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Institute of Mathematics of the Romanian Academy
PO Box 1 – 764, 70700 Bucureşti, Romania
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Abstract. The aim of these notes is to state a series of open problems and,
mainly, research topics about P systems. They can be clustered in three
classes: questions dealing with “classic” topics in automata and language
theory, questions motivated by the possible usefulness of P systems as com-
puting models (implementation and complexity issues), and questions related
to the fields where the P systems are inspired from, biology and biochem-
istry. Precise open problems can be found practically in all papers published
or distributed so far on the web; here we are mainly interested in research
directions, in classes of problems.

A Wealth of Research Topics

The reader is supposed to already be familiar with P systems, basic variants and basic
results included, so I do not recall definitions, proofs, and theorems in a formal manner.
The current bibliography of the domain, given at the end of this discussion, can be helpful
to this aim. In particular, Chapter 3 from the monograph [P2] is recommended, as the
first systematic survey of the domain (however, at the level of October 1999, which is
not irrelevant for P systems study: several of the papers mentioned in the bibliography
are dated later).

I only recall the picture in Figure 1, illustrating the idea of a membrane structure,
as well as a list of keywords, naming ingredients of P systems of various types: mem-
brane, elementary membrane, skin membrane, membrane structure, label, region, outer
region, object, symbol-object, string-object, multiset, evolution rule, communication,
commands here, in, out, target, nondeterministic communication, concentration, elec-
trial charge (polarization), dissolving a membrane (action δ), increasing the thickness of a

1Research supported by the Direcció General de Recerca, Generalitat de Catalunya (PIV), and the
Politechnical University of Madrid.
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membrane (action τ), configuration, transition, computation, halting, internal/external
output, active membrane, dividing a membrane.
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Figure 1: A membrane structure
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So, let us begin directly by discussing possible directions for research. I am warning
about the fact that these research directions are not all of the same generality, difficulty
and/or importance, moreover, they are not ordered according to any conceivable crite-
rion, such as the generality, difficulty, and/or importance. In particular, it is possible
that some questions are easy to settle, while others might be close to nonsense. What I
claim is that these questions deserve some efforts to clarify them, starting with the very
problem whether or not they are trivial and/or irrelevant. In this moment, nobody has
done this effort. (Needless to say that I would be very P-indebted to the reader for any
feedback.)

a. Computing with membranes starts from the analogy of processes which takes place
in the complex structure of a living cell with a computing process. In the style of other
branches of Natural Computing, we learn from (alive) nature new computing models
and strategies (let us say, paradigms), but it is not clear in this moment whether or not
we have to go back to biochemistry for implementing the new computing models (like
in DNA Computing) or to the electronic computer (to the general purpose one, or to a
specially designed one) for implementation (like in Neural Networks and Genetic Algo-
rithms). Figure 2 illustrate this dillemma, which, in my opinion, is the most fundamental
one for membrane computing in this moment.

b. We have also to be prepared for the case that no implementation of P systems
will be done (that is, no implementation of a real practical interest), that the attempt
will remain forever in info.

A sort of a metaquestion appears here: (at least up to now) the kind of problems
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and, mainly, the kind of proof tools addressed in P systems area are very similar to
those in automata and language theory; however, in the basic membrane computing
model, we do not deal with strings and languages, but with multisets of atomic objects.
It is not the syntax what matters here, but the numerical vectors which characterize
the multiplicity of copies of the objects from a given region. Then, P system theory
(let me call it so) is a branch of what? Of Formal Multiset Theory, instead of Formal
Language Theory? This sounds interesting, especially if we take into account that there
are a series of papers devoted to multiset mathematics and manipulation (see, e.g.,
[1], [3], [22] and their references; remark the fact that in some papers one says “bag”
instead of “multiset”). Then, P systems can be seen as a part of the generative theory of
multisets (with the observation that they are already distributed systems, corresponding
to grammar systems in language theory; the simpler, non-distributed case still waits for
a systematic study (providing that a mathematical or a “practical” interest for such a
study will be identified).

Figure 2: The four domains of Natural Computing
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Actually, a really huge number of technical problems are in circulation in the P
systems area and they already can motivate a Formal Multiset Theory. The whole
program of formal language theory can be repeated here, irrespective of the fact whether
or not we deal with languages or with multisets: generative/computing power; closure
properties (by the way: what corresponds to an Abstract Family of Languages in terms
of multisets? how does look an AFM = Abstract Family of Multisets, and the AFM
theory?); necessary conditions and counterexamples (such tools are almost completely
missing in this moment, but they are urgently necessary in order to settle such problems
like finding infinite hierarchies and for separating the power of classes of P systems);
decidability (classic – emptiness, finiteness, equivalence, etc – but also specific: is a
specified membrane ever dissolved/divided?); comparison of classes of P systems among
them and with other number or language generating devices (maybe taking the equality
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modulo Parikh images in the case of languages); the power of small systems (first, we
have to define “small”, hence to consider measures of descriptional complexity); and so
on and so forth.

I do not persist in this direction, the reader can consult the bibliography of P systems,
or can imagine him(her)self such problems.

c. Fundamental to P systems is not only the fact that (in the basic variant) we work
with multisets, but also the membrane structure, with all consequences of that, especially
the possibility of working in separate regions, arranged in a hierarchical fashion, and to
communicate among regions. It is important to emphasize this: the membranes are
separators and channels of communication. Having in mind the biological source of
inspiration, we can imagine the membranes as physical objects, but this can be a serious
limitation when looking for implementations. Any kind of virtual separators which allow
(selective) communication among the delimited regions can play the role of membranes.

Continuing the previous ideas, computing with membranes should be interpreted
in a very general manner, as a framework where distributed processes take place in a
membrane structure (a hierarchical arrangement of regions), with an essential role played
by communication. Keeping close to the biological source, P systems can be viewed as
a general architecture of “living organisms”, in the sense of Artificial Life (see, e.g., [13]
and [21]). Whether or not the “life” of a system is to be interpreted as a computation
or as a process with another meaning depends on the observer/user. The generality of
the approach suggests to consider “incarnations” of P systems in other domains bearing
some kind of “life” (in the sense of a development in time), such as logics and formal
systems.

d. Regarding the central role of communication, the folowing question is of a clear
mathematical and epistemological interest: what about the possibility of considering a
class of P systems, meant to compute, where no rule for objects evolution appears, but
only rules governing object communication from a region to another one. Because no
object can be produced inside the system (there is no rule of the form a → bc, thus
increasing the number of occurrences of objects in the system), we have to consider rules
for bringing objects from a specified source, for example, from the outer region. This can
be done by either considering rules in the outer region of the form b→ bin, c→ cin, with
the meaning that a copy of b and a copy of c are introduced in the skin membrane, or by
considering a new command associated with objects, besides here, in, out, for instance
come; rules introducing symbols bcome will be used in the skin membrane only, with the
obvious meaning, of bringing a copy of b from outside the system.

Note that even simple rules of the form a→ b are not allowed, hence we have either
to allow changing of objects when passing through a membrane, or to simulate them, for
instance, by sending the symbol a outside the system and, at the same time, bringing b
from the outer region. If the rule a→ b is to be used in a low level region, this does not
look at all trivial.

The main mathematical difficulty stands in defining the communication among re-
gions in such a way to get non-trivial computing results by using as elegant and as weak
rules as possible. Some conditions should be observed in order to perform communication
steps, for instance, in the form of predicates depending on the communicated objects
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and the contents of regions. If these predicated will be powerful, then the system will
be powerful, but too powerful predicates will make the things non-interesting. (Maybe
register machines can be used in order to prove results about such purely-communicative
P systems.)

e. Let us stay close to biology. Several important laws and characteristics of what
happens in biology and biochemistry (at the level of living cells) were practically ignored
up to now when defining P systems. For instance, a fundamental law of chemistry is the
conservation of matter. Rules of the form a→ aa are creating a copy of a from nothing.
In info this can be done, in vivo or in vitro it never happens. . . Can the conservation
law be incorporated in the membrane computing area? An easy solution seems to be to
consider that the system brings new objects from its environment (from the outer region),
as suggested above for systems completely based on communication and without using
evolution rules. Still, the problem is not trivial: if a piece of “raw material” a′ is meant
to become a together with one more copy of a, this means that we need a rule of the
form aa′ → aa, which means cooperation. Cooperative systems are non-interestingly
powerful. An elegant way to handle “raw materials” remains to be imagined.

Of course, it is much easier to handle “matter destroying rules”, of the form a→ λ:
instead of the empty string we can consider a dummy object, #, just denoting “garbage”,
which never evolves and which, if necessary, is sent out the system. (As usual in na-
ture/life, the difficulty is to create, not to destroy. . . )

f. The trigger of defining P systems was the assertion, found in several places, that the
processes taking place in a living cell, involving manipulations of chemical compounds,
energy, and information, can be considered as computing processes. Up to now, almost
exclusively chemical compound evolution was captured in P systems, by means of object
evolution. What about energy?

I said “almost exclusively”, because energy is implicitly present in the definition of
certain ingredients. For instance, dissolving a membrane when using a certain rule,
say, a → bδ, can be considered to correspond to destroying the membrane because the
transformation a → b is accompanied by producing a large quantity of energy, which
breaks the membrane.

Similarly, when defining a priority among rules, the interpretation can be again re-
lated to energy: rule a→ b has priority on rule c→ d because the reaction it models is
more active than the reaction modeled by the latter rule; moreover, rule c→ d cannot be
applied at the same step with rule a→ b just because the energy available was consumed
by a→ b (and not because the two rules compete for the same objects).

Thus: what about explicitly introducing the energy in the model?
In some sense, this can be easily done: consider a special object, e, as denoting a

quanta of energy, and use it in the rules of a system as using any other object. For
instance, a rule of the form aee → b means that object a is transformed into object b
at the cost of two energy quanta; on contrarily, a → bee means producing two energy
quanta during transforming a into b. This again brings cooperation into system, of a
well-restricted type.

A problem can arise about using or not rules of the form a → ee, or even e → ab.
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Can energy be converted into substance or conversely? How this can be done? (Which
kind of E = mc2-like formula we have to observe?)

g. The interpretation of the priority relation in the above “strong” sense reminds to
us the use of an order relation in ordered grammars from the regulated rewriting area
(see [11]): if A→ u > B → v, then the rule B → v is not allowed to be used if the rule
A → u can be used. What about an interpretation of the priority in a “weaker” way:
a rule may be applied if there are objects to which no rule of a higher priority can be
applied, irrespective of whether or not such rules of a higher priority can be applied to
other objects.

An example can clarify the difference between the two interpretations. Consider that
we have the rules r1 : ab → cc, r2 : b → d, with the priority r1 > r2, and the multiset
represented by aabbb. The rule r1 can be applied to the two pairs of objects ab. In
the strong interpretation of the priority, the rule r2 cannot be applied to the remaining
copy of the object b, this b passes unchanged to the next configuration; consequently,
the result is ccccb. In the weak interpretation, the rule r2 can be applied at the same
step with r1 to the remaining copy of b, because r1 cannot use it; the result is ccccd.

Up to now, only the strong interpretation has been investigated. The weak one only
appears by a mistake in an example from the technical report version of [P15], also used
in [P16] (see the correction from [P19]). What about P systems using a priority relation
in the weak interpretation sense?

h. The conservation law is fundamental, but also the reversibility is basic to bio-
chemistry. Many reactions are reversible, can go in either way (maybe depending on
a change of reaction conditions, for instance, temperature – hence energy availability).
In dynamic systems, reversibility is somewhat opposed to nondeterminism: we have to
uniquely find the previous configuration of the system starting from the present config-
uration. Strictly chemically speaking, reversibility means reversing the direction of an
equation. What about reversible P systems in the dynamic systems sense, what about
“local reversible P systems”, with the rules allowed to be used in both senses (for each
u → v we have to also add v → u to the same region)? (By the way, it is known since
many years, [2], that reversible Turing machines are computationally universal. Can
reversibility be brought “for free” to P systems area from Turing machines area?)

i. At the border of biochemistry and mathematics we can find many further ques-
tions. One of them concerns the determinism. One of the central interesting features of
computing with membranes is the inherent nondeterminism of P systems. This corre-
sponds to what happens in cells and test tubes, where the chemical compounds swim in
a solution, in a closed space, and evolve nondeterministically according to certain rules.
If we attempt to implement membrane computing on the usual computer, then a big
problem (= difficulty) appears: we have to simulate nondeterminism on a deterministic
machine (still more: we have to simulate parallelism on a sequential machine). How to
do this depends on the computer used and on the programming language used, and this
is a practical problem. From a mathematical point of view, the problem is to consider de-
terministic P systems (what this precisely means, for instance, in the case of cooperating
systems, is already a question) and to investigate their power. (The determinism versus
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nondeterminism question has a glorious history in automata theory and in Lindenmayer
system theory, so suggestions can be found in these areas.)

j. A somehow related question: what about P systems with the same rules used
in all regions? The use of rules associated with regions is motivated by the fact that
rules model chemical reactions and these reactions need specific conditions, which can
be assumed to be specific to regions. Various regions have different reaction conditions,
hence different rules can act in each of them. Still, the chemistry is universal and the
regions of the same cell should have a certain degree of uniformity. Which is the power
of “uniform P systems”, with the same set of rules acting in all regions?

In some sense, in P systems with active membranes we have such a case, but mem-
branes themselves appear in the rules. The problem stated above is of interest for P
systems without active membranes, in the sense of the paper [P15].

k. The previous question concerns, in fact, a normal form of P systems, which
is a more general research topic. At least as important as the form of rules is the
shape of the membrane structure. In specific circumstances, specific shapes could be
more realistic than others, easier to implement than others. The number of different
membrane structures grows fastly with the number of membranes. In principle, we
have to ask whether or not, given a P system with any given membrane structure, we
can (effectively) construct an equivalent P system with another membrane structure
(supplementary restriction: preserving the number of membranes).

Results of this type appear in [P22] and [P27]. For systems which are computationally
complete, when this result is obtained by using a restricted number of membranes, the
form of the system is already well restricted. Still, the question of finding normal forms
(especially from the point of view of the shape of the membrane structure) requests
further research efforts.

l. In living cells, the “objects” are moved from a region to another one, through
membranes, by making use of the protein channels present in membranes, or because of
electrical charges, or randomly, or, mainly, because of different concentrations in neigh-
boring regions. Communication controlled by the concentration of objects was considered
only in [P5], but its importance in biology motivates a more systematic investigation.

Actually, this is related to a more general topic, of defining the processes in a region
depending on the contents of that region. For instance, the rules themselves could
be chosen according to the objects present in a region. In real cells, division appear
also depending on the contents of the cell, not necessarily entailed by a single object
(sometimes, the cell divides just because it contains “too much” material, and it is
necessary to create a supplementary space). A more extended dependency of evolution
on region contents is natural to be considered.

m. We have already reached the “territory” of mathematical problems, having or
not direct biochemical motivations and/or possible practical implications. A very fruitful
question, of a rather common place in all computability areas, concerns hierarchies. Is
n + 1 strictly stronger than n? In general, it is expected to be so. Many parameters
are intimate to the P systems structure, some of them of a classic form (corresponding
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to descriptional complexity measures in formal language theory, see, e.g., [12]), others
are specific to the new devices. The number of catalysts, of membranes, of rules (in
total or the maximal number of rules in a region) are of the first type, the depth of the
membrane structure (the height of the tree associated with it), its width or “outdegree”
(again, defining these notions for the associated tree) are of the second type. When
characterizations of the power of Turing machines are obtained by systems of a given
size (for instance, as the number of membranes), the hierarchies collapse, but when no
such characterizations are known the problem whether or not a given parameter induces
an infinite hierarchy remains to be investigated.

An important detail: because of the existence of universal Turing machines and of
universal type-0 Chomsky grammars (see an explicit construction of such a grammar
in [4]; small universal Turing machines can be found, e.g., in [18]), a proof that many
hierarchies collapse can sometimes be found in a rather easy way. Namely, when a class
of P systems is computationally complete and the proof of such a result starts from a
Turing machine or a type-0 Chomsky grammar and it constructs an equivalent P system,
then, by starting from a universal machine or grammar we get a universal P system, a
fixed one, which can generate any given set M of numbers (as usual in P systems area)
by changing the objects initially present in the system. The membrane structure and
the rules will remain the same, only the objects in the initial configuration will depend
on M . In this way, all parameters which deal with membranes and rules will remain
unchanged. The size of the universal P system will be an upper bound for all hierarchies
on parameters related to membranes and rules (but not on those related to the initial
objects present in the system). Finding the smallest value of these parameters, sufficient
for obtaining computational completeness, is another question, expected in many cases
to be of a serious difficulty.

It appears here a really classic question. Many proofs of the computational complete-
ness of P systems of various types start from matrix grammars with appearance checking
(known to characterize the recursively enumerable languages) in the binary normal form
(see Lemma 1.3.7 in [11]). However, no universal grammar of this type is known, so, we
cannot get collapsing hierarchies in the way discussed above. Finding a universal matrix
grammar, in a sort of binary normal form (with all non-initial matrices containing only
two rules) is, therefore, a formal language theory problem of a definite interest for P
system theory.

n. I have several times mentioned the possibility of describing the membrane struc-
ture of a P system by means of a tree. This has been already pointed out in [P15] and
[P21], and considered again in [P22] as a starting point of a generalization of the idea of
a membrane structure, to supports of P system-like devices working on graphs different
from trees (only planar graphs were considered in [P22]). Here stands a more general
question, which is actually a two-fold one: (1) to make use of this mathematically nice
description of a membrane structure by a tree and to work on trees in a systematic way,
and (2) to consider systematically the idea of working on graphs of more general forms.
Of course, the biochemical intuition of a membrane structure is lost when discussing
about trees (dissolving a membrane means to remove a node from the tree and to link
all direct descendants of the node to the parent node, communicating objects through
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membranes means to move objects up and down in the tree, etc), but, maybe, tools and
suggestions from graph theory will come into the stage.

o. Another large class of problems appears when considering string-objects instead
of symbol-objects. This case was already investigated in [P15], [P9], [P14], [P24], and
recently in [P31] and [P32], but a systematic study is still missing. When dealing with
strings we need string processing rules; rewriting rules and splicing rules were considered,
other types of rules not (such as insertion-deletion or context addition, as common in
the area of contextual grammars, see [16], operations inspired from the genetic area as
those considered in [10], and so on). “Purely biological P systems”, involving operations
inspired from biology, look of interest (at least esthetically). What is clear is that string
processing plus distributed computing in the sense of P systems is very powerful, “small”
and “simple” P systems are to be expected to characterize the recursively enumerable
languages. As usual when inventing a new class of P systems, also when looking for
string processing P systems we have to look for systems which are as elegant as possible,
using as simple as possible ingredients.

A somewhat strange idea concerning the communication of string-objects from a
region to another one is the following, leading to a sort of “P systems based on worms
processing”: when communicating strings from one region to another one, through a
membrane, proceed step-by-step (symbol-by-symbol?), in such a way that a string can
have a part in one region and another part in another region (maybe, a string can
have parts in several regions, more than two); each substring is processed (for instance,
rewritten) by the rules in the region where it lies. There are at least two technical
questions here: how to define the moving of strings through membranes? how to define
the result of a computation?

p. A fruitful idea seems to be that of combining symbol-object and string-object P
systems. In symbol-object systems we process multisets of symbols and the result of a
computation is a number or a vector of natural numbers. In string-object systems we
process strings in a way quite similar to language theory (to grammar system theory,
because of distribution), without using multisets, and the result of a computation is a
language. Let us consider multisets of strings, processed by rewriting, splicing, or by
other string operations, but always taking into account the number of copies of each
string. (For instance, when a derivation step of the form x = x1Ax2 =⇒ x1ux2 = y is
performed, the number of copies of the string x is decreased by one and the number of
copies of the string y is increased by one.) Consider as the result of a computation the
number of strings present at the end of the computation in a specified membrane.

Of course, because we need to change the number of strings from a step to another one,
rewriting operations (or splicing operations which recombine two strings and produce
two new strings) are not enough, we need further operations. Some possibilities are
suggested by the biology of the cell (for instance, the DNA biochemistry): cut a string
into two new strings, duplicate a string, merge two strings into one new string; we can
decrease the number of strings also by sending them out of the system. The study
of such systems was already started in [P3], but only a few preliminary results were
found: computational completeness and the possibility of solving the Hamiltonian Path
Problem in quadratic time and the SAT problem in linear time. The used operations were
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reduplication, splitting, mutation, and crossing-over at given places. These operations
have correspondents in the DNA biochemistry and similar operations are also used in
[21]; crossing-over means passing from x1zx2, y1zy2 to x1zy2, y1zx2, because of the block
z (this corresponds to the operation in [20] and is a restricted case of the splicing).

A particular problem in this framework: consider only string-objects of a bounded
length. Does the maximal length induce an infinite hierarchy of the number sets com-
puted by systems of a given type?

q. Generalizing the passing from symbol-objects to string-objects, an immediate fur-
ther step is to consider still more complex structures for describing the objects, such
as trees, graphs of arbitrary forms, arrays, etc. Such generalizations are classic in lan-
guage theory (graph grammar area, array grammars, and even picture grammars are well
developed domains); also in the DNA Computing were tried such generalizations, for in-
stance, considering the splicing operation for trees and arrays (references can be found
in [17]). In relation with the previously mentioned research topic of exporting membrane
computing basic ingredients to other domains, it is natural to start by considering usual
systems with complex object descriptions. Maybe the complexity of objects (of data
structures we use) can compensate for using systems of a simple form, closer to “reality”
and “easier to implement”.

r. Of a definite interest are the research topics related to “applications” of P systems.
A theoretical application, done only in info, is also called application here. This is
the case with solving SAT (in [P3] and [P18]), the Hamiltonian Path Problem (in [P3]
and [P8]), and the Node Covering Problem (in [P8]) in linear time, or to break DES
(in [P10]). Find further hard (NP-complete) problems which can be “solved” in the
membrane computing framework in a polynomial time (in a direct manner, not by a
polynomial reduction to the NP-complete problems mentioned above). What about the
primality question, can it be decided in a linear time? P systems deal with numbers,
so it is expected that number theory questions are good candidates of problems to be
addressed in the P area.

s.When attacking the previous NP-complete problems, one uses P systems with the
possibility of dividing membranes. When a membrane is divided, its contents is almost
completely replicated in the membranes obtained by division; in one step, does not matter
how many objects and lower level membranes exist, all of them are replicated (in the case
of [P18] in two copies, but in [P8] the number of copies is not bounded). This is a very
powerful operation, not only because it enhances the parallelism (an exponential number
of membranes can be obtained in a linear number of steps), but also because of this one-
step replication of arbitrarily many objects. On the other hand, the initial model, that
without membrane division already possesses a great amount of parallelism (somehow, of
the type known from Lindenmayer systems). Is this parallelism sufficient in order to solve
complex problems in an efficient way? Finding a specific NP-complete problem which
can be solved in polynomial time by a P system without membrane division (and using
symbol-objects) would be a very important result (the previous formulation suggests
that I am a little bit pessimistic about this possibility: the symbols cannot contain “too
much” information, as it is the case with membranes and with strings).
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t. A “local” problem, related to the previous two points. In [P18] one deals with
the case when the division of a membrane leads to two new membranes, while in [P8]
one imposes no bound on the number of the new membranes. Is this latter feature
necessary, or any system with, say, k-division can be simulated by a system with 2-
division, maybe with a controlled slowdown? The intuition says that this would be the
case: k descendant membranes of a given membrane can be obtained by k − 1 divisions
into two membranes; all other membranes and all objects not involved in these divisions
can be “kept busy” for a number of steps depending on k by “timing rules” of the form
a → a1, a1 → a2, . . . , ai → ai+1, . . . , ar → a. It happens that this intuition is not at
all easy to be implemented. One of the main difficulties appears with the division of
non-elementary membranes, when no object controls the division and, moreover, we do
not know in advance how many copies of a membrane should be produced.

The 2-division systems can be considered as a normal form. A more general question
for systems with membrane division is to look also for normal forms concerning other
features, starting with the shape of the membrane structure; restricting the value of
parameters related to the tree describing a membrane structure might be one of the
directions for looking for such normal forms.

u. In what concerns the handling of membranes and the possibility of increasing
their number, of interest can be one more idea: to create new membranes directly under
the influence of objects, not starting from a previous membrane. In nature, it happens
that membranes emerge in certain circumstances just by the organization of certain
chemical compounds (lypidic molecules). What about rules of the form u → [

i
v ]
i
,

which mean that the objects identified by u are transformed into the objects identified
by v, surrounded by a fresh membrane having the label i. Because of the label, we
precisely know the rules which can act in the region of this membrane i (we associate in
advance a set of evolution rules with each membrane label).

This can be a very powerful computing tool: by a rule of the form a → aa, in n
steps we get 2n copies of the object a; using then the rule a→ [

i
b]
i
we can get 2n copies

of the membrane with the label i, which is very much similar to the way of producing
exponentially many membranes in the case of systems with membrane division.

v. Also with respect to membrane handling, one can consider the possibility of com-
municating from a region to another one not only separate objects, but also membranes
as a whole. For instance, by applying a rule of the form [

i
[
j
]
j
]
i
→ [

i
]
i
[
j
]
j
the membrane

with the label j is sent out of the membrane with the label i (if the latter one is the
skin membrane, then membrane j leaves the system). Of course, by moving membrane
j outside membrane i, the contents of membrane j is moved as a whole (an arbitrarily
large number of objects can be communicated at the same time outside membrane i; this
is not at all similar to dissolving membrane i, because the communicated objects are now
together in membrane j, which is placed in the membrane directly above membrane i,
and both membranes i and j are still present in the system.

By using the previous rule in the reverse order (remember the reversibility problem;
here we just look for rules which define the introduction of a membrane into another
one), we can introduce membrane j, together with its contents, inside the region of
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membrane i. The computing possibilities open by using such rules, able to modify the
very topology of the membrane structure, of “rewriting” it, seem to be very powerful
(and intricate from a mathematical point of view).

w. Although this was mentioned several times before, I formulate as an explicit re-
search topic the need of implementing P systems on the electronic computer, to simulate
them by programs written in appropriate programming languages. Simulating paral-
lelism and nondeterminism on a sequential deterministic machine can lose all the power
and attractivity of computing with P systems, while solving NP-complete problems in
linear time means using an exponentially large space, but still the attempt should be
done. The papers [P11] and [P29] have already tried this, but for systems without mem-
brane division; moreover, the papers do not include actual programs (maybe the authors
have such working programs and they have not distributed them).

Even if in this way we do not get an implementation of P systems in silico, we can
get tools for related problems, such as simulating the life of a system, in the sense of
Artificial Life. (For systems with only one membrane and with the number of possible
objects bounded, this was already done – see [P30] and its references.)

x. Now, I come to an important point, the trade-off between programmability, ef-
ficiency, and adaptability/learnability, as pointed out by M. Conrad in several papers,
see, e.g., [7], [8]. Looking for computing devices equal in power to Turing machines and
also having universality properties (in the sense of the existence of universal devices in
the considered class, which makes possible the programmability) is natural and seems
desirable from a “classic” (= mathematical) point of view, but bio-computing seems
to make possible an old dream of computer science, adaptable computers, which can
“learn” both at the level of the hardware and at the level of the software. Even if the
price of adaptability is the loss of programmability, maybe also of efficiency, it is highly
possible that classes of problems exist for which it is preferable to have computers with
an evolving hardware, adapted to the problem they have to solve. What this could
mean in the membrane computing area is not at all clear, but the biological origin of
P systems supports the question of investigating this topic. Suggestions from areas of
Natural Computing where evolution and adaptation/learning are already central issues,
like Neural Networks and Evolutionary Computing, will probably be useful.

y. In general, a more systematic osmosis with other areas of Natural Computing or
with other approaches to distributed computing (such as systolic systems, actor systems,
etc) is of interest and, expectedly, fruitful for both sides: ideas from other domains
can be added (reformulated) to membrane computing area, while ideas from membrane
computing area can (hopefully) be useful to other fields. P system theory has already
imported many ingredients from grammar system theory (see, e.g., [9]) and from the
DNA Computing area (see, e.g., [17]). A close correspondence with Cardelli’s ambient
calculus (see, [5], [6]) was found in [P28].

z. Membrane Computing comes from biology and in biology and biochemistry the
processes are nondeterministic, the result is only approximately/probabilistically true.
Up to now, only “crisp” mathematics was used in P system area (the same is in a
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great extent true also for DNA Computing). What about “approximate” mathematical
approaches, using probabilities, fuzzy sets, or rough sets theory? (For the latter one, see
[15]; the basic idea is to approximate a set from the interior and from the exterior, by
converging unions of equivalence – or, more general, tolerance – classes.) What about
“approximate” computing, whatever this can mean? All these can be reformulated in
terms of soft computing, to which, in my opinion, Molecular Computing (DNA and
membranes included) belongs.

There are no further letters in the alphabet, so I stop here. . .
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[P20 ] Gh. Păun, From cells to computers. Computing with membranes (P systems):
An informal survey, submitted, 1999.

[P21 ] Gh. Păun, G. Rozenberg, A. Salomaa, Membrane computing with external
output, Fundamenta Informaticae, to appear, and Turku Center for Computer
Science-TUCS Report No 218, 1988 (www.tucs.fi).
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guages, FCT99, Iaşi, 1999, J. Universal Computer Sci., 5, 9 (1999), 588–598.

[P29 ] Y. Suzuki, H. Tanaka, On a LISP implementation of a class of P systems, sub-
mitted, 1999.

[P30 ] Y. Suzuki, J. Takabayashi, H. Tanaka, Investigation of an ecological system by
using an abstract rewriting system on multisets, in Recent Topics in Mathematical
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