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1 Introduction

The present work brings together two ideas, namely type two computability, and p–adic
fields. We start with a brief review of the notion a computable number and of a p–adic
field as a background.

The basic idea for computable real numbers is contained in Turing’s fundamental
paper [20], where he introduced the notion of a computable (or recursive) real number,
and initiated the study of the relevant concepts and notions. He described the recursive
real numbers as a subset of the real numbers obtained by imposing restrictions on the
definition of a real number. A real number can be given either as a digit expansion in
some base b ≥ 2, or as a limit of Cauchy sequence of rational numbers, or a Dedekind
cut. In the above paper, Turing defined a computable real number to be a real number
which admits an effective representation in base 2 expansion. The above definition (of
effective representation) was enlarged by other researchers since the definition of a real
number can be given also as a limit of a Cauchy sequence or as a Dedekind cut. A
computable (or recursive) real number is currently defined in the literature in any of the
above mentioned ways (limit of a Cauchy sequence, Dedekind cut, or digit expansion),
subject to the requirement that the method that defines the number is effective (a partial
list of related work is: [7, 8, 13, 14, 16, 17, 18]). In the literature the standard definition
used is the one using Caychy sequences. The main reason for this developement is that
there exist problems regarding the rational operations using the decimal (or some other
base) expansion of a real number.

This idea of Turing can be viewed as the study of one of the topological completions of
the field of the rational numbers, namely the one given by the usual absolute value, while
imposing some restrictions on the way an element of the completion is defined. Namely
either the sequence of digits is given by a total recursive function, or the Cauchy sequence
and the modulus of convergence are given by a recursive function. This requirement can
be seen as a restriction of the topology.

There are other topological completions of the field of the rational numbers, namely
the p–adic fields, where a different absolute value is used. It is natural to consider the
analogous effectiveness and complexity questions in these contexts. Regarding the possi-
ble topological completions of the fiels of the rational numbers, Ostrowski has shown that
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the fields of the real and p–adic numbers are the only possible topological completions
of the field of rational numbers [5].

We give a brief description of the p–adic fields and refer the reader to [4, 5, 9, 12], for
detailed presentations. A p–adic field can be defined axiomatic definition or by a direcr
construction of the p–adic numbers (or representatives of them) and defining the field
operations. The definition through the representatives can be accomplished in various
ways:

1) A p–adic field can be defined as a topological completion of the field of rational
numbers. To achieve this first fix a prime number p. Define the valuation of a non zero
integer number r with respect to p, denoted by vp(r), to be the highest exponent e such
that pe|r, and set vp(0) = ∞. This valuation can be extended to the set of rational
numbers. For a rational number x = r/s, with r, s integers, define vp(x) = vp(r)− vp(s).
It can be easily shown that the above definition is independent of the representation of
x. From this valuation it is possible to define an absolute value over the field of rational
numbers as follows: |r| = p−vp(r). This function absolute value function satisfies all the
axioms for an absolute value function, and in addition to the usual triangle inequality,
it satisfies the strong triangle inequality (referred to as ultrametric inequality) i.e.

|x+ y| ≤ max{|x|, |y|}.

In addition, the above inequality reduces to equality if |x| 6= |y|, and also if |x+ y| <
max{|x|, |y|} then |x| = |y|. The ultrametric inequality shows that the field of p–adic
numbers fails to satisfy the Archimedean axiom. From the definition of the absolute
value over these fields (denoted by Qp) we have that for any ”triangle” at least two of
the three ”sides” of the ”triangle” have equal ”length”.

Having defined this absolute value, it is possible to define the notion of a Cauchy
sequence with respect to it. After showing that the field of rational numbers is not
(topologically) complete with respect to this absolute value, the field of p–adic numbers,
is defined to be the completion of the field of rational numbers with respect to this
absolute value. It can be shown that this field is unique up to isomorphism [5].

The notion of a valuation function over a field can be formulated in a more algebraic
and abstract setting as follows: Given a field F , and an ordered Abelian group 〈G,+, <〉,
a valuation is a map v:F \ {0} → G which satisfies:

v(xy) = v(x) + v(y),

v(x+ y) ≥ min{v(x), v(y)}.

The group G is called the value group of F with respect to this valuation. In the case
of the p–adic numbers the absolute value group of the valuation is 〈Z,+, <〉. For the
notion of valuation related with p–adic fields, the necessary material can be found in [5].

An important subset of Qp is the set of p–adic numbers x such that vp(x) ≥ 0 (or
equivalently |x| ≤ 1). They are called p–adic integers and this set is denoted by Zp. This
set is the analogue of the set [0, 1] (or [−1, 1]) in the case of real numbers, and it is a
ring. Moreover it contains a unique maximal ideal namely the set {x ∈ Qp: |x| < 1}= pZp
(such rings are known as local rings in Algebra).

An alternative way to view the field of p–adic numbers along with the absolute value
function is the notion of a valued field. To do this the field of p–adic numbers is not
considered as a field with an absolute value, but as a field with a distinguished subset. The
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distinguished subset is the set Zp or the set {x ∈ Qp: |x| ≤ 1}. This set is algebraically a
ring (called the valuation ring), and it has a unique maximal ideal, namely the set pZp.
The set Zp can be defined in the language of fields as follows:

Zp = {x ∈ Qp | ∃y y2 − 1 = px2} p 6= 2,

Zp = {x ∈ Qp | ∃y y3 − 1 = px3}, p = 2.

The presentation of Qp as a valued field with Zp as a distinguished subset makes
possible to express an algebraic property of the field of p–adic numbers, namely the
notion of a Henselian field.

Definition 1 (Hensel’s lemma, Newton’s method) Let 〈F,O,M〉 be a valued field,
with O = {x ∈ F | v(x) ≥ 0}, M = {x ∈ F | v(x) ≥ 1}. Let f ∈ O[x], let f̄ be
the polynomial obtained from f by reducing the coefficients of f (modM), let f̄ ′ be
the formal derivative of f̄ . The field 〈F,O,M〉 is Henselian if for x ∈ F/M such that
f̄(x) ≡ 0 (modM), and f̄ ′(x) 6≡ 0 (modM), there exists z̄ ∈ F such that f(z) = 0,
and z ≡ x (modM).

An alternative approach for defining the field of p–adic numbers is similar to the digit
expansion of a real number i.e using a representation. A nonzero real number x can be
represented as a digit expansion i.e.

x = (−1)σbeΣ∞k=0dib
−i, e ∈ Z, di ∈ {0, 1, . . . , b− 1}, d0 6= 0, σ ∈ {0, 1}. (1)

with b ≥ 2.
For the p–adic case we have a similar representation, namely a nonzero p–adic number

x can be represented as:

x = peΣ∞i=0dip
i with e ∈ Z, di ∈ {0, 1, . . . , p− 1}, d0 6= 0. (2)

(in the case of a p–adic number the base p is fixed). The valuation of the element x is
defined to be the number e. The above representation in the case of p–adic numbers is
unique as opposed with the real numbers.

A variant of the base p representation is the Teichmüller representation. The repre-
sentation of Qp in base p (equation 2) consists of the formal expressions of the form

Σ∞n=ianp
n i ∈ Z, an ∈ {0, 1, . . . , p− 1}, ai 6= 0. (3)

To obtain such an expression we choose a complete set of representatives to use as digits
(coefficients) . A different complete set of representatives that can be used is the set
of (p − 1)st roots of unity and 0. This is a complete set of representatives since the
equation xp−1 − 1 = 0 has at most one root xi such that xi = i (mod p) for each
i ∈ {1, . . . , p − 1}, and Qp is Henselian. This representation is called the Teichmüller
representation. We can endow the set {0, 1, . . . , p−1} with suitable operations such that
Qp in base p expansion becomes a field. Mapping the set {0, 1, . . . , p − 1} to the set of
p− 1 roots of unity and 0 these operations induce operations on the set of p− 1 roots of
unity and 0 and then Qp (in Teichmüller representation) becomes a field isomorphic to
Qp in base p expansion.

The field operations in the p–adic fields are defined as follows: In the definition via
Cauchy sequences we have rational operations over rational numbers and we can extend
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by continuity. In the case of the base p expansion, or the Teichmüller representation, the
operations are carried out digit by digit (as in the case of the real numbers). In the base
p expansion or the Teichmüller representation there is a carry digit also as in the case of
real numbers, but this digit moves to the right. This last fact simplifies certain proofs
and gives a difference contrasted with the real numbers. For example the ε/2 arguments
in the real number case are simplified to ε arguments in the case of p–adic numbers.

In the axiomatic definition, in the language of fields we describe a set of (second order)
axioms and exhibit a model. It can be shown that any two models of the following set
of axioms are isomorphic [5]. The axioms for the field of p–adic numbers F are the
following:

1. The characteristic of the field F is 0.

2. The residue field Zp/pZp is isomorphic to Fp, the finite field consisting of p elements.

3. The value group is 〈Z,+, <〉.

4. The least element of the value group is equal to v(p).

5. Every Cauchy sequence of elements of F converges to an element of F .

The definition of the p–adic fields as completions of the field of the rational numbers
or the definition of a p–adic number as base p expansion gives a model for the axiomatic
definition or alternatively the axiomatic definition can be used for a uniqueness charac-
terization of the construction [5].

The approach taken here is the traditional approach of recursive analysis, i.e. a real
or p–adic number is viewed as infinite object, and is understood as the limit of finite
objects, namely rational numbers. This approach for the case of real numbers has been
extensively developed by various authors. A partial list of related work follows: [1, 2, 7,
8, 6, 10, 13, 15, 16, 17, 18, 14, 20].

The main issue in the present work is to study the analogous problems in the case of
p–adic numbers and verify which ones carry over and which ones fail and the reason for
the failures.

The present approach to the nature of a real or a p–adic number should be contrasted
with the superficially similar approach in in the work of Shub – Smale –Karp [3], where
a (real or p–adic) number is taken as a completely known object and not taken as a
limit of simpler objects. This difference on the nature of a real number as viewed by
Shub – Smale – Karp also implies an understanding of the continuoum different than
the one here. The nature of a computable (real or p–adic ) number is the standard
one in constructive mathematics where the notion of limit is employed to define these
concepts. Also using the present setting it is possible to define and study naturally
notions such as functions and functionals (representing the integral, the maximum value
and the derivative of a function) over the basic objects of study. Such approach does not
seem possible in the work of Shub – Smale –Karp [3].

Some natural questions to ask in the context of computability (and complexity) the-
ory include the following: What are the properties (algebraic or analytic) of the set of
numbers considered? There are several representations of the numbers introduced. One
representation is using pairs of indices of recursive functions which functions code Cauchy
sequences and moduli of convergence. An alternative representation is using indices of
recursive functions which code the base p expansion of a p–adic number. Among these
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representations is there a best representation, or are all of them of the same expressive
power? Further work on functions and complexity considerations is under preparation.

Some of the results obtained are the following:

1. The definitions of the recursive p–adic numbers via Cauchy sequences and via base
p expansion are recursively equivalent (Theorem 4, page 11).

2. The recursive, primitive recursive, and polynomially time computable p–adic num-
bers each form a p–adically closed field (Theorem 7, page 14, Theorem 8, page 16,
Theorem 9, page 16).

3. The field of the recursive p–adic numbers is characterized up to recursive isomor-
phism (Theorem 14, page 20).

In the case of the real numbers there is a difference in the following case:

1. The set of numbers defined via base p expansion and via Cauchy sequences are the
same, and we can effectively obtain an index of a Cauchy sequence for a p–adic
number from an index of the base p expansion (as for the p–adic numbers). However
we can effectively invert this translation. The effective inversion is not possible in
the real number case.

This phenomenon (for the real number case) is well known and is related with the im-
possibility to determine correctly the digits of the binary (or decimal) expansion of a real
number.

Notation: The set of natural numbers will be denoted by N. The set of integers
will be denoted by Z. The set of rational numbers will be denoted by Q. The set of
p–adic numbers will be denoted by Qp. A standard enumeration of the general recursive
functions is assumed. The notation φe will be used to denote the (general) recursive
function with code number e. Lambda notation will be used occasionally to distinguish
the variables of the functions from parameters. Kleene’s primitive recursive predicate T
will be used occasionally. The meaning of the predicate T (x, y, z) will be that z is the
complete computation history of the general recursive function with index x, on input
y. We use {Wi | i ∈ N} to denote some standard enumeration of the r.e. subsets of
the natural numbers, For coding pairs of integers 〈x, y〉 will denote the standard coding
functions from pairs of natural numbers to the natural numbers, 〈x, y, z〉 will be used
to denote the standard coding from triples of natural numbers to natural numbers etc.
The functions for decoding codes for tuples of natural numbers will be denoted by pi(x),
i.e. if x is a code for an n–tuple of natural numbers, then pi(x) is the ith component of
this tuple. When a recursive function f is defined at the point x this will be denoted by
f(x) ↓. The finite field consisting of p elements, with p a prime number will be denoted
by Fp. Equality between partial recursive function will be denoted by ', that is for f, g
partial recursive functions f(x) ' g(x) denotes that for each x, both f and g are defined
at x and have the same output value or both are undefined. The notation f (m) will be
used to denote the mth derivative of a sufficiently differentiable function.

2 Recursive p–adic numbers

Definition 2 A sequence of rational numbers {an | n ∈ N} is recursive if and only if
there is a recursive function f s.t ∀n ∈ N f(n) = an. An index e s.t. φe(n) = f(n) is
called an index of the sequence {an | n ∈ N}.
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Definition 3 A recursive sequence of rational numbers {an | n ∈ N} is is Cauchy
recursively or effectively (in the p–adic metric) if and only if there is a recursive function
g s.t. ∀n,m > g(l) we have | an − am |< p−l. The function g is called a modulus of the
Cauchy criterion of the sequence {an | n ∈ N}. An index of the function g is called an
index of the modulus of convergence.

Definition 4 A recursive p–adic number x is the limit of recursive Cauchy sequence of
rational numbers {an | n ∈ N}. The sequence {an | n ∈ N} converges recursively (in the
p–adic metric) to x.

A recursive p–adic number x, given via as the limit of a Cauchy sequence, is a p–adic
number represented by a natural number 〈e, i〉 in the following way: The number e is the
code number (index) for a recursive function φe which generates a sequence of integers
intepreted as codes for rational numbers. We have a recursive sequence of rational
numbers via φe. The sequence {φe(n) | n ∈ N} effectively converges to x. That is,
φe(n) is the nth term of a Cauchy sequence of rational numbers converging to x with
a (total) recursive function with index i as modulus of convergence (modulus for the
Cauchy criterion). In other words we have:

∀k ≥ φi(n)⇒ |φe(k)− x| < p−n.

The definition given above does not directly refers to x but uses approximations to define
the notion of a computable p–adic number.

Definition 5 The index of pair 〈e, i〉 is called an index of the recursive p–adic number
x.

The set X of indices representing the computable p–adic numbers can be arithmeti-
cally defined as follows:

m ∈ X ⇐⇒ m = 〈m1,m2〉 ∧ ∀n ∈ N ∀k, l ≥ m2(n)⇒ pn | φm1(k)− φm1(l).

One reason for starting from the rational numbers as fundamental objects of study,
and not using some other set of numbers as basic objects, is their conceptual simplicity
and the effectiveness of the basic operations. On the technical side we have that there
is a primitive recursive function which enumerates a set of indices for the set of rational
numbers. This is accomplished as follows: A rational number r/s can be coded as the
pair 〈r, s〉. Any primitive recursive function which codes pairs of natural numbers (in
lowest terms) to natural numbers can be used to give a primitive recursive enumeration
of a set of indices for the rational numbers.

Since there are infinitely many indices representing the same recursive function f ,
we have that a recursive p–adic number is represented by an equivalence class of pairs
of indices for recursive functions. The equivalence is defined as follows: Two indices for
pairs 〈f,m1〉, 〈g,m2〉 representing recursive p–adic numbers are in the same equivalence
class if and only if there exists a recursive function m:N→ N such that:

∀k, l ≥ m(n)⇒ |φf (k)− φg(l)| ≤ p
−n.

The function m will be called modulus of equivalence of f and g. The equivalence
relation between indices representing computable p–adic numbers can be defined arith-
metically by the above relation (see [15]).
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For x an index of a recursive p–adic number [x] will denote the equivalence class that
x belongs to. Given two indices 〈e,m〉 and 〈e′,m′〉 which represent x we have that the
function f defined by f(n) = max{m(n),m′(n)} is a modulus of equivalence for these
two indices.

In general, there is going to be more than one natural number denoting the same
object, so there is a nontrivial equivalence relation ∼ defined among the set of natural
numbers used to denote the elements of the set under consideration (computable p–adic
numbers). Two elements of the set X are equivalent if and only if they denote the same
recursive p–adic number. In other words we associate each recursive p–adic number
with an equivalence class of indices (pairs) for (total) recursive functions. Each index
in an equivalence class codes a recursive Cauchy sequence of rational numbers, and the
convergence rate is effective. In general the set X and the equivalence relation ∼ are not
assumed to be recursive. Each equivalence class may contain infinitely many indices.

Definition 6 (Moschovakis [15]) A notation system is a pair 〈X,∼〉, with X a subset
of the natural numbers, and ∼ an equivalence relation among elements of X.

The above set of indices along with the equivalence relation is defined by Moschovakis
[15] as a notation system. In the definition of a notation system in the present setting we
use an arithmetically definable subset X of the natural numbers to denote the recursive
p–adic numbers.

Notation: The set of recursive p–adic numbers will be denoted by Qc
p, the set of

p–adic integers will be denoted by Zp. The set of codes of pairs of indices that represent
recursive p–adic numbers will be denoted by Qcp. The set of equivalence classes of pairs
of indices corresponding to a recursive p–adic number will be denoted by Qcp . Otherwise
Qcp = 〈Qcp,∼〉 is a notation system according to the definition 6, page 7.

3 Subsets of the computable p–adic numbers

By restricting the set of functions in the definition of a computable p–adic number, it is
possible to obtain subclasses of Qc

p. Such nontrivial interesting subclasses are the poly-
nomially time computable p–adic numbers and the primitive recursive p–adic numbers.

Definition 7 A polynomially time computable p–adic number x is a p–adic number
which is the limit of a recursive recursively convergent sequence of rational numbers. The
number x is represented by a natural number 〈e,m〉. The sequence of values {φe(n) |
n ∈ N} is polynomially time computable, and is interpreted as a Cauchy sequence of
rational numbers. The modulus of convergence of the sequence {φe(n) | n ∈N} (Cauchy
criterion) m is a polynomially time computable function.

Regarding the coding of the input n to the function φe we use unary notation. The
reason for this is that using binary notation will give exponential complexity to simple
functions as the identity function which should be computable as a function with linear
modulus of continuity.

Notation: The set of polynomially time computable p–adic numbers will be denoted
by QPp . The set of indices that represent polynomially time computable p–adic numbers

will be denoted by QPp . The set of equivalence classes of indices that represent elements

of QPp will be denoted by QPp .
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Equality among elements of QPp is defined as follows: Two indices i, j for elements

of QPp represent the same element of QPp if and only if there exists a polynomially time
computable function f such that:

∀n,∀m m > f(n)⇒ |φi(m)− φj(m)| < p−n.

Definition 8 A primitive recursive p–adic number is the limit of primitive recursive
sequence of rational numbers with primitive recursive modulus of convergence. A prim-
itive recursive p–adic number z is represented by a natural number 〈e,m〉, which is
the Gödel number of a primitive recursive function φe:N→ N such that the sequence
{φe(n)|n ∈ N} codes a Cauchy sequence of rational numbers, with primitive recursive
modulus of convergence m, which sequence converges to z.

The set of primitive recursive p–adic numbers will be denoted by QPR
p . The set of

indices that represent polynomially time computable p–adic numbers will be denoted
by QPR

p . The set of equivalence classes of notations for the primitive recursive p–adic

numbers will be denoted by QPRp .

Equality among elements of QPR
p is defined as follows: Two indices i, j for elements

of QPR
p represent the same element of QPR

p if and only if there exists a primitive recursive
function f such that:

∀n,∀m m > f(n)⇒ |φi(m)− φj(m)| < p−n.

Theorem 1 There is no decision procedure to decide if two indices representing recursive
p–adic numbers represent the same element of Qc

p.

Proof:Suppose such a procedure exists, then taking the difference of the values of
the recursive functions corresponding to these two indices we would have a decision
procedure for the set of indices representing 0. That is there is a decision procedure for
the following set:

{〈i,m〉 | for all k ≥ m(n) |φi(k)| < p−n} =

{〈i,m〉 | for all k ≥ m(n) pn|φi(k)}.

Consider the following reduction:

φf(x)(z) =



1, if z = 0,
x+ pz, if φx(x) does not halt in z steps,
pz0 , the least z0 ≤ z such that φx(x) halts in z0 steps, and

z is even,
1 + pz0, the least z0 ≤ z such that φx(x) halts in z0 steps, and

z is odd.

We have that f is a recursive function and x ∈ K̄ = {x | x 6∈ Wx} if and only
if 〈f(x), Id〉 is an index for x ∈ Qcp with linear modulus of convergence. A decision
procedure as in the statement of the theorem would give that set K = {x | x ∈Wx} is a
recursive set, via 〈f(x), Id〉. Also the above reduction is an 1− 1 reduction.

Corollary 1 Equality between equivalence classes of recursive p–adic numbers is not
decidable.
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Proof:If equality between p–adic numbers were decidable then for x, y ∈ Qc
p , and i, j

indices for x, y respectively we can decide if [i] = [j] or not. This implies that an
equivalence class of indices for a fixed recursive p–adic number is a recursive set. This
contradicts the previous theorem. In particular it is not possible to decide equality
with 0. However we can determine whether two recursive p–adic numbers are different
(unequal).

The above corollary is a fundamental difference between the present approach to
computability and the approach in [3] where a real or p–adic number is taken as a
completely known object and hence equality between such objects can be decided.

Proposition 1 For x ∈ Qcp and n ∈ N, we can decide the following: |x| < pn, |x| = pn,
|x| > pn.

Theorem 2 The set of indices for recursive p–adic numbers is not a recursive set.

Proof:Suppose it is a recursive set. Then we have that there is a decision procedure for
the following set:

{〈i,m〉: for all k, l ≥ m(n) φi(k) ↓, φi(l) ↓ ∧ |φi(k)− φi(l)| < p−n} =

{〈i,m〉: for all k, l ≥ m(n) φi(k) ↓, φ i(l) ↓ ∧ pn|(φi(k)− φi(l))}.

Consider the following reduction:

φf(x)(z) =



1, if z = 0,
x+ pz, if φx(x) does not halt in z steps,
1 + pz0 , the least z0 ≤ z such that φx(x) ↓ in z0 steps, and

z is even,
pz0, the least z0 ≤ z such that φx(x) ↓ in z0 steps, and

z is odd.

We have that f(x) is a recursive function, and x ∈ K̄ = {x | x 6∈ Wx} if and only
if 〈f(x), Id〉 is an index for a Cauchy sequence converging to x with linear modulus of
convergence. A decision procedure for the set of indices for the recursive p–adic numbers
then would give a decision procedure for the set K̄ via the function f . As before the
function f is 1−1. The above theorem shows that the set of recursive p–adic numbers is
a nontrivial subset of the set of p–adic numbers. A specific x ∈ Qp \Qc

p can be defined
as in the case of the real numbers (the idea is essentially due to Specker). Let f be an
1− 1 enumeration of the halting problem. Then x = Σpf(n) is a non computable p–adic
number .

Also it shows that although Qcp is countable we cannot enumerate the above set
by an effective procedure i.e. Qcp is effectively uncountable. It is not unknown to the
author whether we can enumerate or not the set of polynomially time computable p–adic
numbers by a polynomially time computable function. For the case of the primitive
recursive p–adic numbers the corresponding question has negative answer by Theorem 6,
page 13.

Theorem 3 The set of indices representing recursive p–adic numbers is a Π2 complete
set.
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Proof:We have the following reduction. For x ∈ Tot define

φf(x)(z) =

{
x+ pΣi≤zi, if φx (i) ↓ ∀i ≤ z,
↑, otherwise.

We have that x ∈ Tot⇔ φf(x) ∈ Q
c
p and f is 1− 1. We also have that x ∈ Qcp ⇒ x ∈

Tot.
A similar proposition is mentioned in Beeson [1] (p. 67) for the real numbers.

4 Alternative definitions of computable p–adic numbers

Our standard approach is to define a recursive p–adic number as the limit of a recursive
Cauchy sequence of rationals with recursive modulus of convergence. There are two al-
ternative ways to define a p–adic number, one is via digit expansion and the other via
the Teichmüller representation where the sequence of digits corresponding to a p–adic
number is determined by a (total) recursive function. Comparing the constructive ver-
sions of these definitions, by Theorem 4, page 11 we have that these two definitions give
rise to the same set of numbers.

The motivation for the recursive base p representation of a p–adic number is the
following: According to the definition, the base p representation of a p–adic number is:

a−m
pm

+
a−(m+1)

pm−1
+ . . . +

a−1

p−1
+ Σ∞j=0ajp

j, am 6= 0,m ∈ Z.

The part of the representation which consists of negative powers of p is finite and thus
can be coded by a single number. The part of the representation consisting of positive
powers of p is an infinite series, and the coefficients of the positive powers of p are the
values of a total recursive function.

Definition 9 A recursive base p representation of a p–adic number, is a natural number
e, viewed as an index of a total recursive function φe such that φe(0) represents the part
of x in Qp \ Zp and for n ≥ 1 φe(n) ∈ {0, 1, . . . , p− 1}.

The notation system consisting of the indices denoting a recursive base p representa-
tion of a p–adic number will be denoted by Qc,dp (the superscript d stands for digit and
the superscript c stands for computable).

The set of indices representing a p–adic number in recursive base p representation
can be characterized as follows:

x ∈ Qc,dp ⇔
(
φx(0) = 〈m,pn〉, length(m) ≤ n) ∧ (n ≥ 1⇒ 0 ≤ φx(n) ≤ p− 1)

)
.

It is straightforward to translate the above definition to an arithmetical definition. Again
as in the case of the Cauchy sequence definition of p–adic numbers we have that a p–adic
number is an equivalence class defined in a similar manner as in the case of the Cauchy
sequence definition.

Definition 10 (Moschovakis [15]) Let N1,N2 be two notation systems, and let
F :N1 → N2 be a function or operator defined over equivalence classes of elements of
N1 and taking as values equivalence classes of elements of N2. Let [x] denote the equiv-
alence class of an element x. A function (operator) F is recursive if and only if there
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exists a partial recursive function f :N1 → N2 such that whenever i is a member of an
equivalence class of N1, then f(i) ↓, f(i) is an element of N2, [i]1 = [j]1 ⇒ f(i) = f(j),
and F ([i]1) = [f(i)]2.

Definition 11 (Moschovakis [15]) Let N1,N2 be two notation systems, and let
F :N1 → N2 be a partial function or operator defined over equivalence classes of ele-
ments of N1 and taking as values equivalence classes of elements of elements of N2. A
function (operator) F is partial recursive if and only if there exists a partial recursive
function f such that whenever i is a member of an equivalence class [i] ∈ N1, then
f(i) ↓ ⇐⇒ F (i) is defined, f(i) is an element of N2, [i]1 = [j]1 ⇒ f(i) = f(j), and
F ([i]1) = [f(i)]2.

We note that the standard field operations (division by 0 is undefined) are recursive
operators over Qcp . We have the following proposition relating the different definitions of
computable p–adic numbers:

Proposition 2 There exists a recursive operator fd:Qc,dp → Qcp. Moreover fd maps Qc,d
p

onto Qc
p.

Proof:Let x be an index of a recursive base p expansion of a p–adic number. The sequence
defined by:

an = φx(0) + Σn+1
i=1 φx(i)p

i−1,

is a Cauchy sequence converging to the p–adic number denoted by x, and has the identity
function as modulus of the Cauchy criterion. An index i for this sequence is the value of
f(x).

For the onto we have the following. For x ∈ Qc
p, let {xn | n ∈ N} be a Cauchy

sequence representing x, with g as modulus of the Cauchy criterion. The sequence of
digits of x can be obtained as follows: The part of x in Qc

p\Zp, d is obtained by expanding
xg(0) in base p and discarding the part of the result which contains the nonnegative powers
of p. For the nontrivial part we have:

d(i + 1) = µy[ypi+1 − (d+ Σi
j=0d(j)p

j − xg(i+1)) ≡ 0 (mod pi+2)], i ≥ 0.

Theorem 4 The sets of recursive p–adic numbers defined as limits of recursive Cauchy
sequences with recursive moduli of convergence or as recursive base p expansions are the
same.

Proof:Follows from the last clause of the previous theorem.
The definition of a recursive p–adic number involves a Cauchy sequence of rational

numbers converging to some p–adic number, and the modulus of convergence of this
sequence. It is possible to define a notion of recursive p–adic number without the infor-
mation about the modulus of convergence. The definition which contains the information
about the modulus of convergence rate is better as we have from the following theorem
that we cannot effectively invert the mapping that maps an index of the recursive base
p expansion to an index of Cauchy sequence representation a recursive p–adic number.

Theorem 5 Let IC be the set of indices of total recursive functions that code a Cauchy
sequence of rationals converging to a computable p–adic number (with a recursive function

11



as modulus of convergence). Let fd be the natural map, fd:Q
c,d
p → IC mapping an

index of the recursive base p expansion of x ∈ Qc
p to some index of an effective Cauchy

sequence representing x ∈ Qc
p. Then there is no recursive function f : IC → Qc,dp such

that for i an index of a recursive base p expansion of a recursive p–adic number we have
[i] = [fd(f(i))].

Proof:Suppose that such f exists, i.e. for x an index of a Cauchy sequence representing
a recursive p–adic number, f(x) ∈ Qc,dp and [fd(f(x))] = [x]. Define g : IC ×N→ IC as
follows:

g(m, t) =


0, if ∀u ≤ t, f(m) ↑ in u steps, or φf(m)(1) ↑ in u steps,
1, if ∃u ≤ t, f(m) ↓ , and φf(m)(1) = 0, and the number of

steps required for both computations is less than u,
p if ∃u ≤ t, f(m) ↓ φf(m)(1) 6= 0, and the number of steps

required for both computations is less than u.

By the recursion theorem there exists a number m ∈ N such that for all t ∈
N g(m, t) = φm(t). We have that f(m) is defined for all m ∈ IC , φf(m) ∈ {0, . . . , p− 1},
hence g(m, t) is total so φm(t) is total. Thus for m ∈ IC eventually one of the last two
clauses in the definition of g will be true. From this we have that for m ∈ IC , φm repre-
sents a rational integer (viewed as an element of IC). Hence we have m 6= 0, since eventu-
ally the computation will halt. In both cases we get the contradiction [φm] 6= [φfd(f(m))],
since these two classes they differ at the first digit of their base p expansion.

One more reason for including the information about the convergence rate of a recur-
sive sequence of rationals is that without this information it is not possible to determine
effectively the digits of of the number (at base p expansion) that correspomnds to the
limit of the sequence. Also such an approach would include as computable the number
Σ∞n=0p

f(n), where f(n) is a 1-1 recursive function enumerating K (or any other r.e. non
recursive set).

5 Primitive recursive p–adic numbers

One of the basic subclasses of the class of recursive functions is the class of primitive
recursive functions. This class of functions gives rise to a subclass of the recursive p–adic
numbers: the p–adic numbers defined via primitive recursion.

It is well known in the theory of of recursive functions that the class of primitive
recursive functions is less rich than the class of recursive functions. The reason for this
is that the definitions by primitive recursion are simple definitions. As in the case of the
recursive p–adic numbers we have that the set of indices denoting a primitive recursive
p–adic number is not a recursive set and as a consequence this set has not primitive
recursive characteristic function.

Lemma 1 There exists a recursive function f such that: 1) For We an infinite recur-
sively enumerable subset of N, f(e) is an index of a primitive recursive sequence of ra-
tional numbers that converges to a p–adic number with linear modulus of convergence. 2)
For We a finite recursively enumerable subset of N f(e) is an index for a finite sequence
of rational numbers.
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Proof:Assume without loss of generality that |W s+1
e \W s

e | ≤ 1 Given We a recursively
enumerable subset of N define a sequence {bn | n ∈ N} as follows: Stage 0: Let b0 = 0.
Stage s+1: Let s0 be the maximum of 0 and the last z+1 < s+1 such thatW z+1

e \W z
e 6= ∅.

If W s+1
e \W s

e = ∅, do nothing. If W s+1
e \W s

e 6= ∅ then define bi = 0 for s0 < i ≤ s and
bs+1 = ps+1. The sequence {bn | n ∈ N} is infinite for We infinite and v(bs) = s + 1
for bs 6= 0. Hence we have that {bn | n ∈ N} converges to 0 with linear modulus of
convergence. The above calculations are primitive recursive, hence the limit of the series
is a primitive recursive p–adic number. The value of f(e) is an index for this sequence.
If We is finite then there exists an index i such that bi is undefined for n ≥ i. The value
of f(e) in this case is is an index for the above (finite) sequence.

Theorem 6 The set of indices denoting a primitive recursive p–adic number is not a
recursive set.

Proof:Suppose it is. Then from the above lemma, for each e such that We is infinite we
have that f(e) is an index for a primitive recursive sequence of rational numbers that
has a linear modulus of convergence. For e such that We is finite, f(e) is an index for a
finite sequence of rational numbers. Hence

e ∈ {e |We is infinite } ⇐⇒ 〈f(e), Id〉 ∈ QPR
p ,

which gives that the former set is decidable which is a contradiction. A somewhat similar
theorem was proved by C. Jockush [11] (unpublished), under the assumption of decidable
equality and that the carrier set is the set of natural numbers.

6 Algebraic properties of the recursive p–adic numbers

A standard question when dealing with some structure is determining whether it is closed
with respect to certain operators. In the case of the p–adic fields the relevant closure is
the notion of being p–adically closed, which implies that the field under consideration
is elementarily equivalent with the field of p–adic numbers. As a consequence we have
that a p–adically closed field satisfies the same first order axioms as the field of p–adic
numbers.

Definition 12 A valued field F , with V as the valuation ring is p–adically closed iff:

1. The residue field is Fp the finite field of p elements.

2. The value group of the field satisfies the axioms of Th(Z,+, <)

3. The element vp(p) is the least positive element of the value group.

4. The characteristic of the field is 0.

5. The valued field 〈F,V,O〉 is Henselian.

The important clause in the definition of p–adically closed is the clause for the field
being Henselian. This clause gives conditions for the existence of roots of polynomial
equations.

We have the following lemmata which are also a point of difference compared with
the real number case.
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Lemma 2 The rational operators are continuous over Qcp (either in base p representation
or as limits of Cauchy sequences).

Lemma 3 Let f ∈ Qcp [x](Z
c
p[x]) then ∀n, f (n) ∈ Qcp [x](Z

c
p[x] resp. ).

Proof:The formulae for the calculation of the derivatives are computable since they in-
volve elementary algebra.

Theorem 7 The recursive p–adic numbers Qc
p form a p–adically closed field.

The first four clauses in the definition of a p–adically closed field are trivially satisfied
since Qc

p ⊆ Qp, so we need only to show that Qc
p is Henselian. The proof of that is

straightforward application of Newton’s method. Let f ∈ Zcp[x], and let f̄(x) ∈ Fp[x] be
the polynomial obtained from f by reducing the coefficients of f (mod p). Let f ′ be the
formal derivative of f . Suppose that a is a number in Fp such that f̄(a) ≡ 0 (mod p),
and f̄ ′(a) 6≡ 0 (mod p), so vp(f(a)) > 0 and vp(f

′(a)) = 0. Letting n = deg(f), the
Taylor expansion of f and f ′ gives that:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + · · ·+

fn(x)

n!
hn, (4)

f ′(x+ h) = f ′(x) + f ′′(x)h +
f ′′′(x)

2!
h2 + · · ·+

fn(x)

(n− 1)!
hn−1. (5)

We have that the above expressions are computable since the coefficients of f are com-
putable. Also we have that the factor i! present in the ith summand does not affect the
p–adic value of this summand since i! divides the coefficients of the ith derivative of a
polynomial. Let:

a0 = a, e0 = −
f(a0)

f ′(a0)
, a1 = a0 + e0.

Since f̄(a) ≡ 0 (mod p) and f̄ ′(a) 6≡ 0 (mod p) we have that vp(h) ≥ 1. Substituting
in equations (4) and (5) x = a0 and h = e0, and setting a1 = x+ h = a0 + e0 we have:

f(a1) =

(
−
f(a0)

f ′(a0)

)2 [f ′′(a0)

2!
−
f(a0)

f ′(a0)

(
f ′′′(a0)

3!
+ · · ·

)]
, (6)

and

f ′(a1) = f ′(a0)−
f (a0)

f ′ (a0)

[
f ′′ (a0) + · · ·

]
, (7)

The terms in the square bracket in equation (6) have value ≥ 0, since the coefficients
of the polynomial f and the derivatives are elements of Zp, and the factor i! in the
derivatives does not affect the valuation of the polynomials, hence we have:

vp (f (a1)) ≥ 2vp

(
−
f (a0)

f ′ (a0)

)
. (8)

The term

−
f(a0)

f ′(a0)

[
f ′′ (a0) + · · ·

]
, (9)
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in equation (7) has value ≥ 1, since v
(
− f(a0)
f ′(a0)

)
= 1, and the value of the term in the

square brackets in equation (9) is≥ 0, so f ′(a1) has value 0. Let e0 = h. For e1 = − f(a1)
f ′(a1)

we have that vp(e1) ≥ 2. Inductively, define for n ≥ 2 the following sequences:

an+1 = an + en, en = −
f(an)

f ′(an)
.

We have then the following by induction:

vp (f (an)) ≥ 2n, (10)

vp
(
f ′ (an)

)
= 0, (11)

vp (en) ≥ 2n, (12)

an ∈ Zp. (13)

The base steps have been established so the inductive steps remain to be proved.
1) Suppose vp(f(an)) ≥ 2n. We have:

f(an+1) =

(
−
f (an)

f ′ (an)

)2 [f ′′ (an)
2!

−
f (an)

f ′ (an)

(
f ′′′ (an)

3!
+ · · ·

)]
,

The value of the term in the square brackets is ≥ 0, since an ∈ Zp, the derivatives
f (n) are polynomials with coefficients in Zp, and vp(f

′(an)) = 0. Hence vp(f(an+1)) ≥
2vp(f(an)) ≥ 2n+1.

2) Since

f ′(an+1) = f ′(an)−
f(an)

f ′(an)

[
f ′′(an) + · · ·

]
,

we have that vp(f
′(an+1)) = 0, because

vp

(
f(an)

f ′(an)

[
f ′′(an) + · · ·

])
≥ 1, and vp

(
f ′ (an)

)
= 0.

3) We have:

vp(en+1) = vp(−1) + vp (f (an+1))− vp
(
f ′ (an+1)

)
≥ 2n+1.

4) This follows since an = an−1 + en−1 and vp(an−1) ≥ 0 , vp(en−1) ≥ 0. Also:

vp(an − an+k) =

= vp(Σ
k
i=n+1ei) ≥

≥ min {vp(ei) | n+ 1 ≤ i ≤ k} ≥

≥ vp(en+1) ≥ 2n+1.

Let x be the root of the polynomial that the sequence {an | n ∈ N} determines. In
order to show that x is a recursive p–adic number we have to exhibit a recursive sequence
of rational numbers {bn | n ∈ N} which converges to x with a recursive function as
modulus of convergence. The modulus of convergence can be obtained from the above
analysis and is g(n) = log(n). To obtain a rational number bg(n) such that |bg(n) − x| <
p−n we have to obtain a rational approximation c̄i to each of the coefficients ci of the
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polynomials f and f ′ such that |c̄i − ci| < p−n, since the modulus of continuity of the
rational operators is linear. This can be done uniformly since the coefficients are finitely
many how do we extract the coefficients?? they are given by the statement f in qpc
and are recursive p–adic numbers. Also the factor i! present in the coefficients of f ′ is a
constant and hence does not affect the computability of the coefficients of f ′. Having the
rational approximations of the coefficients then we have to iterate the above procedure
for dlog(n)e + 1 steps to obtain (the rational number) bn. We have that the sequence
{bn | n ∈ N} is a Cauchy sequence of rational numbers and the modulus of convergence
which is O(log n), hence x is a computable p–adic number.

The importance of the above proposition lies in the fact that we have a uniform algo-
rithm, and that the convergence rate of the algorithm is exponential. The convergence
rate is well known for the real number case and is the same [19]. Also related with the
present proof is a proof of a similar statement in Mazur [14] using Newton’s method for
the real numbers.

As we can see from the above proof, we have that for x a root of the polynomial f
in order to obtain a p–adic number z such that |z − x| ≤ p−n we have to iterate the
algorithm which determines the sequence {an | n ∈ N} for dlog(n)e − 1 steps. From this
observation we have also the following Theorems:

Theorem 8 The polynomially time computable p–adic numbers are a p–adically closed
field.

Proof:For f = Σk
i=0aix

i ∈ ZPp [x], n ∈ N and x ∈ Fp simple root of f̄ , in order to obtain

z ∈ QPp such that |z − x| ≤ p−n we have to iterate the above algorithm for dlog(n)e − 1
steps. For each coefficient ai of f , we also need to determine a p–adic integer āi such that
|āi − ai| ≤ p−n. This can be accomplished for all the coefficients of f in time bounded
by a polynomial in n since the number of the coefficients is k. For the calculations of the
derivative f ′, the ith term of f ′ can be calculated in time bounded by a polynomial. This
is because each ai is polynomially time computable, and i! is constant. To determine now
the approximation to the root we have to iterate the algorithm for dlog(n)e − 1 steps.
From the above analysis we have a calculation bounded by a polynomial.

Theorem 9 The primitive recursive p–adic numbers form a p–adically closed field.

Proof:The above algorithm is a primitive recursive algorithm, since to obtain correctly
n digits we have to calculate up to the (dlog(n)e−1)th term of the sequence an and each
coefficient of the polynomial is a primitive recursive p–adic number. Also the coefficients
of the derivative f ′ can be calculated by a primitive recursive procedure.

A point of interest here is that the analogous closure property for the polynomially
time computable real numbers (real closed) is proved in a different manner than the
one for the p–adic case by H. Friedman and Ker – I Ko [6]. The statement for the
polynomially time computable real numbers depends on the complexity of the roots of
analytic functions. In the case of real numbers an upper bound for the complexity of
roots of analytic polynomially time computable functions is proved. From this upper
bound we have that roots of polynomials with polynomially time computable coefficients
are polynomially time computable.
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7 Notation systems for p–adic fields

In the present section we try to characterize abstractly the set of natural numbers that
represent the recursive p–adic numbers and give an abstract characterization of the set
of equivalence classes of such indices. The motivation is the analogous work for the
computable real numbers by Moschovakis [15].

Definition 13 A recursive field is a notation system with four recursive operators rep-
resenting the rational operations over the field. For the case of the division (or multi-
plicative inverse) we postulate that the operation is undefined at 0.

In the case of the p–adic fields there is more structure, namely the valuation. In the case
of the recursive p–adic numbers there is an effective procedure to determine the valuation
of a non zero element. It is impossible to determine effectively the valuation 0 because if
not it would be possible to decide equality between indices for recursive p–adic numbers.

Definition 14 A recursive valued field F is a recursive field with a recursive operator
representing the valuation. The value group G is a group such that the group operations
are represented by recursive functions. The valuation function v:F → G is a (partial)
recursive operator undefined at 0.

One of the fundamental properties of the field of the p–adic numbers is that it is maximal
in the sense that it is the topological completion of the field of the rational numbers with
respect to the p–adic valuation. From this maximal characterization we have that fields
containing Q as a subfield and containing limits of Cauchy sequences can be embedded
into Qp. The recursive valued field representing the recursive p–adic numbers has a
similar maximal property.

Proposition 3 Let F be a countable non-Archimedean recursive valued field satisfying:

1. The residue field of F is isomorphic to Fp, the finite field of p elements,

2. The value group v(F ) is isomorphic to 〈Z,+, <〉,

3. The element v(p) is the least positive element of the value group of F ,

4. The characteristic of the field F char(F ) equals 0.

Then there exists a unique recursive embedding of F in Qcp which preserves the valu-
ation.

Proof:Let Q be the set of notations for the rational numbers in Qcp. Since char(F )=0 the
field of rational numbers is a subfield of F . Let +F ,−F , ∗F , /F be indices for the partial
recursive functions which represent the rational operations over F .

Let 0F ,1F be indices for 0, 1 considered as elements of F . From these indices using
the indices for the rational operators we can define a recursively enumerable set of indices
Q̂ which contains at least one index for each rational number. This set equipped with the
natural operations and the valuation is a countable recursive valued field. The identity
function is a natural field isomorphism I: Q̂→ Q , which preserves the valuation function
since v(p) is the least element of the value group of both fields.
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The field of rational numbers is topologically dense in F . To show this, for x ∈ F
and n ∈ N dovetail over the set of indices y for rational numbers, until a y is found such
that v(x− y) = n and let:

an = µy
[
y ∈ Q̂ ∧ v(x− y) = n

]
, (14)

Such element y exists since v(F ) = v(F −x) ' 〈Z,+, <〉. The sequence {an | n ∈ N}
gives a sequence of rational numbers which satisfies v(an−x) = n for all n ∈ N. Hence an
element of F can be defined as a limit of (indices) of sequences of rational numbers. The
sequence {an | n ∈ N} in equation 14, page 18 is a Cauchy sequence of rational numbers
with the identity function as modulus of convergence. The sequence {I(an) | n ∈ N} is
a recursive Cauchy sequence of indices for rational numbers in Qcp and has the identity
function as modulus of convergence, hence converges to an element z of Qcp . Extend I to
F by continuity by defining: Ī(x) = z.

By continuity of the rational operators we have that Ī :F → Qcp is a field isomor-
phism and also preserves the valuation function. The uniqueness of Ī follows from the
uniqueness of the choice of the sequence of rational numbers in Eq. 14 which is used to
approximate a p–adic number.

Proposition 3 now easily gives a uniqueness characterization of the fields of com-
putable p–adic numbers.

Theorem 10 A countable field of p–adic numbers is value isomorphic to a non
Archimedean recursive valued field F satisfying 1) – 4) of Proposition 3, page 17 if
and only if all elements of F are recursive p–adic numbers.

Proof:Let F1 be a countable subfield of the field of p–adic numbers, value isomorphic to
a recursive valued field F as in the statement of the Theorem via i:F1 → F . If f is the
recursive embedding of F into Qcp from the previous Proposition, then i ◦ f :F1 → Qcp
is a value isomorphism from F1 to Qcp . Since the only possible such isomorphism is the
identity we have F ⊆ Qcp .

From Proposition 3, page 17 we have a maximal characterization of the field of
recursive p–adic numbers. However the field of recursive p–adic numbers is not maximal
among countable models of the axioms of a p–adic field.

Theorem 11 There exists a countable non–Archimedean valued field satisfying 1) – 4)
of Proposition 3 properly extending Qcp .

Proof:Take Qcp and add an index for a non computable p–adic number then close with
respect to the rational operations. Such an index exists by the discussion on page 4, and
3.

Having a class of structures (in the present case fields with valuation) gives rise
to the isomorphism problem i.e. under what conditions are two members of the class
isomorphic. For recursive structures we can refine the question to ask for a recursive
isomorphism. One answer is having a classical isomorphism, and the other one is having
an isomorphism which is a recursive operator. In the case of recursive structures the
inverse operators should be recursive as well. In the particular case of fields with a
valuation the isomorphism should preserve the valuation as well. The motivation for
this group of question comes form Moschovakis [15] where a set of similar problems are
discussed for the computable real numbers.
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In the previous section it was shown that for every recursive valued field F satisfying
some more conditions, there is a natural embedding i:F → Qcp which preserves the
valuation. The following questions arise as well:

1) Under what conditions is an embedding i:F → Qcp onto? (so i is a classical
isomorphism).

2)Under what conditions is i:F → Qcp a recursive isomorphism?
The answer to the first question gives a characterization of the field of recursive p–adic

numbers. The answer to the second question will characterize Qcp as a notation system.
The problem in 1 (classical case) is solved by requiring the field to be (Cauchy)

complete. In 2 (recursive fields) the solution is obtained by constructivizing the notion
of Cauchy completeness [15].

Definition 15 Let F,G be two recursive fields. If there is a recursive operator f :F → G

which is a field isomorphism and f−1:G→ F is a recursive operator as well then F and
G are recursively isomorphic. In the case of recursive valued fields, we require that the
isomorphism preserves the valuation as well.

Definition 16 A sequence {an | n ∈ N} of elements of Qcp is called recursive if and only
if there is a total recursive function f such that ∀n ∈ N [f(n)] = an. An index for the
function f is called an index of {an | n ∈ N}.

Definition 17 A sequence {an | n ∈ N} of elements of Qcp is called recursively Cauchy if
and only if there is a (total) recursive function m such that i, j ≥ m(n)⇒| ai−aj | ≤ p−n.

Definition 18 A field of computable p–adic numbers F is called (weakly) recursively
complete if and only if every recursive, recursively Cauchy sequence of elements of F
converges to an element x ∈ F .

Definition 19 A field of computable p–adic numbers F is called strongly recursively
complete if there exists a (partial) recursive function c of two arguments, (called a com-
pleteness function for F ) defined over Qcp × N and taking values in Qcp such that if
{an | n ∈ N} is a recursive recursively Cauchy sequence of elements of F with index i,
and m an index for the modulus of convergence, then limn→∞ an = c(i,m).

Theorem 12 Let F be a recursive valued field satisfying 1)–4) of Proposition 3. If
F is weakly recursively complete then the natural embedding i:F → Qcp is onto, so F

is isomorphic to Qcp , and the isomorphism preserves the valuation. If F is strongly
recursively complete then the above isomorphism is a recursive function.

Proof:As in the proof of Proposition 3, page 17 Q is a subfield of F . Let Q be the set
of equivalence classes of notations for the rational numbers in F . For x ∈ Qcp , there is
a recursive Cauchy sequence {xn | n ∈ N} of rational numbers converging to x with a
recursive function as modulus of convergence.

Taking the inverse image of this sequence via the identity function over the rationals,
we have a recursive Cauchy sequence in F which sequence has the same modulus of
convergence. This sequence must converge to some element of z ∈ F . By continuity we
have i(z) = x. The valuation of a nonzero element x is obtained from the sequence of
the rational numbers that define x.
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For the second part, the following defines a recursive function from Qcp to F : Given
x ∈ Qcp , there exists a recursive recursively Cauchy sequence of rational numbers {xn |
n ∈ N}, such that {xn | n ∈ N} is recursive and converges recursively to x with modulus
M. We can take i−1(xk) in F , and use the completeness function of F on an index of
{i−1(xk) | n ∈ N} with modulus of continuity M to get i−1(x).

Definition 20 Let F be a notation system with a recursive valuation. The valuation
function describes F if and only if there exists a recursive function D:N→ N such that
for any recursive function f with index i, for any x0 ∈ F , and all x ∈ F \ [x0] we have:(

f(x) = n⇔ v(x− x0) = n

)
=⇒ D(i) ∈ [x0].

The motivation for the notion of the description function is that from information
about the valuation of the numbers x0− x (approximations to x0) it is possible via D to
obtain effectively an index of x0. The notion of description function will make it possible
to give a characterization of Qcp (Theorem 14, page 20). First we have a straightforward
property of Qcp .

Proposition 4 Qcp is described by the valuation function.

Proof:Let Q be the set of indices for the rational numbers in Qcp obtained from some
indices of 0, 1 ∈ Qcp via some indices for the rational operations. For x0 ∈ Qcp and n ∈ N
we can determine y ∈ Q by dovetailing over elements of Q until a y is found such that
v(x0 − y) = n. This procedure defines a recursive function f . Let i be an index for a
recursive function f . Then the following sequence (defined by equation 15 below) is a
recursive Cauchy sequence and converges to x0 with the identity function as modulus of
the Cauchy criterion. Let j be an index of the following function:

n 7→ µz[z is a code for an element of Q ∧ f(z) = n]. (15)

Then D(i) = j.

Theorem 13 Let F be a non–Archimedean recursive valued field satisfying 1)–4) of
Proposition 3, and described by the valuation function. Suppose that the natural embed-
ding i:F → Qcp is onto. Then i−1 is recursive hence F and Qcp are recursively isomorphic.

Proof:Let Q be defined as in the proof of Proposition 4. Let i:F → Qcp be the natural
embedding over an r.e. set of indices for the set of rational numbers. For x ∈ Qcp , and
n ∈ N we can determine a y ∈ Q by dovetailing over elements of Q until a y is found
such that v(x− y) = n. Let f be an index for the following sequence:

n 7→ µy[v(i(y)− x) = n].

Then
i−1(x) = D(f).

The above statement can give a characterization of Qcp which can avoid some of the
recursion theoretic assumptions.

Theorem 14 Up to recursive isomorphism Qcp can be characterized as follows:
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1. The residue field of F is isomorphic to Fp,

2. The value group v(F ) is isomorphic to 〈Z,+, <〉,

3. v(p) is the least positive element of the value group of F ,

4. char(F ) = 0,

5. Qcp is described by the valuation function.

Proof:Follows from Theorem 13.

Definition 21 (Moschovakis) A predicate P (a1, . . . , an) defined over a notation sys-
tem N is recursively enumerable if there is a recursive function f of arity n such that
for any tuple of indices (i1, . . . , in) we have:

P ([i1], . . . , [in]) ⇐⇒ f(i1, . . . , in) ↓ .

A predicate P (a1, . . . , an) over a notation system is recursive if both P and its negation
are recursively enumerable.

The above definition enables us to give one more property of Qcp .

Theorem 15 No non–trivial predicates defined over Qcp are recursive.

Proof:This follows from Rice’s theorem, since the set of indices that correspond to recur-
sive p–adic numbers is not N and not ∅.
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