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Minimal Programs Are Almost Optimal*

Cristian S. Caludef

Abstract—According to the Algorithmic Cod-
ing Theorem, minimal programs of any uni-
versal machine are prefix-codes asymptoti-
cally optimal with respect to the machine al-
gorithmic probabilities. A stronger version
of this result will be proven for a class of
machines, not necessarily universal, and any
semi-distribution. Furthermore, minimal pro-
grams with respect to universal machines will
be shown to be almost optimal for any semi-
computable semi-distribution. Finally, a com-
plete characterization of all machines satisfy-
ing the Algorithmic Coding Theorem is given.

Indexed Terms—Minimal program, prefix-
code, Chaitin machine, program-size complex-
ity, entropy, Noiseless Coding Theorem, Algo-

rithmic Coding Theorem.

1 Introduction

Let C be a prefix-code with one code string per
source string, that is, an one-one function from

*Calude’s work was done during his visit to Jaist as
a Monbusho visiting professor. Ishihara was partly sup-
ported by a Grant-in-Aid for Scientific Research (C) No
09640253 of the Japan Ministry of Education, Science,
Sports and Culture.

fSchool of Information Science, Japan Advanced In-
stitute of Science, and Technology, JAIST, Tatsunokuchi,
Ishikawa 923-1292; Japan; on leave from the Depart-
ment of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand; e-mails:
cristian@{jaist.ac.jp,cs.auckland.ac.nz}.

#School of Information Science, Japan Advanced In-
stitute of
Science, and Technology, JAIST, Tatsunokuchi, Ishikawa
923-1292, Japan; e-mail: ishihara@jaist.ac.jp.

$Department of Information Sciences, College of
Science and Engineering, Tokyo Denki University,
Hatoyama-Machi, Hiki-Gun, Saitama-Ken 350-0394,
Japan; e-mail: y-takesi@Qj.dendai.ac.jp.

Hajime Ishiharat

Takeshi Yamaguchi®

binary strings to binary strings whose range is
a prefix-free set. Let P(x) be the probability of
the source string = and let |C(x)| be the length
of the code string of . Shannon’s Noiseless Cod-
ing Theorem says that the minimal average code
string length is about equal to the entropy of
the source string set. The strategy is to chose
a prefix-code that matches best the probability
distribution of the source codes.

In what follows we will be interested in in-
finite prefix-codes, that is, prefix-codes naming
all binary strings. We will work with semi-
distributions, i.e., functions P from strings to
reals such that >, P(z) < 1. A Shannon type
result is valid for semi-distributions. We will be
interested in finding prefix-free codes which are
almost optimal for a given semi-distribution, and
also for a class of semi-distributions (in case the
semi-distribution may be unknown, or uncom-
putable).

Algorithmic Information Theory (see [3, 4, 1,
5]) provides a natural class of prefix-free codes,
namely the set of minimal (canonical) programs
of a machine. These prefix-codes are important
for statistical physics, [8]. According to Algo-
rithmic Coding Theorem, minimal programs of
any universal machine (a machine capable of sim-
ulating any other machine) are asymptotically
optimal with respect to the machine algorithmic
probabilities. A stronger version of this result
is proven for a class of machines, not necessarily
universal, and any semi-distribution. Minimal
programs with respect to universal machines are
proven almost optimal for any semi-computable
semi-distribution. Finally, a complete character-
ization of all machines satisfying the Algorithmic
Coding Theorem is given.



2 Notation, Definitions and

Basic Results

By N,Q, and >* we denote the sets of non-
negative integers, rationals, and (finite) binary
strings, respectively. The length of a string s is
denoted by |s|. A string s is a prefix of a string
t (s Ct)if t is the concatenation of s € ¥* and
some string r. A subset A of ¥* is prefiz-free if
whenever s and t are in A and s C t, then s = ¢.
For example, the set {1°0 | i > 0} is prefix-free.
Kraft’s inequality states that for every prefix-free
set A CX* Y o271 <1

By log we denote the base 2 logarithm. For
every real a, if 2" < a < 2"+, for some integer
n, then put n = lg . Note that if a > 0, then
2t @ < o lg o <loga <lg a+1, and if m is an
integer, then lg o > m iff loga > m.

We assume familiarity with Turing machines,
computable sets and functions, computably enu-
merable (c.e.) sets, e.g., from [10]. We shall em-
ploy a sspecial model of deterministic Turing ma-
chine computation, namely self-delimiting Tur-
ing machines or (Chaitin) machines: these are
Turing machines (transforming binary strings
into binary strings) and having prefix-free do-
mains. More precisely, for every Chaitin ma-
chine M the program set PROG ) = {x € ¥* |
M (z) halts} is a prefix-free. Note that, con-
versely, every prefix-free c.e. set set of strings is
the domain of some Chaitin machine. In what
follows we will operate only with Chaitin ma-
chines, which will be simply referred as machines.

The following result will be frequently used
(see [2] for a simple proof):

Kraft-Chaitin Theorem. Given a com-
putable list of “requirements” (n;,s;)(i > 0,s; €
¥*,n; € N) such that -, 27™ < 1, we can effec-
tively construct a machine M and a computable
one-to-one enumeration xgy,T1,T2,... of strings
x; of length n; such that M(x;) = s; for all i,
and M(x) is undefined if x & {x; | i € N}.

The program-size complexity induced by the

machine M is
Hpy(z) = min{|z| | M(2) = z},

with the convention that the minimum of the
empty set is undefined.

The algorithmic probability of the machine M
to produce the output x is

Py(z)= > 27l

M(u)=x

and the halting probability of M is

Qu = Z PM(a?) = 2_|$|.

TEX*

D
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It follows by Kraft’s inequality that, for every
machine M and any string z € ¥*,

0 < Py(z) <Qp <1

For every machine M and string x such that
Pyr(z) > 0, we denote by

xyy = min{u | M(u) = x},

where the minimum is taken according to the
quasi-lexicographical ordering of strings; x3, is
called the minimal (canonical) program of x with
respect to M.

A machine U is universal if for every machine
M, there is a constant cps (depending upon M)
with the following property: if M (x) halts, then
there is an 2’ € ¥* such that U(z') = M(z) and
|2'| < |z| 4+ epr; ear is the simulation constant of
M on U. Universal machines can be effectively
constructed. If U is universal, then zj; exists for
every string z. See more in [1].

Algorithmic Coding Theorem.
(Chaitin) There ezists a constant ¢ > 0 such
that for all strings x,

|Hy(x) +log Py(z)| < 1+ec.

See [3, 4, 1, 5].



3 Noiseless Coding Theorem

A function P : ¥* — [0, 1] such that >°, P(x) <
1 is called a semi-distribution over the strings.
In case Y ,P(z) = 1, P is a distribution.
A semi-distribution P is semi-computable from
below (above) in case the set {(z,r) | = €
X, reQ, Plz) >r} {(z,r) |z € &%, r €
Q, P(x) < r})is c.e. A semi-distribution P is
computable if it is semi-computable from below
and from above. For example, Pj; is a semi-
distribution semi-computable from below. The
function P(z) = 272%I=1 is a computable distri-
bution.

A code for strings is an one-one function C' :
¥* — ¥* such that C(X*) is prefix-free. For ex-
ample, for every surjective machine M, Cys(x) =
x}, is a code; universal machines are surjective.
The average code-string length of a code C with
respect to a semi-distribution P is

Lop =) P(x)

The minimal average code-string length with re-
spect to a semi-distribution P is

Lp =min{L¢c p | C code}.
The entropy of a semi-distribution P is

ZP

A simple extension of Shannon’s classical ar-
gument [9] (see more in [7]) leads to the following

-log P(x).

Noiseless Coding Theorem. (Shannon)
The following inequalities hold true for every
semi-distribution P:

Hp + (zz: P@;)) log (zz: P@;))

< Lp<Hp+1.

Hp—1

IN

If P is a distribution, then log(}", P(z)) = 0,
so we get the classical inequality Hp > Lp.
However, this inequality is not true for every
semi-distribution. For example, take P(x) =
2-2lz[=3 and C(x) = z121 ... 22,01, It follows
that Lp < Lep =Hp — 1.

4 Main Result

We investigate conditions under which given a
semi-distribution P, we can find a (universal)
machine M such that Hy/(z) is equal, up to an
additive constant, to —log P(x). In what follows
we will assume that P(z) > 0, for every x.

We start with the main technical result:

Theorem 1 Assume

that P is a semi-distribution and there exist a
ce. set S C X* xN and a constant ¢ > 0 such
that the following two conditions are satisfied for
every r € X*:

1) Z(w,n)ES 2”

2) if P(x) > 27", then (z,
m < n+c.

"< P(x),

m) € S, for some

Then, there ezists a machine M (depending upon

S) such that for all x,

—log P(z) < Hy(x) < (1+¢) —log P(z). (1)

Proof. In view of 1),
Y o2 < ZP
(z,n)es

so using Kraft-Chaitin Theorem we can con-
struct a machine M such that for every (z,n) €
S there exists a string v, ,, of length n such that
M (vy ) = x. Using 1) and 2), we get:

min{|v| | v € £*, M(v) =z}
min{n |n € N, (z,n) € S}
min{m |m € N, P(z) >2""} +¢

min{m | m € N,m >

IN

IN

(1+c¢) —log P(x).

Remark. Theorem 1 makes no computability
assumptions on P.

Lemma 2 Let M be a machine such that Qp <
1. Then, there exists a universal machine U sat-
isfying the inequality Hy(x) < Hpy(x), for all
T.

—log P(x)} +¢
min{m |m € N;m >1—1gP(z)} +¢

|



Proof. By hypothesis, Q37 < 1, so there is a
non-negative integer k such that Q,; +27% < 1.
Let V' be a universal machine. The set

S = {(M(z),|z]) | = € PROGy}

U{(V(x),|z| + k) | x € PROGvy}
is c.e. and

Yoo 2r<oy+2F <L
(ym)es

Consequently, in view of Kraft-Chaitin Theorem,
there exists a machine U such that for (y,n) € S
there is a program z € PROGYy of length n such
that U(z) = y. Clearly, for every «z,

Hy(z) < min{|w|+k | V(w) = z} = Hy(z) + k,
and
Hy(z) = min{jo[ | U(v) = 2} < Hu(z),

so U is universal and satisfies the required in-
equality. a

Lemma 3 Let M be a machine. Then, there
exists a machine M’ such that Qup < 1 and
Hyp(z) = Hy(z) + 1, for all x.

Proof. Apply Kraft-Chaitin Theorem to the
set {(M(z),|z| +1) | x € PROGp} to obtain
the machine M’. O

Corollary 4 Under the hypotheses of Theorem
1, a universal machine U can be constructed such
that for all x,

Hy(xz) < (24 c) —log P(x). (2)
Proof. Use Lemmas 3, 2 to get a universal

machine U such that Hy(z) < Hpy(z) + 1, for
all x. 0

5 Coding with Minimal Pro-
grams

Specializing P in Theorem 1 we show that mini-
mal programs are almost optimal for P. Minimal
programs of universal machines are almost opti-
mal for every semi-computable semi-distribution
P.

Semi-computable semi-distributions from be-
low (e.g., algorithmic probabilities of machines)
are important in Algorithmic Information The-
ory.

Proposition 5 Assume that P is a semi-
distribution semi-computable from below. Then,
there exists a machine M (depending upon P)
such that for all x,

—log P(z) < Hy(z) <2 —log P(z). (3)
Consequently, minimal programs for M are al-
most optimal: the code Chs satisfies the inequal-
iies:

0< Lcy,,p—Hp <2,

Proof. Take S = {(z,n+ 1) | P(x) > 27"}.

For every x we have:

> e ¥

(z,n)es n>1-log P(x)

27" = 2 "

>

n>1-lg P(x)

=218FP@) < p(g),

so condition 1) in Theorem 1 is satisfied. Condi-
tion 2) holds for ¢ = 1. Finally,

Loy, p—Hp =Y P(z)-(Hu(z)+log P(z)) < 2.

|

Corollary 6 Assume that f : ¥* — N is a
function such that the set {(x,n) | f(x) < n}
is c.e. and ¥, 2 1®) < 1. Let P(z) = 2=/(®),
Then P is a semi-distribution semi-computable
from below, and there exists a machine M (de-
pending upon f) such that for all x,

Ha(z) <1+ f(a). (4)



Minimal programs for M are almost optimal:
the code Cys satisfies the inequalities:

OSLCMJJ—'HP <1.

One more bit is enough to guarantee universality
of the constructed machine, that is, there exists
a universal machine U (depending upon f) such
that the code Cy satisfies the inequalities:

OSLCU,P_HP < 2.

Proof. Take S = {(x,n) | n > f(z)}. Clearly,
S = {(x,n) | P(z) > 27"}. The first condition
in Theorem 1 is satisfied as 3, ;) 27" = P(z),
for every x, and the second condition is satisfied
for ¢ = 0. a

When the semi-distribution P is given, an op-
timal prefix-code can be found for P. However,
that code may be far from optimal for a differ-
ent semi-distribution. For example, let C' pe a
prefix-code such that |C(z)| = 2/#I*2, for all z.
Let a > 0 and consider the distribution

P,(z) = (1 —27) 2~ (a+D)le],

Two radically different situation appear: if a <
1, then
Lep, —Hp, = 00,

but if & > 1, then
Lapa —'HPCk < Q.

So, C is asymptotical optimal for every distri-
bution P, with 1 < «, but C is far away from
optimality if 0 < o < 1. Note that P, is com-
putable provided « is computable.

The next result shows that minimal pro-
grams are asymptotical optimal for every semi-
distribution semi-computable from below.

Theorem 7 Let P be a semi-distribution semi-
computable from below, and U a universal ma-
chine. Then, there ezists a constant cp (depend-
ing upon P) such that

0<Lcy,p—Hp<1+cp.

Proof. Take M the machine constructed in
Proposition 5 and let cjs be the simulation con-
stant of M on U. Then,

0<Lc,,p—Hp < Lcy,p+cu—Hp < 1+cp,

so take cp = cypy. O

Remark. Corollary 7 generalizes a result in
[6] proven for computable distributions. See
also [8]. The result is important only for semi-
distributions for which the entropy is infinite.
For example, the entropy of the semi-distribution
_ o— 1 .. .
P(z) =2 ‘w‘—(\xH?) Toa([Z[57) 18 infinite.
Using Lemma 2 we can obtain sharper inequal-
ities. For example, for every universal machine
U, the code Cy is almost optimal with respect
to PU:
0< LCU7PU — HPU < 2.

If f is a function as in Corollary 6 such that
doa 2-f(#) < 1, then there exists a universal ma-
chine U such that

OSLCU,P_HP <1.

For example, take f(x) = Hy(x), where U is a
universal machine.

Proposition 8 Let P be a computable semi-
distribution. Then, there exists a machine M
such that

—log P(z) < Hy(x) <1—log P(x).

Proof. Note that —lg P(x) = min{n | n €
N, P(x) > 27"} and then apply Theorem 1 to
the set S = {(z,—1gP(z)) | = € ¥*} and con-
stant ¢ = 0. a

Corollary 9 Let P be a computable semi-
distribution. Then, there exists a universal ma-
chine U such that

Hy(z) <1—log P(x).



6 Algorithmic Coding
rem Revisited

Theo-

We characterize all machines satisfying the Al-
gorithmic Coding Theorem and we construct a
class of (universal) machines for which the in-
equality is satisfied with constant ¢ = 0. This
addresses the relevance of the theorem for statis-
tical physics where the presence of an arbitrary
constant is unsatisfactory (see [8]).

Proposition 10 Let M be a machine and ¢ >
0. The following statements are equivalent:

1) for all z, Hy(z) < (1 + ¢) — log Py(z),

2) for all non-negative n, if Pyr(x) > 27", then
Hy(z) <n+ec.

Proof. From Hp(x) < (1+4c¢)—log Py(z) and
Py(z) > 27" we deduce

27" < Py(z) < 20+ Hu(),
Conversely, we have:

Hy(x)—c=min{n |n € N, Py (z) > 27"}

For any machine M satisfying condition 2) in
Proposition 10 the Algorithmic Coding Theorem
holds:

|Hy(z) +log Py (z)| <1+c (5)

In fact, a machine M satisfies (5) if and only
if condition 2) is satisfied. Every universal ma-
chine U satisfies condition 2), but not all ma-
chines satisfy this condition. To construct such
an example, consider the following enumeration:
for every string = enumerate 2/*! copies of the
pair (z,3|z|+1). Use Kraft-Chaitin Theorem to
construct a machine M such that for every string
 there exist 2/*| different strings ul,, all of length
3|z| + 1, such that

MWl)=z,i=12,...,2°.

It is seen that Pp(z) = 2721*1-1 so taking
ng = 2|x| + 2 we get Pps(x) > 27", but there is
no constant ¢ such that Hy(x) < ng + ¢, for all

strings .

Some machines satisfy condition 2) with ¢ = 0,
so their canonical programs are almost optimal.
A class of (universal) such machines is provided
in the next proposition.

Proposition 11 Let M be a machine such that
for all programs x # x' with M (z) = M(x') we
have |x| # |2'|. Then, for all x,

Hau(x) < 1 log P (x). (6)

Proof. Consider the set S = {(z, |y|) | M(y) =
x}, and notice that

PM(l'): Z an’

(z,n)esS

as programs producing the same output have dif-
ferent lengths. In view of the hypothesis,

Py(z)>2™" <= J(z,k1)€ S, ki <n or

(k‘l =n& Ik 7é k1, (Z‘,kg) S S),

hé&dce the second condition in Theorem 1 is sat-
isfied with ¢ = 0. Using Theorem 1 we de-
duce the existence of a machine M’ such that
Hyp(xz) < 1—log Pyp(x), for all z. The inequal-
ity (6) follows from

Hy(z) = min{n | (z,n) € S} = Hyp(z).

Remark. Not every universal machine satisfies
the hypothesis of Proposition 11. However, if V'
is a universal machine, the one can effectively
construct a universal machine U such that pro-
grams producing the same output via U have
different lengths and Hy(x) = Hy(x), for every
z.! Indeed, enumerate the graph of V and as
soon as a pair (z,V(z)) appears in the list do
not include in the list any pair (z/,V(2')) with
x # 2/ and V(x) = V(2'). The set enumerated
in this way, which is a subset of the graph of V', is
the graph of the universal machine U satisfying
the required condition.

LOf course, Py(x) < Py (x), for all .
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