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Minimal Programs Are Almost Optimal∗

Cristian S. Calude† Hajime Ishihara‡ Takeshi Yamaguchi§

Abstract–According to the Algorithmic Cod-

ing Theorem, minimal programs of any uni-

versal machine are prefix-codes asymptoti-

cally optimal with respect to the machine al-

gorithmic probabilities. A stronger version

of this result will be proven for a class of

machines, not necessarily universal, and any

semi-distribution. Furthermore, minimal pro-

grams with respect to universal machines will

be shown to be almost optimal for any semi-

computable semi-distribution. Finally, a com-

plete characterization of all machines satisfy-

ing the Algorithmic Coding Theorem is given.

Indexed Terms–Minimal program, prefix-

code, Chaitin machine, program-size complex-

ity, entropy, Noiseless Coding Theorem, Algo-

rithmic Coding Theorem.

1 Introduction

Let C be a prefix-code with one code string per
source string, that is, an one-one function from
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binary strings to binary strings whose range is
a prefix-free set. Let P (x) be the probability of
the source string x and let |C(x)| be the length
of the code string of x. Shannon’s Noiseless Cod-
ing Theorem says that the minimal average code
string length is about equal to the entropy of
the source string set. The strategy is to chose
a prefix-code that matches best the probability
distribution of the source codes.

In what follows we will be interested in in-
finite prefix-codes, that is, prefix-codes naming
all binary strings. We will work with semi-
distributions, i.e., functions P from strings to
reals such that

∑
x P (x) ≤ 1. A Shannon type

result is valid for semi-distributions. We will be
interested in finding prefix-free codes which are
almost optimal for a given semi-distribution, and
also for a class of semi-distributions (in case the
semi-distribution may be unknown, or uncom-
putable).

Algorithmic Information Theory (see [3, 4, 1,
5]) provides a natural class of prefix-free codes,
namely the set of minimal (canonical) programs
of a machine. These prefix-codes are important
for statistical physics, [8]. According to Algo-
rithmic Coding Theorem, minimal programs of
any universal machine (a machine capable of sim-
ulating any other machine) are asymptotically
optimal with respect to the machine algorithmic
probabilities. A stronger version of this result
is proven for a class of machines, not necessarily
universal, and any semi-distribution. Minimal
programs with respect to universal machines are
proven almost optimal for any semi-computable
semi-distribution. Finally, a complete character-
ization of all machines satisfying the Algorithmic
Coding Theorem is given.



2 Notation, Definitions and
Basic Results

By N,Q, and Σ∗ we denote the sets of non-
negative integers, rationals, and (finite) binary
strings, respectively. The length of a string s is
denoted by |s|. A string s is a prefix of a string
t (s ⊆ t) if t is the concatenation of s ∈ Σ∗ and
some string r. A subset A of Σ∗ is prefix-free if
whenever s and t are in A and s ⊆ t, then s = t.
For example, the set {1i0 | i ≥ 0} is prefix-free.
Kraft’s inequality states that for every prefix-free
set A ⊂ Σ∗,

∑
s∈A 2−|s| ≤ 1.

By log we denote the base 2 logarithm. For
every real α, if 2n < α ≤ 2n+1, for some integer
n, then put n = lg α. Note that if α > 0, then
2lg α < α, lg α < logα ≤ lg α+ 1, and if m is an
integer, then lg α ≥ m iff logα > m.

We assume familiarity with Turing machines,
computable sets and functions, computably enu-
merable (c.e.) sets, e.g., from [10]. We shall em-
ploy a sspecial model of deterministic Turing ma-
chine computation, namely self-delimiting Tur-
ing machines or (Chaitin) machines: these are
Turing machines (transforming binary strings
into binary strings) and having prefix-free do-
mains. More precisely, for every Chaitin ma-
chine M the program set PROGM = {x ∈ Σ∗ |
M(x) halts} is a prefix-free. Note that, con-
versely, every prefix-free c.e. set set of strings is
the domain of some Chaitin machine. In what
follows we will operate only with Chaitin ma-
chines, which will be simply referred as machines.

The following result will be frequently used
(see [2] for a simple proof):

Kraft-Chaitin Theorem. Given a com-
putable list of “requirements” (ni, si)(i ≥ 0, si ∈
Σ∗, ni ∈ N) such that

∑
i 2
−ni ≤ 1, we can effec-

tively construct a machine M and a computable
one-to-one enumeration x0, x1, x2, . . . of strings
xi of length ni such that M(xi) = si for all i,
and M(x) is undefined if x 6∈ {xi | i ∈ N}.

The program-size complexity induced by the

machine M is

HM (x) = min{|z| |M(z) = x},

with the convention that the minimum of the
empty set is undefined.

The algorithmic probability of the machine M
to produce the output x is

PM (x) =
∑

M(u)=x

2−|u|,

and the halting probability of M is

ΩM =
∑
x∈Σ∗

PM (x) =
∑

x∈PROGM

2−|x|.

It follows by Kraft’s inequality that, for every
machine M and any string x ∈ Σ∗,

0 ≤ PM (x) ≤ ΩM ≤ 1.

For every machine M and string x such that
PM (x) > 0, we denote by

x∗M = min{u |M(u) = x},

where the minimum is taken according to the
quasi-lexicographical ordering of strings; x∗M is
called the minimal (canonical) program of x with
respect to M .

A machine U is universal if for every machine
M , there is a constant cM (depending upon M)
with the following property: if M(x) halts, then
there is an x′ ∈ Σ∗ such that U(x′) = M(x) and
|x′| ≤ |x|+ cM ; cM is the simulation constant of
M on U . Universal machines can be effectively
constructed. If U is universal, then x∗U exists for
every string x. See more in [1].

Algorithmic Coding Theorem.
(Chaitin) There exists a constant c ≥ 0 such
that for all strings x,

|HU (x) + logPU (x)| ≤ 1 + c.

See [3, 4, 1, 5].
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3 Noiseless Coding Theorem

A function P : Σ∗ → [0, 1] such that
∑
x P (x) ≤

1 is called a semi-distribution over the strings.
In case

∑
x P (x) = 1, P is a distribution.

A semi-distribution P is semi-computable from
below (above) in case the set {(x, r) | x ∈
Σ∗, r ∈ Q, P (x) > r} ({(x, r) | x ∈ Σ∗, r ∈
Q, P (x) < r}) is c.e. A semi-distribution P is
computable if it is semi-computable from below
and from above. For example, PM is a semi-
distribution semi-computable from below. The
function P (x) = 2−2|x|−1 is a computable distri-
bution.

A code for strings is an one-one function C :
Σ∗ → Σ∗ such that C(Σ∗) is prefix-free. For ex-
ample, for every surjective machine M , CM (x) =
x∗M is a code; universal machines are surjective.
The average code-string length of a code C with
respect to a semi-distribution P is

LC,P =
∑
x

P (x) · |C(x)|.

The minimal average code-string length with re-
spect to a semi-distribution P is

LP = min{LC,P | C code}.

The entropy of a semi-distribution P is

HP = −
∑
x

P (x) · logP (x).

A simple extension of Shannon’s classical ar-
gument [9] (see more in [7]) leads to the following

Noiseless Coding Theorem. (Shannon)
The following inequalities hold true for every
semi-distribution P :

HP − 1 ≤ HP +

(∑
x

P (x)

)
log

(∑
x

P (x)

)
≤ LP ≤ HP + 1.

If P is a distribution, then log(
∑
x P (x)) = 0,

so we get the classical inequality HP ≥ LP .
However, this inequality is not true for every
semi-distribution. For example, take P (x) =
2−2|x|−3 and C(x) = x1x1 . . . xnxn01. It follows
that LP ≤ LC,P = HP −

1
4 .

4 Main Result

We investigate conditions under which given a
semi-distribution P , we can find a (universal)
machine M such that HM (x) is equal, up to an
additive constant, to − logP (x). In what follows
we will assume that P (x) > 0, for every x.

We start with the main technical result:

Theorem 1 Assume
that P is a semi-distribution and there exist a
c.e. set S ⊂ Σ∗ ×N and a constant c ≥ 0 such
that the following two conditions are satisfied for
every x ∈ Σ∗:

1)
∑

(x,n)∈S 2−n ≤ P (x),

2) if P (x) > 2−n, then (x,m) ∈ S, for some
m ≤ n+ c.

Then, there exists a machine M (depending upon
S) such that for all x,

− logP (x) ≤ HM (x) ≤ (1 + c)− logP (x). (1)

Proof. In view of 1),∑
(x,n)∈S

2−n ≤
∑
x

P (x) ≤ 1,

so using Kraft-Chaitin Theorem we can con-
struct a machine M such that for every (x, n) ∈
S there exists a string vx,n of length n such that
M(vx,n) = x. Using 1) and 2), we get:

HM(x) = min{|v| | v ∈ Σ∗,M(v) = x}

= min{n | n ∈ N, (x, n) ∈ S}

≤ min{m | m ∈N, P (x) > 2−m}+ c

= min{m | m ∈N,m > − logP (x)}+ c

= min{m | m ∈N,m ≥ 1− lgP (x)}+ c

≤ (1 + c)− logP (x). 2

Remark. Theorem 1 makes no computability
assumptions on P .

Lemma 2 Let M be a machine such that ΩM <

1. Then, there exists a universal machine U sat-
isfying the inequality HU(x) ≤ HM (x), for all
x.
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Proof. By hypothesis, ΩM < 1, so there is a
non-negative integer k such that ΩM + 2−k ≤ 1.
Let V be a universal machine. The set

S = {(M(x), |x|) | x ∈ PROGM}

∪ {(V (x), |x| + k) | x ∈ PROGV }

is c.e. and ∑
(y,n)∈S

2−n ≤ ΩM + 2−k ≤ 1.

Consequently, in view of Kraft-Chaitin Theorem,
there exists a machine U such that for (y, n) ∈ S
there is a program z ∈ PROGU of length n such
that U(z) = y. Clearly, for every x,

HU (x) ≤ min{|w|+ k | V (w) = x} = HV (x) + k,

and

HU (x) = min{|v| | U(v) = x} ≤ HM (x),

so U is universal and satisfies the required in-
equality. 2

Lemma 3 Let M be a machine. Then, there
exists a machine M ′ such that ΩM ′ < 1 and
HM ′(x) = HM (x) + 1, for all x.

Proof. Apply Kraft-Chaitin Theorem to the
set {(M(x), |x| + 1) | x ∈ PROGM} to obtain
the machine M ′. 2

Corollary 4 Under the hypotheses of Theorem
1, a universal machine U can be constructed such
that for all x,

HU (x) ≤ (2 + c)− logP (x). (2)

Proof. Use Lemmas 3, 2 to get a universal
machine U such that HU(x) ≤ HM (x) + 1, for
all x. 2

5 Coding with Minimal Pro-
grams

Specializing P in Theorem 1 we show that mini-
mal programs are almost optimal for P . Minimal
programs of universal machines are almost opti-
mal for every semi-computable semi-distribution
P .

Semi-computable semi-distributions from be-
low (e.g., algorithmic probabilities of machines)
are important in Algorithmic Information The-
ory.

Proposition 5 Assume that P is a semi-
distribution semi-computable from below. Then,
there exists a machine M (depending upon P )
such that for all x,

− logP (x) ≤ HM (x) ≤ 2− logP (x). (3)

Consequently, minimal programs for M are al-
most optimal: the code CM satisfies the inequal-
ities:

0 ≤ LCM ,P −HP ≤ 2.

Proof. Take S = {(x, n + 1) | P (x) > 2−n}.
For every x we have:∑

(x,n)∈S

2−n =
∑

n>1−logP (x)

2−n =
∑

n≥1−lgP (x)

2−n

= 2lgP (x) < P (x),

so condition 1) in Theorem 1 is satisfied. Condi-
tion 2) holds for c = 1. Finally,

LCM ,P−HP =
∑
x

P (x)·(HM (x)+logP (x)) ≤ 2.

2

Corollary 6 Assume that f : Σ∗ → N is a
function such that the set {(x, n) | f(x) < n}
is c.e. and

∑
x 2−f(x) ≤ 1. Let P (x) = 2−f(x).

Then P is a semi-distribution semi-computable
from below, and there exists a machine M (de-
pending upon f) such that for all x,

HM (x) ≤ 1 + f(x). (4)
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Minimal programs for M are almost optimal:
the code CM satisfies the inequalities:

0 ≤ LCM ,P −HP ≤ 1.

One more bit is enough to guarantee universality
of the constructed machine, that is, there exists
a universal machine U (depending upon f) such
that the code CU satisfies the inequalities:

0 ≤ LCU ,P −HP ≤ 2.

Proof. Take S = {(x, n) | n > f(x)}. Clearly,
S = {(x, n) | P (x) > 2−n}. The first condition
in Theorem 1 is satisfied as

∑
n>f(x) 2−n = P (x),

for every x, and the second condition is satisfied
for c = 0. 2

When the semi-distribution P is given, an op-
timal prefix-code can be found for P . However,
that code may be far from optimal for a differ-
ent semi-distribution. For example, let C pe a
prefix-code such that |C(x)| = 2|x|+2, for all x.
Let α > 0 and consider the distribution

Pα(x) = (1− 2−α) 2−(α+1)|x|.

Two radically different situation appear: if α ≤
1, then

LC,Pα −HPα =∞,

but if α > 1, then

LC,Pα −HPα <∞.

So, C is asymptotical optimal for every distri-
bution Pα with 1 < α, but C is far away from
optimality if 0 < α ≤ 1. Note that Pα is com-
putable provided α is computable.

The next result shows that minimal pro-
grams are asymptotical optimal for every semi-
distribution semi-computable from below.

Theorem 7 Let P be a semi-distribution semi-
computable from below, and U a universal ma-
chine. Then, there exists a constant cP (depend-
ing upon P ) such that

0 ≤ LCU ,P −HP ≤ 1 + cP .

Proof. Take M the machine constructed in
Proposition 5 and let cM be the simulation con-
stant of M on U . Then,

0 ≤ LCU ,P −HP ≤ LCM ,P + cM −HP ≤ 1 + cM ,

so take cP = cM . 2

Remark. Corollary 7 generalizes a result in
[6] proven for computable distributions. See
also [8]. The result is important only for semi-
distributions for which the entropy is infinite.
For example, the entropy of the semi-distribution
P (x) = 2−|x| 1

(|x|+2) log(|x|+2) is infinite.

Using Lemma 2 we can obtain sharper inequal-
ities. For example, for every universal machine
U , the code CU is almost optimal with respect
to PU :

0 ≤ LCU ,PU −HPU ≤ 2.

If f is a function as in Corollary 6 such that∑
x 2−f(x) < 1, then there exists a universal ma-

chine U such that

0 ≤ LCU ,P −HP ≤ 1.

For example, take f(x) = HU (x), where U is a
universal machine.

Proposition 8 Let P be a computable semi-
distribution. Then, there exists a machine M

such that

− logP (x) ≤ HM (x) ≤ 1− logP (x).

Proof. Note that − lgP (x) = min{n | n ∈
N, P (x) > 2−n} and then apply Theorem 1 to
the set S = {(x,− lgP (x)) | x ∈ Σ∗} and con-
stant c = 0. 2

Corollary 9 Let P be a computable semi-
distribution. Then, there exists a universal ma-
chine U such that

HU (x) ≤ 1− logP (x).
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6 Algorithmic Coding Theo-
rem Revisited

We characterize all machines satisfying the Al-
gorithmic Coding Theorem and we construct a
class of (universal) machines for which the in-
equality is satisfied with constant c = 0. This
addresses the relevance of the theorem for statis-
tical physics where the presence of an arbitrary
constant is unsatisfactory (see [8]).

Proposition 10 Let M be a machine and c ≥
0. The following statements are equivalent:

1) for all x, HM(x) ≤ (1 + c)− logPM (x),

2) for all non-negative n, if PM (x) > 2−n, then
HM (x) ≤ n+ c.

Proof. From HM (x) ≤ (1+c)− log PM (x) and
PM (x) > 2−n we deduce

2−n < PM (x) ≤ 2(1+c)−HM (x).

Conversely, we have:

HM (x)−c = min{n | n ∈ N, PM (x) > 2−n}. 2

For any machine M satisfying condition 2) in
Proposition 10 the Algorithmic Coding Theorem
holds:

|HM (x) + logPM (x)| ≤ 1 + c. (5)

In fact, a machine M satisfies (5) if and only
if condition 2) is satisfied. Every universal ma-
chine U satisfies condition 2), but not all ma-
chines satisfy this condition. To construct such
an example, consider the following enumeration:
for every string x enumerate 2|x| copies of the
pair (x, 3|x|+1). Use Kraft-Chaitin Theorem to
construct a machine M such that for every string
x there exist 2|x| different strings uix, all of length
3|x| + 1, such that

M(uix) = x, i = 1, 2, . . . , 2|x|.

It is seen that PM (x) = 2−2|x|−1, so taking
nx = 2|x|+ 2 we get PM (x) > 2−nx , but there is
no constant c such that HM(x) ≤ nx + c, for all

strings x.

Some machines satisfy condition 2) with c = 0,
so their canonical programs are almost optimal.
A class of (universal) such machines is provided
in the next proposition.

Proposition 11 Let M be a machine such that
for all programs x 6= x′ with M(x) = M(x′) we
have |x| 6= |x′|. Then, for all x,

HM (x) ≤ 1− logPM (x). (6)

Proof. Consider the set S = {(x, |y|) |M(y) =
x}, and notice that

PM (x) =
∑

(x,n)∈S

2−n,

as programs producing the same output have dif-
ferent lengths. In view of the hypothesis,

PU (x) > 2−n ⇐⇒ ∃ (x, k1) ∈ S, k1 < n or

(k1 = n&∃ k2 6= k1, (x, k2) ∈ S),

hence the second condition in Theorem 1 is sat-
isfied with c = 0. Using Theorem 1 we de-
duce the existence of a machine M ′ such that
HM ′(x) ≤ 1− logPM ′(x), for all x. The inequal-
ity (6) follows from

HM(x) = min{n | (x, n) ∈ S} = HM ′(x). 2

Remark. Not every universal machine satisfies
the hypothesis of Proposition 11. However, if V
is a universal machine, the one can effectively
construct a universal machine U such that pro-
grams producing the same output via U have
different lengths and HU(x) = HV (x), for every
x.1 Indeed, enumerate the graph of V and as
soon as a pair (x, V (x)) appears in the list do
not include in the list any pair (x′, V (x′)) with
x 6= x′ and V (x) = V (x′). The set enumerated
in this way, which is a subset of the graph of V , is
the graph of the universal machine U satisfying
the required condition.

1Of course, PU (x) ≤ PV (x), for all x.
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