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Abstract. We consider as pertaining to Natural Computing (in some sense,
characterizing it) the following five domains: Neural Networks, Genetic Algo-
rithms, DNA Computing, Membrane Computing, and Quantum Computing.
The first two domains are well established, the last three are just now looking
for a place in the toolkit of practitioners. Here, we briefly introduce the last
three domains to the reader. The main point is that in all these areas one
aims at solving intractable (NP-complete) problems in polynomial (in many
cases, even linear) time. Taking into account that most significant practical
problems (optimization, scheduling, programming, combinatorial, etc.) are
intractable, it follows that the promises of Natural Computing should be
taken seriously.



1 Natural Computing = Five Revolutionary Domains

A somewhat traditional view interprets the syntagm “natural computing” in the sense of
“the ways the alive nature computes”. The premise is that life computes1 since billions
of years with rather good (at the qualitative level) results.

The main such area is that of processes which take place at the genetic level and which
is responsible of the incredible diversity of life. At this level, “good results” refer to the
continuously improved offsprings2, to the stability and efficiency of “genetic computa-
tions”. The suggestion is immediate: try to imitate the life, in the hope that procedures
tested for billions of years should work well also in “non-natural” circumstances.

Actually, Natural Computing included traditionally two domains: Neural Networks
and Genetic Algorithms. The first one tries to make use of (and to imitate, in the extent
this is possible) the way the human brain computes. Actually, one stops at the level of
small depth networks of neuron-like elementary processors; the power of the machinery
lies in the parallelism and cooperation of components. The second domain makes use
of genetic transformations (mainly crossing-over and point mutations) in search of good
solutions of optimization problems, in the hope that by combining good solutions we also
get good solutions, possibly better.

From a theoretical/mathematical point of view, it is somewhat surprising that both
Neural Networks and Genetic Algorithms are very successful in very many circumstances.
Engineers are enthusiastic about both these domains. Design problems which cannot be
solved analytically and which are intractable as optimization problems can be quite
satisfactorily solved by genetic algorithms (the optimality is not guaranteed, but this is
not important as long as the solution at hand is good enough in comparison to existing
solutions).

The reader is referred to [26] and [33] for more information; we particularly rec-
ommend the latter reference, for a huge list of practical problems which were at least
approached – if not satisfactorily solved – by means of Genetic Algorithms.

Because the previous two areas are already well established and many good biblio-
graphical sources are available for them, we do not enter here in any further details.

Since a few years one new branch of Natural Computing (inspired from the genetic
area) has emerged: DNA Computing. This time, the ambition is much higher. DNA
handling is not only the source of ideas for a new computing paradigm, but also the media
of implementing the computation. One aims not only to a new class of computing models,
but to a new class of computers, called in various places in various ways: bio-computers,
wet computers, computers based on bioware, protein computers, etc. The idea is not new,
speculations about the possibility of using DNA and specific operations as a support for
computations were made since fifties and sixties (Ch. Bennett, R. Feynman, M. Conrad).
An important theoretical step was made by T. Head, in 1987, when he has introduced a
theoretical model of the recombination operation of DNA molecules, [27], but the domain
birth certificate is considered Adleman’s experiment reported in [1]: a small instance of
the Hamiltonian Path Problem in a graph was solved by purely biochemical means. The

1Actually, we do not accept the fact that nature computes. We, humans as rational beings, see
computations in the many places where the nature just evolves. Accepting that nature computes is
like accepting that the bees have any geometrical representation of the fact the cells of their nests
are hexagonal. Still, we speak here, metaphorically, about ways/tools/frameworks used by nature for
computing.

2At least, this is what we believe about evolution. . .

2



problem is known to be NP-complete, hence intractable, while Adleman’s algorithm was
linear (as the number of biochemical operations) in the number of nodes of the graph.
We shall return in the next section to this topic.

Let us now state an easy, but fundamental, question, which has led to one more
area of Natural Computing: how does life compute? This can be reformulated as: how
do people believe that life computes? Answers referring to the (human) brain and the
genetic area were already mentioned above, but there is one more area where it was
several times asserted that we meet computations – the cellular level. In many places
one claims that the processes which take places in a cell, the reactions which develop in
cell regions, the processing of substances, energy and information in these regions and
through the membranes which delimit them, is a computation process. See, e.g., [8] and
its references.

Taking this assertion seriously leads to a genuinely new computing area: Computing
with Membranes. The domain is about one year old – the first paper was [36] – but its
bibliography counts already over 20 papers. In short, a distributed device is considered,
based on a membrane structure in whose regions certain objects evolve according to given
evolution rules, in parallel; many variants are possible, some of them being able to solve
in linear (parallel, biochemical) time NP-complete problems. Section 3 is devoted to this
subject.

However, we want to stress the similarities and the differences between the four
domains already mentioned. Figure 1 is illustrative in this respect.

Figure 1: Four domains of Naural Computing
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All domains are inspired from biology-biochemistry. While Neural Networks and
Genetic Algorithms (Evolutionary Computation) are already domains in current use,
DNA Computing and Membrane Computing are still at the level of attempts and trials.
However, while the first two domains are satisfied with good solutions, the last two aim
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at computing in parallel optimal solutions. Crucial is the difference in what concerns
the implementation: Neural Networks and Genetic Algorithms are implemented on usual
computers, they are just new classes of computation models; DNA Computing explicitly
starts from the goal of making use of the huge parallelism made possible by DNA and aims
at computing in a test tube. Several experiments were done – all of them dealing with
toy problems. The situation of Membrane Computing is not clear. No lab experiment
was carried out up to now, while the attempts to simulate P systems on the electronic
computer (see, for instance, [42]) are not yet convincing from a practical point of view.
However, the domains are so young and progresses so fast that any forecast is premature
(and, definitely, no negative prediction is acceptable).

Recently, one further domain is considered as belonging to Natural Computing, al-
though it does not deal with biology but with “hard science”: Quantum Computing. For
instance, a column has been started in Bulletin of European Association for Theoretical
Computer Science with the title “Natural Computing” and aiming to cover all the five
areas: Neural Networks, Genetic Algorithms, DNA Computing, Membrane Computing,
Quantum Computing. A series of monographs will be soon published by Springer-Verlag,
Berlin, with the same title and the same scope. We adhere to this interpretation of Nat-
ural Computing, that is, we include Quantum Computing in this field.

Again, the ambitions and promises are very high: parallel computations based, among
other, on the quantum superposition phenomenon, which makes possible linear solutions
of exponential problems, on a hardware of a completely new type, based on quantum
physics. Section 4 will be devoted to this topic.

We conclude this introductory section by stressing the fact that DNA Computing,
Membrane Computing, and Quantum Computing search and promise linear solutions for
exponential problems. Taking into account the success of Neural Networks and Genetic
Algorithms, we should be optimistic in this respect.

2 DNA Computing

As we have said before, speculations about the possibility of using DNA molecules as
a support for computations were made since several decades. The DNA features which
encourage these ideas are multiple: DNA has a well-known structure, of a clear syntactic
type; it can be handled in many ways already tested by nature and known by genetic
engineers; DNA is one of the most efficient data storage, with the possibility of encoding
a bit at the level of a molecule; related to this and much more important, DNA makes
possible a huge parallelism, in a small test tube one can put billions of molecules; the
biochemical reactions are very efficient from an energetic point of view and they are
reversible; the biochemical reactions have a high degree of nondeterminism, which, suit-
ably exploited (together with the parallelism), can lead to very efficient computations.
Of course, the nondeterminism of biochemical reactions is, at least in this moment, also
a bad feature, because the result we get is reliable only with a certain probability3.

When looking for a new computing model inspired from biochemistry (this is the case
both for DNA Computing and for Membrane Computing), we look for data structures
and operations with these data structures. In the case of DNA, the main data structure is
the double stranded sequence, composed of “symbols” (A, C, G, T, the four nucleotides

3Other drawbacks of DNA Computing are the fact that we have to carefully handle the errors and
the many exceptions customary in biochemistry, but we do not persist here in the negative direction. . .
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which compose a DNA molecule) which are paired according to a well-specified comple-
mentarity relation (the Watson-Crick complementarity says that always A is paired with
T and C with G). Actually, we can also work with usual strings: by heating a solution
which contains DNA molecules, the two strands are separated (one says that DNA is
denaturated). By cooling the solution, the single strands will again glue together, ob-
serving the complementarity of nucleotides and forming double stranded molecules (one
says that DNA is renaturated; the operation is also called annealing).

We have thus already obtained two operations: denaturation and annealing. Much
more can be found. A very important one is recombination (crossing-over), the basic one
used in Genetic Algorithms. We consider it in the form formalized by T. Head, in 1987,
under the mane of splicing, [27]. We do not give it mathematically, but we illustrate it
by an example.

Consider the following two DNA molecules

5′ − CCCCCTCGACCCCC − 3′

3′ −GGGGGAGCTGGGGG − 5′

5′ −AAAAAGCGCAAAAA − 3′

3′ − TTTTTCGCGTTTTT− 5′

as well as the restriction enzymes TaqI and SciNI, which recognize, respectively, the
following patterns

C G C G
CGCGAGCT

A G C T

We have also indicated the way of cutting the DNA molecules. Thus, when acting
on the two molecules mentioned above, these enzymes will produce the following four
fragments:

5′ −CCCCCT CGACCCCC − 3′

3′ −GGGGGAGC TGGGGG− 5′

5′ −AAAAAG CGCAAAAA− 3′

3′ − TTTTTCGC GTTTTT− 5′

We have obtained molecules with identical sticky ends, therefore the four fragments
can be bound together, either restoring the initial molecules, or producing new molecules
by recombination. The recombination gives the following new molecules

5′ − CCCCCTCGCAAAAA− 3′

3′ −GGGGGAGCGTTTTT− 5′

5′ −AAAAAGCGACCCCC − 3′

3′ − TTTTTCGCTGGGGG− 5′

This operation (cut at certain places and recombine the fragments which have match-
ing sticky ends) is now used as the basic ingredient of a large class of computing mech-
anisms, known under the name of H systems. Several chapters in the monograph [39]
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are devoted to the study of these systems. Although the theory of H systems is much
developed and in spite of the fact that H systems of various types are capable to per-
form universal computations (they can simulate any Turing Machine), we do not enter
into details because of a “simple detail”: nothing is known in this moment about the
complexity of computations performed by H systems (whether or not hard problems can
be solved in this framework in an efficient way), and we return to the history-making
Adleman experiment [1].

It uses as basic operations the denaturation and annealing (plus filtering DNA
molecules according to various criteria, amplification with selective primers, gel elec-
trophoresis – for more information we refer to [1], [39], [11]) and solves in linear time an
NP-complete problem – whether or not a given directed graph contains any Hamiltonian
path starting in a given node and ending in a given node.

Following the terminology of [24], this was a convincing demo, which has proved that
genetic engineering materials and techniques constitute a possible new framework for
computability. Adleman’s experiment is important not only because it was the first of
this type, but also by the way it was conducted.

The graph considered by Adleman was that in Figure 2. We have seven vertices and
fourteen arcs. The question is whether or not there is a path from vertex 0 to vertex 6
which passes exactly once through each of the other vertices.

Figure 2: The graph in Adleman’s experiment.
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By a simple examination of the graph, we see that there is such a path, namely that
following the numbering of the vertices: 0, 1, 2, 3, 4, 5, 6. However, we have mentioned
that the problem is a hard one, among the hardest which can be solved in polynomial time
by non-deterministic algorithms: it is an NP-complete problem. Otherwise stated, all
known deterministic algorithms for solving this problem are essentially equally complex
as the exhaustive search. However, we can trade time for space, and this is exactly what
Adleman has done, making use of the massive parallelism of DNA (in some sense, massive
parallelism can simulate non-determinism, and in this way non-deterministic algorithms
can be implemented).

The algorithm used by Adleman was the following:

Input: A directed graph G with n vertices, among which there are
two designated vertices vin and vout.
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Step 1: Generate paths in G randomly in large quantities.

Step 2: Remove all paths that do not begin with vin
or do not end in vout.

Step 3: Remove all paths that do not involve exactly n vertices.

Step 4: For each of the n vertices v, remove all paths that
do not involve v.

Output: “Yes” if any path remains, “No” otherwise.

It is easy to see that, if we assume that each of the operations in the algorithm takes
exactly one time unit, then the solution is obtained in a number of time units which is
linear in n, the number of vertices in the graph: steps 1, 2, 3 need a constant number of
time units (say, 4: generate all paths, select the paths starting with vin, select the paths
ending with vout, select the paths of length n), while step 4 takes n time units (check for
each vertex its presence in the currently non-rejected paths).

The main difficulty lies in step 1, where we have to generate a large number of paths
in the graph, as large as possible, in order to reach with a high enough probability the
Hamiltonian paths, if any. Of course, when the graph also contains cycles, the set of
paths is infinite. In a graph without cycles, the set of paths is finite, but it can be of an
exponential cardinality with respect to the number of vertices. This is the point where
the massive parallelism and the non-determinism of chemical reactions were cleverly used
by Adleman in such a way that this step was performed in a time practically independent
of the size of the graph.

The biochemical implementation of the above described algorithm was the following.
Each vertex of the graph was encoded by a single stranded sequence of nucleotides,

namely of length 20. These codes were constructed at random; the length 20 is enough
in order to ensure that the codes are “sufficiently different”. A huge number of these
oligonucleotides (amplified by PCR) were placed in a test tube. In the same test tube are
then added (a huge number of) codes of the graph edges, of the following form: if there is
an edge from vertex i to vertex j and the codes of these vertices are si = uivi, sj = ujvj,
where ui, vi, uj , vj are sequences of length 10, then the edge i → j is encoded by the
Watson-Crick complement of the sequence viuj.

For instance, for the codes of vertices 2, 3, 4 specified below

s2 = 5′ − TATCGGATCGGTATATCCGA − 3′,

s3 = 5′ −GCTATTCGAGCTTAAAGCTA − 3′,

s4 = 5′ −GGCTAGGTACCAGCATGCTT − 3′,

the edges 2→ 3, 3→ 2 and 3→ 4 were encoded by

e2→3 = 3′ − CATATAGGCTCGATAAGCTC − 5′,

e3→2 = 3′ −GAATTTCGATATAGCCTAGC − 5′,

e3→4 = 3′ −GAATTTCGATCCGATCCATG− 5′.

By annealing, the codes of the vertices act as splints with respect to codes of edges
and longer molecules are obtained, encoding paths in the graph. The reader can easily see
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how the molecules specified above will lead to sequences encoding the paths 2→ 3→ 4,
3→ 2→ 3→ 4, etc.

Adleman has let the process to proceed four hours, in order to be sure that all ligation
operations take place. What we obtain is a solution containing a lot of non-Hamiltonian
paths (short paths, cycles, paths passing twice through the same vertex). The rest of the
procedure consists of checking whether or not at least a molecule exists which encodes a
Hamiltonian path which starts in 0 and ends in 6.

There is here a very important point, which will be referred to later. The difficult
step of the computation was carried out “automatically” by the DNA molecules, making
use of the parallelism and the Watson–Crick complementarity. In this way, we get a
large set of candidate solutions, (hopefully) both molecules which encode paths which
are looked for, but also many molecules which should be filtered out, a sort of “garbage”
to be rejected.

This second part of the procedure, of filtering the result of step 1 in order to see
whether a solution to our problem exists, was carried out by Adleman in about seven
days of laboratory work, by performing the following operations: By a PCR amplification
with primers representing the input and the output vertices (0 and 6), only paths starting
in 0 and ending in 6 were preserved. After that, by gel electrophoresis there have been
extracted the molecules of the proper length: 140, because we have 7 vertices encoded
by 20 nucleotides each. Thus, at the end of step 3 we have a set of molecules which
encode paths in the graph which start in 0, end in 6, and pass through 7 vertices. (It is
worth noting that this does not ensure that such a path is Hamiltonian in our graph: 0,
3, 2, 3, 4, 5, 6 is a path which visits seven vertices, but it passes twice through 3 and
never through 1.) Roughly speaking, step 4 is performed by repeating for each vertex i

the following operations: melt the result of step 3, add the complement of the code si of
vertex i and let to anneal; remove all molecules which do not anneal.

If any molecule survives step 4, then it encodes a Hamiltonian path in our graph,
namely one which starts in vertex 0 and ends in vertex 6.

The practical details of this procedure are not very important for the present dis-
cussion. They depend on the present day laboratory possibilities and can be performed
also by other techniques; furthermore, the algorithm itself can be changed, improved or
completely replaced by another one. What is important here is the proof that such a
computation is possible. Purely biochemical means were used in order to solve a hard
problem, actually an intractable one, in a linear time as the number of lab operations.
These operations, in an abstract formulation, are another main output of this experiment
and of the thought about it, leading to a sort of programming language based on test
tubes and DNA molecules manipulation.

Such a “test tube programming language” was proposed in [31] (where the well-known
SAT Problem, probably the most used NP-complete problem, was solved in linear time
by a procedure which extends Adleman’s algorithm), developed in [2] and then discussed
in many places. We do not describe it here, but we point out one of the main weaknesses
of Adleman’s procedure, from a practical point of view: the number of necessary single
strands, codes of vertices or of edges, is of the order of n!, where n is the number of
vertices in the graph. This imposes drastic limitations on the size of the problems which
can be solved in this manner. (J. Hartmanis [25] has proved that in order to handle in
this manner graphs with 200 nodes, graphs with a size of practical importance, easily
handled by conventional computers, we need 3 ·1025 Kg of DNA, which is more than the
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weight of the Earth!) In short, Adleman’s procedure is elegant, copes in a nice way with
the errors, but it cannot be scaled-up.

Several improvements of Adleman’s procedure were proposed. The most promising
approach is to use an evolutionary computing strategy: instead of constructing a “com-
plete data pool” from which the solutions are then filtered out, only “good” candidates
are produced, which saves a lot of the needed DNA. Still, no problem of a practical size
was reported to be solved.

The way of proceeding in Adleman’s experiment and in most of the DNA Comput-
ing experiments reported up to now suggests a general (somewhat unusual) strategy of
computing, proposed in [34] under the name of computing by carving: generate a set of
candidate solutions and then “carve” it, removing sets of non-solutions, iteratively, until
a solution is obtained. This mode of “working on the complement” proves to be very
powerful (even sets which are Turing non-computable can be “computed” in this way)
and it is expected to be also useful from the complexity point of view.

This type of computation reminds both the celebrated Erathostene’s sieve and
Khachian polynomial algorithm for linear programming. Note, however, that in
Erathostene’s sieve we do not first “generate” the set of natural numbers, they are given
for free; in the case of computing by carving the set of candidate solutions is explicitly
built in the computation, in some sense this is the main part of it, the place where the
massive parallelism made possible by DNA is used. The comparison with Khachian al-
gorithm (which also proceeds by shrinking the space where the solution is looked for,
by cutting the current ellipsoid where lies the solution) points to an important warning:
sometimes, the theoretical efficient solutions are not also practically efficient. In most
practical cases, the old simplex algorithm, which is an exponential one, proves to be
much more efficient than the polynomial ellipsoid algorithm; this is just a consequence
of the fact that worst-case complexity is rather different from average complexity (while
reality is closer to average, if not still better placed).

3 Membrane Computing – P Systems

One starts from the observation that life “computes” not only at the genetic level, but
also at the cellular level. More generally, any non-trivial biological system is a hierarchical
construct, composed of several “organs” which are well defined and delimited from the
neighboring organs, which evolve internally and also cooperate with the other organs in
order to keep alive the system as a whole; an intricate flow of materials, energy, and
information underlies the functioning of such a system.
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Figure 3: A membrane structure.

At a more specific level with respect to the models we are going to discuss, it is
important to note that the parts of a biological system are well delimited by various
types of membranes, in the broad sense of the term. These membranes can be arranged
in a membrane structure of a complex shape. Such a structure can be represented in
a natural way as a Venn diagram. This makes clear the fact that what matters is the
topological structure, the relationships between membranes, not their ordering.

The Venn representation of a membrane structure µ also makes clear the notion of a
region in µ: any closed space delimited by membranes is called a region of µ. It is clear
that a membrane structure of degree n contains n internal regions, one associated with
each membrane. We also use to speak about the outer region, the whole space outside
the skin membrane.

Figure 3 illustrates some of the notions mentioned above.
If in the regions of a membrane structure we place objects from a given set, with

well specified multiplicities (we work with multisets of objects, that is, the multiset is
the data structure we use), as well as evolution rules for these objects, then we obtain
a computing device (called a P system): we start from the initial configuration of the
system and let the system evolve; at each time unit, all objects which can be the subject
of an evolution rule should evolve (that is, the rules are used in a maximally parallel
manner). In this way, we pass to another configuration of the system. Such a sequence
of transitions among configurations is a computation. A computation is complete if it
halts: no rule can be used in the last configuration. An output can be associated with
a complete configuration in several ways. For instance, we can consider an elementary
membrane as the output membrane of the system and the contents of this membrane at
the end of the computation is the result of the computation. Another possibility is to
“read” the result outside the system, just considering the objects which leave the system
during the computation.

Many variants can be considered, by combining various ingredients used in the def-
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inition sketched above. For instance, the evolution rules can be non-cooperating (when
single objects evolve; e.g, a → v, where a is an object and v is a multiset of objects)
or cooperating (when objects evolve together with other objects); a particular case of
cooperating systems is that of systems with catalysts (a catalyst is an object c which is
involved only in rules of the form ca → cv: the object a evolves with the help of the
catalyst c, but the latter one is reproduced after the evolution step). Then, the rules
can be freely applied, or a priority relation can be considered (at each step, one applies
only rules for which there is no rule of a higher priority which can also be applied at
that step). The objects can be communicated from a region to another one, through
membranes. This is done by associating them indications of the form out (the object
must exit the current membrane; if this is the system skin, then the object leaves the
system), here (the object remains in the same region), or in (the object must go into a
lower level membrane, nondeterministically chosen). A stronger variant is to associate
with objects and membranes electrical charges, +,− and 0: an object with “polariza-
tion” + will go into a membrane marked with −, one with “polarization” − will go into
a membrane marked with +; neutral objects are not moved. A still stronger version is to
precisely indicate the target membrane by specifying the label of it. A powerful feature
of P systems is the possibility of controlling the thickness of membranes: by dissolving
a membrane, all objects of the former membrane are left free in the region containing
it (this is a very powerful communication tool, because all objects are communicated in
only one step); by thickening a membrane, we inhibit any communication through it.
Finally, we can consider systems which are synchronized (an universal clock is used at
the level of all membranes) or non-synchronized.

Many of these variants are computationally universal, they can simulate Turing Ma-
chines as mapping computing devices (the argument of a function is introduced in the
initial configuration of the system and the value is read in an elementary membrane at
the end of a computation). We refer to [36], [37], [11] for details.

Much more important is the fact that there are classes of P systems which can solve
intractable problems in linear time. This is the case with systems where we can also
divide membranes. Because of the interest of this result, we enter into some details.

More specifically, we will consider P systems where the central role in the computa-
tion is played by the membranes: evolution rules are associated both with objects and
membranes, while the communication through membranes is performed with the direct
participation of the membranes; moreover, the membranes can not only be dissolved,
but they also can be multiplied by division. An elementary membrane can be divided
by means of an interaction with an object from that membrane. Each membrane is sup-
posed to have an “electrical polarization”, one of the three possible: positive, negative,
or neutral. If in a membrane we have two immediately lower membranes of opposite po-
larizations, one positive and one negative, then that membrane can also divide in such a
way that the two membranes of opposite charge are separated; all membranes of neutral
charge and all objects are duplicated and a copy of each of them is introduced in each
of the two new membranes. The skin is never divided.

In this way, the number of membranes can grow, even exponentially. As expected,
by making use of this increased parallelism we can compute faster: SAT (Satisfiability
of Propositional Formulas in the Conjunctive Normal Form) can be solved in this frame-
work in linear time (the time units are steps of a computation in a P system as sketched
above, where we perform in parallel, in all membranes of the system, applications of
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evolution rules or division of membranes). Moreover, the model is shown to be computa-
tionally universal: any computably enumerable set of (vectors of) natural numbers can
be generated by our systems.

A P system with active membranes is a construct

Π = (V, T,H, µ,w1, . . . , wm, R),

where:

(i) m ≥ 1 (the initial degree of the system);

(ii) V is an alphabet (the total alphabet of the system);

(iii) T ⊆ V (the terminal alphabet);

(iv) H is a finite set of labels for membranes;

(v) µ is a membrane structure, consisting of m membranes, labeled (not necessarily in
a one-to-one manner) with elements of H; all membranes in µ are supposed to be
neutral;

(vi) w1, . . . , wm are strings over V , describing the multisets of objects placed in the m

regions of µ;

(vii) R is a finite set of developmental rules, of the following forms:

(a) [ha→ v]αh ,
for h ∈ H,α ∈ {+,−, 0}, a ∈ V, v ∈ V ∗

(object evolution rules, associated with membranes and depending on the label
and the charge of the membranes, but not directly implying the membranes,
in the sense that the membranes are neither taking part to the application of
these rules nor are they modified by them);

(b) a[h ]α1h → [hb]
α2
h ,

for h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ V

(communication rules; an object is introduced in the membrane, possibly mod-
ified during this process; also the polarization of the membrane can be modi-
fied, but not its label);

(c) [ha ]α1h → [h ]α2h b,
for h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ V

(communication rules; an object is sent out of the membrane, possibly modi-
fied during this process; also the polarization of the membrane can be modi-
fied, but not its label);

(d) [ha ]αh → b,
for h ∈ H,α ∈ {+,−, 0}, a, b ∈ V

(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(e) [ha ]α1h → [hb ]α2h [hc ]α3h ,
for h ∈ H,α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ V

(division rules for elementary membranes; in reaction with an object, the
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membrane is divided into two membranes with the same label, possibly of
different polarizations; the object specified in the rule is replaced in the two
new membranes by possibly new objects; all other objects are reproduced in
both the two new membranes);

(f) [h0 [h1 ]
α1
h1

. . . [hk ]α1hk [hk+1 ]
α2
hk+1

. . . [hn ]α2hn ]
α0
h0

→ [h0 [h1 ]
α3
h1

. . . [hk ]α3hk ]
α5
h0

[h0[hk+1 ]
α4
hk+1

. . . [hn ]α4hn ]
α6
h0
,

for k ≥ 1, n > k, hi ∈ H, 0 ≤ i ≤ n, and α0, . . . , α6 ∈ {+,−, 0} with
{α1, α2} = {+,−}; if this membrane with the label h0 contains other mem-
branes than those with the labels h1, . . . , hn specified above, then they should
have neutral charge in order to allow the application of this rule
(division of non-elementary membranes; this is possible only if a membrane
contains two immediately lower membranes of opposite polarization, + and
−; the membranes of opposite polarizations are separated in the two new
membranes, but their polarization can change; always, all membranes of op-
posite polarizations are separated by applying this rule; all objects and all
other membranes from membrane h0 are reproduced in both the two new
membranes with label h0).

Note that in all rules of types (a) – (e) only one object is specified (that is, objects
do not directly interact) and, with the exception of rules of type (a), single objects are
always transformed into single objects (the two objects produced by a division rule of
type (e) are placed in two different regions).

These rules are applied according to the following principles:

1. All the rules are applied in parallel: in a step, the rules of type (a) are applied to
all objects to which they can be applied, all other rules are applied to all mem-
branes to which they can be applied; an object can be used by only one rule,
non-deterministically chosen (there is no priority relation among rules), but any
object which can evolve by a rule of any form, should evolve.

2. If a membrane is dissolved, then all the objects in its region are left free in the
region immediately above it. Because all rules are associated with membranes, the
rules of a dissolved membrane are no longer available at the next steps. The skin
membrane is never dissolved.

3. All objects and membranes not specified in a rule and which do not evolve are
passed unchanged to the next step. For instance, if a membrane with the label h

is divided by a rule of type (e) which involves an object a, then all other objects
in membrane h which do not evolve are introduced in each of the two resulting
membranes h. Similarly, when dividing a membrane h by means of a rule of type
(f), the neutral membranes are reproduced in each of the two new membranes with
the label h, unchanged if no rule is applied to them (in particular, the contents of
these neutral membranes are reproduced unchanged in these copies, providing that
no rule is applied to their objects).

4. If at the same time a membrane h is divided by a rule of type (e) and there are
objects in this membrane which evolve by means of rules of type (a), then in the
new copies of the membrane we introduce the result of the evolution; that is, we
may suppose that first the evolution rules of type (a) are used, changing the objects,
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and then the division is produced, so that in the two new membranes with label
h we introduce copies of the changed objects. Of course, this process takes only
one step. The same assertions apply to the division by means of a rule of type (f):
always we assume that the rules are applied “from bottom-up”, in one step, but
first the rules of the innermost region and then level by level until the region of the
skin membrane.

5. The rules associated with a membrane h are used for all copies of this membrane,
irrespective of the fact that the membrane is an initial one or it is obtained by
division. At one step, a membrane h can be the subject of only one rule of types
(b) – (f).

6. The skin membrane can never divide. As any other membrane, the skin membrane
can be “electrically charged”.

We can pass from a configuration to another one by using the rules from R accord-
ing to the principles given above. We say that we have a (direct) transition among
configurations.

As usual, a computation is complete if it cannot be continued: there is no rule which
can be applied to objects and membranes in the last configuration.

Note that during a computation the number of membranes (hence the degree of the
system) can increase and decrease but the labels of these membranes are always among
the labels of membranes present in the initial configuration (by division we only produce
membranes with the same label as the label of the divided membrane).

As we mentioned above, the SAT problem can be solved by a P system with active
membranes in a time which is linear in the number of variables and the number of clauses.

This is obtained by trading space for time: an exponential number of membranes is
created (of the order of 2n, where n is the number of variables in the formula we want
to decide), which work in parallel; a certain object leaves the system if and only if the
considered formula is satisfiable. Details can be found in [38].

The idea from [38] has been extended in [28] to other two NP-complete problems, the
Hamiltonian Path Problem (like in Adleman’s experiment, but without specifying the
initial and the final node) and the Node Covering Problem. Also these problems were
solved in a linear parallel time.

In the first section we have said that no experiment was reported so far in the Mem-
brane Computing area. On the other hand, it is not clear which is the right way to
proceed towards implementation: to try to build a wet computer based on membranes
or to use the silicon (building a purpose-designed computer or using the existing com-
puters, in the same way as we use them for Genetic Algorithms). This is a fundamental
question which we do not address here.

4 Quantum Computing

Quantum computing is the fifth new paradigm of Natural Computing. It has originated in
the studies of thermodynamics of computation initiated by Landauer [29, 30], Feynman
[18, 19, 20] Bennett [4, 5, 6]. “Real computers”, in contrast with “paper machines”

14



like Turing machines, Chomsky grammars or Markov algorithms, are physical devices:
whatever they can or cannot do is determined by the laws of physics.

In Deutsch’s4 words ([14, p. 101]; see also [16]):

The reason why we find it possible to construct, say, electronic calculators,
and indeed why we can perform mental arithmetic, cannot be found in math-
ematics or logic. The reason is that the laws of physics “happen” to permit
the existence of physical models for the operations of arithmetic such as
addition, subtraction and multiplication. If they did not, these familiar op-
erations would be non-computable functions. We might still know of them
and invoke them in mathematical proofs (which would be presumably called
“non-constructive”) but we could not perform them.

Quantum mechanical effects,5 like the exponential state space, the entangled states,
and the linearity of quantum state transformations, make the real power of these new
machines, the exponential parallelism. Programming quantum machines requires innova-
tive techniques; people have only recently begun to research such techniques. Among the
most notable successes is Shor’s [41] polynomial-time factorization algorithm, Grover’s
[22] database search algorithm.

To get just a glimpse of the Quantum Computing we will present two examples of
problems which cannot be solved efficiently by conventional computing methods: the
implementation of the square root of NOT gate and the solution to Deutsch problem.
First, we need a bit of formalism.

A classical bit (e.g., the position of gear teeth in Babbage’s differential engine, a
memory element or wire carrying a binary signal, in contemporary machines) is a system
comprising many atoms. Typically, the system is described by one or more continuous
parameters, for example, voltage. Such a parameter is used to separate the space into
two well-defined regions chosen to represent 0 and 1. Manufacturing imperfections, local
perturbations may affect, so signals are periodically restored toward these regions to
prevent them from drifting away. An n-bit register of memory can exist in any of 2n

logical states, from 00 . . . 0 (n zeros) to 11 . . . 1 (n ones).
A quantum event in which we have two possible mutually exclusive outcomes is the

elementary act of observation: all knowledge of the physical world is based upon such
acts. An elementary act of observation is simultaneously like a coin-toss and not like
a coin-toss. The information derived from an elementary act of observation is no more
than a single bit, but there is more on it than that. To mark this difference B. Schumaker
[40] has coined the name qubit. A quantum bit, qubit, is typically a microscopic system,
such as an atom or nuclear spin or polarized photon. For example, the state of a spin-12
particle, when measured, is always found to be in one of two possible states, represented
as

|+
1

2
〉 (spin-up) or | −

1

2
〉 (spin-down).

There is nothing special about spin systems–any 2-state quantum system can be
equally used to represent 0 and 1. What is really special here is the existence of a

4The author of the first “fully” quantum computer, [14]; see also [15]
5Not all quantum effects may be needed for computation. Nonlinearity (to support quantum logic

and ensure universality) and coherence (for the manipulation of coherent quantum superpositions) are
necessary and, in principle, sufficient conditions for computation.
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continuum of intermediate states which are superpositions of 0s and 1s. Mathematically,
they are just linear combinations of the basis states. Unlike the intermediate states of a
classical bit (for example, any voltages between the “standard” representations of 0 and
1) which can be distinguished from 0 and 1, but do not exist from an informational point
of view, quantum intermediate states cannot be reliably distinguished, even in principle,
from the basis states, but do have an informational “existence”.

Consider the two dimensional space Hilbert space C2, and fix a orthonormal basis,
{|0〉, |1〉}. These vectors, |0〉 and |1〉, correspond to the classical bit values 0 and 1,
respectively. A qubit is a unit vector in the space C2, so for each qubit |x〉, there are
two (complex) numbers a, b ∈ C such that

|x〉 = a|0〉+ b|1〉 =

(
a

b

)
, (1)

and |a|2 + |b|2 = 1.
An n-qubit system can exist in any superposition of the form

Ψ =
11...1∑
x=00...0

cx|x〉, (2)

where cx are (complex) numbers such that
∑
x |cx|

2 = 1.6 The exponential “explosion”
represented by formula (2) distinguishes quantum systems from classical ones: in a clas-
sical system a state is described by a number of parameters growing only linearly with
the size of the system,7 but most quantum systems do not admit such a description
because quantum states may be “entangled”.

The quantum evolution of a qubit is described by a “unitary operator”, that is an
operator induced by a unitary matrix.8 Here is a simple, but important example. Let θ

be a real number in the interval [0, 2π) and consider the rotation Rθ given by

Rθ =

(
cos θ −sin θ

sin θ cos θ

)
.

Hence, Rθ acts as follows:

|0〉 �→ cos θ|0〉+ sin θ|1〉, |1〉 �→ −sin θ|0〉+ cos θ|1〉.

One can easily verify that RθR
†
θ = RθR

T
θ = I, hence Rθ is unitary. For θ = 0 we get the

identity transformation: R0 = I.

We may think of logic gates as transformations. For example, the NOT transforma-
tion which interchanges the vectors |0〉 and |1〉, is given by Rπ, that is the matrix

NOT =

(
0 1
1 0

)
.

6Re-phrased, a quantum state of n qubits is just a direction in a Hilbert space of dimension equal to
the number of classical states, i.e., 2n.

7Reason: classical systems are completely described locally, that is, via each state in part.
8A quadratic matrix A of order n over C is unitary if AA† = I (the identity n× n matrix); A† is the

transposed conjugate matrix of A.
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It flips that state of its input,

NOT |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉,

and

NOT |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0〉.

The phase shift gate Shift is defined as follows: Shift |0〉 = |0〉, Shift |1〉 = −|1〉, so

Shift =

(
1 0
0 −1

)
.

Since NOT · NOT † = I and Shift · Shift† = I, the operators NOT and Shift are
also unitary. The operator NOT · Shift is also a unitary transformation and we have:

NOT · Shift|0〉 = NOT |1〉 = −|1〉,

NOT · Shift|1〉 = NOT |0〉 = |0〉.

Therefore, its associated matrix is

R3π/2 =

(
0 1
−1 0

)
.

The square-root of NOT (introduced by Deutsch [15]) is the transformation

√
NOT :

|0〉 → 1
2(1 + i)|0〉 + 1

2(1− i)|1〉,
|1〉 → 1

2(1− i)|0〉 + 1
2(1 + i)|1〉,

√
NOT =

1

2

(
1 + i 1− i

1− i 1 + i

)
.

A routine check shows that

√
NOT ·

√
NOT = NOT , (3)

and
√
NOT ·

√
NOT

†
=

1

4

(
1 + i 1− i

1− i 1 + i

)(
1− i 1 + i

1 + i 1− i

)
= I.

The square-root of NOT is a typical “quantum” gate in the sense that it is impossible
to have a single-input/single-output classical binary logic gate that satisfies (3). Indeed,
any classical binary √

NOT classical

gate is going to output a 0 or a 1 for each possible input 0/1. Assume that we have such
a classical square-root of NOT gate acting as a pair of transformations

√
NOT classical(0) = 1,

√
NOT classical(1) = 0.
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Then, two consecutive applications of it will not flip the input!
The simplest way to illustrate the power of quantum parallelism is to solve the so-

called Deutsch’s problem. Consider a Boolean function f : {0, 1} → {0, 1} and suppose
that we have a black box to compute it. We would like to know whether f is constant
(that is, f(0) = f(1)) or balanced (f(0) = f(1)). To make this test classically, we need
two computations of f , f(0) and f(1) and one comparison. Is it possible to do it better?
The answer is affirmative, and here is a possible solution.

Suppose that we have a quantum black box to compute f . Consider the transforma-
tion Uf which applies to two qubits, |x〉 and |y〉 and produces |x〉|y ⊕ f(x)〉, see Figure
4; by ⊕ we denote the sum modulo 2. The transformation Uf flips the second qubit if f

acting on the first qubit is 1, and does nothing if f acting on the first qubit is 0.

|x〉 |x〉

Uf

|y〉 |y ⊕ f(x)〉

Figure 4: Quantum gate array Uf .

The black box is “quantum”, so we can chose the input state to be a superposition
of |0〉 and |1〉. Assume first that the second qubit is initially prepared in the state
1√
2
(|0〉 − |1〉). Then,

Uf

(
|x〉

1
√
2
(|0〉 − |1〉)

)
= |x〉

1
√
2
(|0⊕ f(x)〉 − |1⊕ f(x)〉)

= (−1)f(x)|x〉
1
√
2
(|0〉 − |1〉).

Next take the first qubit to be 1√
2
(|0〉 − |1〉). The black box will produce

Uf

(
1
√
2
(|0〉 − |1〉)

1
√
2
(|0〉+ |1〉)

)
=

1
√
2
((−1)f(0)|0〉 + (−1)f(1)|1〉)

1
√
2
(|0〉 − |1〉)

= (−1)f(0)(|0〉 + (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉).

Next we will perform a measurement that projects the first qubit onto the basis
1√
2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉): we will obtain 1√

2
(|0〉 + |1〉) if the function f is balanced

and 1√
2
(|0〉 − |1〉) in the opposite case. So, Deutsch’s problem was solved with only one

computation of f . The explanation consists in the ability of a quantum computer to be
in a blend of states: we can compute f(0) and f(1), but also, and more importantly,
we can extract some information about f which tells us whether f(0) is equal or not to
f(1).
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The above idea can be easily generalised to Boolean functions of n variables. To
compute a complete set of values for such a function we need to calculate f in all 2n

points, an infeasible task if n is big (say, n = 100). With a quantum computer we use
the transformation Uf (|x〉|0〉) = |x〉|f(x)〉, chose the input register to be in the state

(
1
√
2
(|0〉 + |1〉)

)n
=

1

2n/2

2n−1∑
x=0

|x〉,

and with just a single computation of f generate the state

1

2n/2

2n−1∑
x=0

|x〉|f(x)〉. (4)

Of course, if we want to compute all the values of f we need to come back to 2n com-
putations of f : the point is that in some cases we don’t need to get all values of f , but
some “global” information about f , and it is possible to “extract” this information from
(4).

Conventional devices for constructing quantum computers include ion traps, high
finesse cavities for manipulating light and atoms using quantum electrodynamics, and
molecular systems designed to compute using nuclear magnetic resonance. These lat-
ter store quantum information on the states of quantum systems as photons, atoms,
or nuclei, and realise quantum logic by semiclassical potentials such as microwave or
laser fields. Unconventional ideas for quantum computation include Fermionic quantum
computers, Bosonic computers (which use photons, phonons, or atoms in a Bose-Einstein
condensate), and architectures relying on anyons (their nonlocal topological nature make
them intrinsically error-correcting and virtually immune to noise and interference). An
intriguing idea is to consider designs that are not based on experimentally confirmed
physical phenomena, but rather are based on speculative, hypothetical and not yet veri-
fied phenomena. A particularly interesting variation on conventional physics is nonlinear
quantum mechanics (a discrete model based on cellular automata might be such a model).
See more in [10, 9, 23, 11].

5 Final Comments

Natural Computing has the potential to dramatically change the way we think and do
Computing and Mathematics. The challenge for computer scientists and mathemati-
cians is to provide models for the emerging computing architectures, to develop new
programming techniques appropriate for Natural Computing and to apply them to var-
ious domains.
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