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Abstract

We discuss types of colorings of the rational quantum sphere similar to

the one suggested recently by Meyer [1], in particular the consequences for

the Kochen-Specker theorem and for the correlation functions of entangled

subsystems.

Recently, Godsil and Zaks [2] published a constructive coloring of the rational

unit sphere with the property that for any orthogonal tripod formed by rays

extending from the origin of the points of the sphere, exactly one ray is red,

white and black. They also showed that any consistent coloring of the real

sphere requires an additional color.

Based on this very interesting result, Meyer [1] suggested that the physical

impact of the Kochen-Specker theorem [3] is \nulli�ed," since for all practical

purposes it is impossible to operationalize the di�erence between any dense set

of rays and the continuum of Hilbert space rays.

We shall argue here that Meyer's result is itself \nulli�ed" for a formal and

for a physical reason: (i) the non-closedness of the resulting set of propositions
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under quantum logical operations; in particular under the nor-operation; (ii) the

continuity of Bell-type two-particle correlation function rules out the possibility

that \unperformed experiments have results" [4].

In what follows we shall consider \rational rays." A \rational ray" is the

linear span of a non-zero vector of Qn � Rn .

Let p be a prime number. A coloring of the rational rays of Rn , n � 1, using

p
n�1 + p

n�2 + : : : + 1 colors can be constructed in a straightforward manner.

We refer to [5, 6, 7] for the theoretical background of the following construction.

Each rational ray is the linear span of a vector (x1; x2; : : : ; xn) 2 Zn, where

x1; x2; : : : ; xn are coprime. Such a vector is unique up to a factor �1.
Next, let Zp be the �eld of residue classes modulo p. The vector space Zn

p

has pn�1 non-zero vectors; each ray through the origin of Zn

p
has p�1 non-zero

vectors. So there are exactly (pn � 1)=(p� 1) = p
n�1 + p

n�2 + : : :+ 1 distinct

rays through the origin which can be colored with p
n�1+p

n�2+ : : :+1 distinct

colors.

Finally, assign to the ray Sp(x1; x2; : : : ; xn) (\Sp" denotes linear span) the

color of the ray of Zn

p
which is obtained by taking the modulus of the coprime in-

tegers x1; x2; : : : ; xn modulo p. Observe that x1; x2; : : : ; xn cannot vanish simul-

taneously modulo p and that �(x1; x2; : : : ; xn) yield the same color. Obviously,

all pn�1 + p
n�2 + : : :+ 1 colors are actually used.

In what follows, we consider the case p = 2, n = 3. Here all rational rays

Sp(x; y; z) (with x; y; z 2 Z coprime) are colored according to the property which

ones of the components x; y; z are even (E) and odd (O). There are exactly 7

of such triples OEE, EOE, EEO, OOE, EOO, OEO, OOO which are associated

with one of seven di�erent colors #1;#2;#3;#4;#5;#6;#7. Only the EEE

triple is excluded. Those seven colors can be identi�ed with the seven points of

the projective plane over Z2; cf. Fig. 1.

Next, we restrict our attention to those rays which meet the rational unit

sphere S
2 \ Q3 . The following statements on a triple (x; y; z) 2 Z3 n f(0; 0; 0)g

(not necessarily coprime) are equivalent:

(i) The ray Sp(x; y; z) intersects the unit sphere at two rational points; i.e., it

contains the rational points � (x; y; z) =
p
x2 + y2 + z2 2 S

2 \ Q3 .

(ii) The Pythagorean property holds, i.e., x2 + y
2 + z

2 = n
2
; n 2 N.

This equivalence can be demonstrated as follows. All points on the rational unit

sphere can be written as r =
�
a

a0
;
b

b0
;
c

c0

�
with a; b; c 2 Z, a0; b0; c0 2 Z n f0g, and�

a

a0

�2
+
�
b

b0

�2
+
�
c

c0

�2
= 1. Multiplication of r with a

02
b
02
c
02 results in a vector

of Z3 satisfying (ii). Conversely, from x
2 + y

2 + z
2 = n

2
; n 2 N, we obtain the

rational unit vector
�
x

n
;
y

n
;
z

n

�
2 S

2 \ Q3 .

Notice that this Pythagorean property is rather restrictive. Not all rational

rays intersect the rational unit sphere. For a proof, consider Sp(1; 1; 0) which

intersects the unit sphere at �(1=
p
2)(1; 1; 0) 62 S

2 \Q3 . Although both the set
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Figure 1: The projective plane over Z2. and the reduced coloring scheme dis-

cussed.

of rational rays as well as S
2 \ Q3 are dense, there are \many" rational rays

which do not have the Pythagorean property.

If x; y; z are chosen coprime then a necessary condition for x2+y
2+z

2 being

a non-zero square is that precisely one of x, y, and z is odd. This is a direct

consequence of the observation that any square is congruent to 0 or 1, modulo

4, and from the fact that at least one of x, y, and z is odd. Hence our coloring

of the rational rays induces the following coloring of the rational unit sphere

with those three colors that are represented by the standard basis of Z3
2:

color #1 if x is odd, y and z are even,

color #2 if y is odd, z and x are even,

color #3 if z is odd, x and y are even.

All three colors occur, since the vectors of the standard basis of R3 are

colored di�erently.

Suppose that two points of S2 \Q3 are on rays Sp(x; y; z) and Sp(x0; y0; z0),

each with coprime entries. The inner product xx0+ yy
0+ zz

0 is even if and only

if the inner product of the corresponding basis vectors of Z3
2 is zero or, in other

words, the points are colored di�erently. In particular, three points of S2 \ Q3

with mutually orthogonal position vectors are colored di�erently.

From our considerations above, three colors are su�cient to obtain a coloring

of the rational unit sphere S
2 \ Q3 such that points with orthogonal position

vectors are colored di�erently, but clearly this cannot be accomplished with two
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colors. So the \chromatic number" for the rational unit sphere is three. This

result is due to Godsil and Zaks [2]; they also showed that the chromatic number

of the real unit sphere is four. However, they obtained their result in a slightly

di�erent way. Following [6] all rational rays are associated with three colors by

making the following identi�cation:

#1;

#2 = #4;

#3 = #5 = #6 = #7:

This 3-coloring has the property that coplanar rays are always colored by using

only two colors; cf. Fig. 1. According to our approach this intermediate 3-

coloring is not necessary, since rays in colors #4, #5, #6, #7 do not meet the

rational unit sphere.

As a corollary, the rational unit sphere can be colored by two colors such

that, for any arbitrary orthogonal tripod spanned by rays through its origin,

one vector is colored by color #1 and the other two rays are colored by color

#2. This can be easily veri�ed by identifying colors #2 & #3 from the above

scheme. (Two equivalent two-coloring schemes result from a reduced chromatic

three-coloring scheme by requiring that color #1 is associated with x or y being

odd, respectively.)

It can also be shown that each color class in the above coloring schemes

is dense in the sphere. To prove this, Godsil and Zaks consider � such that

sin� = 3
5
and thus cos� = 4

5
. � is not a rational multiple of �; hence sin(n�)

and cos(n�) are non-zero for all integers n. Let F be the rotation matrix about

the z-axis through an angle �; i.e.,

F =

0
@ cos� sin� 0

� sin� cos� 0

0 0 1

1
A :

Then the image I , under the powers of F , of the point (1; 0; 0) is a dense subset

of the equator.

Now suppose that the point u =
�
a

c
;
b

c
;
�
is on the rational unit sphere and

that a; c are odd and thus b is even. In the coloring scheme introduced above,

u has the same color as (1; 0; 0) (identify a = c = 1 and b = 0); and so does Fu.

This proves that I (the image of all powers of F of the points u) is dense. We

shall come back to the physical consequences of this property later.

In the reduced two-color setting, if the two "poles" �(0; 0; 1) acquire color
#1, then the entire equator acquires color #2. Thus, for example, for the two

tripods spanned by f(1; 0; 0); (0; 1; 0); (0; 0; 1)g and f(3; 4; 0); (�4; 3; 0); (0; 0; 1)g,
the �rst two legs have color #2, while (0; 0; 1) has color #1.

The above coloring scheme of the rays through the origin meeting the ra-

tional sphere is not closed under certain geometrical operations such as taking
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two orthogonal ray of the subspace spanned by two non-collinear rays (the cross

product of the associated vectors). This can be easily demonstrated by consid-

ering the two vectors �
3

5
;
4

5
; 0

�
;

�
0;
4

5
;
3

5

�
2 S

2 \ Q3
:

The cross product thereof is�
12

25
;
�9
25

;
12

25

�
62 S

2 \ Q3
:

Indeed, if instead of S2\Q3 we would start with three non-orthogonal, non-

collinear rational rays and generate new ones by the cross product, we would

end up with all rational rays [8].

From a quantum logic point of view, this non-closedness under elementary

operations such as the nor-operation might be considered a serious de�ciency

which rules out the above model as an alternative candidate for Hilbert space

quantum mechanics. Indeed, it is just the relative (with respect to other sets

such as the rational rays) \thinness" which guarantees colorability, but which on

the other hand does not allow closedness under the quantum logical operations.

It may, however, be argued that the non-closedness is among counterfactual,

non-commuting properties which have no direct operational meaning. But then

it would be entirely senseless to consider any but six points of the rational sphere

corresponding to intersections with a single tripod (that one being measured),

which would make any coloring trivial.

Of course, this leaves open the question as to whether or not there exist

dense sets of chromatic number three which are closed under quantum logical

operations, in particular under the nor-operation.

The coloring schemes discussed above have a physical interpretation as fol-

lows. Any linear subspace Sp r of a vector r can be identi�ed with the associated

projection operatorEr and with the quantum mechanical proposition \the phys-

ical system is in a pure state Er" [9]. The coloring of the associated point on the

unit sphere (if it exists) is equivalent with a valuation or two-valued probability

measure

Pr : Er 7! f0; 1g
where 0 � #2 and 1 � #1. That is, the two colors #1, #2 can be identi�ed

with the classical truth values and with the EPR- type \elements of physical

reality" [10]:

\It is true that the physical system is in a pure state Er."

\It is false that the physical system is in a pure state Er."

Since, as has been argued before, the rational unit sphere has chromatic

number three, two colors su�ce for a reduced coloring generated under the
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assumption that the colors of two rays in any orthogonal tripod are identical.

This e�ectively generates consistent valuations or \elements of physical reality"

associated with the dense subset of physical properties corresponding to the

rational unit sphere [1]. For an extension of these arguments, see Kent [11] and

Clifton and Kent [12].

We may indeed take for granted that for all practical (operational) physical

purposes, a dense subset cannot be distinguished from the usual Hilbert space

based upon real or complex number �elds. This is, at least to our knowledge, one

of the very rare instances where it does make a di�erence whether we consider a

real rational quantity or merely its rational double. The two cases lie on di�erent

sides of a demarcation line of classicality and (maybe) an \understanding" of

quantum mechanics.

To put it di�erently: given any nonzero measurement uncertainty " and any

non-colorable Kochen-Specker graph �(0) [3, 13], there exists another Graph

(in fact, a denumerable in�nity thereof) �(�) which lies inside the range of

measurement uncertainty � � " [and thus cannot be discriminated from the

non-colorable �(0)] which can be colored. Such a graph, however, might not be

connected in the sense that the associated subspaces can be cyclically rotated

into itself by local transformation along single axes. The set �(�) might thus

correspond to a collection of tripods such that none of the axes coincides with

any other, although all of those non-identical single axes are located within �

apart from each other.

If this is indeed the case, then the reason why a Kochen-Specker type contra-

diction does not occur is the impossibility to \close" the argument; to complete

the cycle: the necessary elements of physical reality are simply not available in

the rational sphere model. (For the same reason, an equilateral triangle does

not exist in Q2 [14].)

However, in addition to the non-closedness under elementary quantum logi-

cal operations we would like to point out another, rather serious problem. Due

to the density of points colored with any single color, any such coloring is non-

continuous in the sense that between any two points of equal color there is a

point (indeed, an in�nity thereof) of di�erent color.

Let us then assume that any such value-de�niteness might apply also to

non-local setups and consider Bell-type correlation functions for spin- 1
2
state

measurements. For singlet states along two directions which are an angle �

apart, the quantum probabilities to �nd identical two particle states ++ or ��
is P= = P

++ + P
�� = sin2(�=2), whereas for the non-identical states +� and

�+ it is P 6= = P
+�+P

�+ = cos2(�=2). The corresponding classical quantities

are P= = �=� and P
6= = 1� �=� [15, 16, 17]. In the quantum case, a statistical

argument [4, 16, 17] demonstrates that \elements of physical reality" do not

exist, whereas in the classical case they can be de�ned.

Thus if there exists any coloring of the associated fourdimensional model,

any such coloring should be in accordance with the physical �ndings which

support quantum mechanics. In particular, any probability theory derived from
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the valuations of dense subsets of Hilbert spaces should be able to reproduce

the well-known quantum correlations which violate value-de�niteness as well

as locality. This, however, is neither possible with the usual classical value-

de�niteness, nor with the discontinuity originating in the denseness of any single

color.
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