti → ti; out) | 1 ≤ i ≤ n, if Cj contains xi}

∪ {(fi → fi; out) | 1 ≤ i ≤ n, if Cj contains ∼ xi},

Rj = Sj = Cj, for all 1 ≤ j ≤ m− 1,

Mm = {(ti → ti; inm+1) | 1 ≤ i ≤ n, if Cm contains xi}

∪ {(fi → fi; inm+1) | 1 ≤ i ≤ n, if Cm contains ∼ xi},

Rm = Sm = Cm.

The way this system works is obvious: in membrane 0 we generate all truth-
assignments in the form of strings of length n composed of ti, fi, 1 ≤ i ≤ n, in all possible
combinations (this takes n steps); a string can exit a membrane j, 1 ≤ j ≤ m − 1, if
and only if the clause Cj asumes the value true for the truth-assigment corresponding to
the string; this means that a string reaches the skin membrane if and only if all clauses
C1, . . . , Cm−1 are satisfied; a string with this property enters the output membrane if and
only if it also satisfies clause Cm. Checking the truth values of clauses takes m steps,
hence the computation halts after at most n+m steps.

References

[1] L. M. Adleman, Molecular computation of solutions to combinatorial problems,
Science, 226 (November 1994), 1021–1024.

[2] C. Calude, Gh. Păun, Computing with Cells and Atoms, Taylor and Francis, London,
2000 (Chapter 3: “Computing with Membranes”).

[3] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

[4] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix grammars,
Acta Informatica, 31 (1994), 719–728.

[5] T. Head, Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology, 49 (1987), 737–
759.

[6] S. N. Krishna, R. Rama, A variant of P systems with active membranes: Solving
NP-complete problems, Romanian J. of Information Science and Technology, 2, 4
(1999).

[7] S. N. Krishna, R. Rama, Computing with P systems, submitted, 2000.

[8] R. J. Lipton, Using DNA to solve NP-complete problems, Science, 268 (April 1995),
542–545.

[9] A. Mateescu, Gh. Păun, G. Rozenberg, A. Salomaa: Simple splicing systems. Dis-
crete Appl. Math., 84 (1998), 145–163

16

[10] Gh. Păun, Computing with membranes, Journal of Computer and System Sci-
ences, in press, and Turku Center for Computer Science-TUCS Report No 208,
1998 (www.tucs.fi).

[11] Gh. Păun, Computing with membranes. An introduction, Bulletin of the EATCS,
67 (Febr. 1999), 139–152.

[12] Gh. Păun, Computing with membranes – A variant: P Systems with Polarized Mem-
branes, Intern. J. of Foundations of Computer Science, 11, 1 (2000), and Auckland
University, CDMTCS Report No 098, 1999 (www.cs.auckland.ac.nz/CDMTCS).

[13] Gh. Păun, P systems with active membranes: Attacking NP complete prob-
lems, submitted 1999, and Auckland University, CDMTCS Report No 102, 1999
(www.cs.auckland.ac.nz/CDMTCS).

[14] Gh. Păun, G. Rozenberg, A. Salomaa, Membrane computing with external output,
Fundamenta Informaticae, to appear, and Turku Center for Computer Science-
TUCS Report No 218, 1988 (www.tucs.fi).

[15] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Heidelberg, 1998.

[16] Gh. Păun, T. Yokomori, Membrane computing based on splicing, Preliminary Proc.
of Fifth Intern. Meeting on DNA Based Computers (E. Winfree, D. Gifford, eds.),
MIT, June 1999, 213–227.

[17] D. Pixton, Splicing in abstract families of languages, Technical Report of SUNY
Univ. at Binghamton, New York, 1997.

[18] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, 1997.

[19] M. P. Schützenberger: On finite monoids having only trivial subgroups. Inform.
Control, 8 (1965), 190–194

[20] M. Sipper, Studying Artificial Life using a simple, general cellular model, Artificial
Life Journal, 2, 1 (1995), 1–35.

17

