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Abstract

Mermin [15] described a simple device to explain Einstein-Podolsky-Rosen (EPR) [12]
correlations. This device was studied by means of a class of probabilistic (Mermin) automata
in [4]. In [5] one shows that every deterministic automaton simulating with con�dence 1=2 a
probabilistic Mermin automaton features a classical behaviour. Is the above result true when
the simulation is done at higher levels of con�dence? To answer this question we study the
distribution of two computational complementarity principles for two classes of deterministic
automata which mimic the behaviour of Mermin's device with con�dence in the intervals
(1=2; 11=16] and (11=16; 7=8]. Since the class of automata to be studied is large, it contains
918 � 150 � 1015 elements, we use simulation techniques. We show that, statistically, at any
level of con�dence � 2 (1=2; 11=16], the class of deterministic automata simulating Mermin
probabilistic automata display less correlations than typical deterministic automata with 9
states and 7 outputs, but at higher levels of con�dence � 2 (11=16; 7=8], when the simulation
is more accurate, deterministic automata simulating Mermin probabilistic automata display
more correlations than typical deterministic automata with 9 states and 2 outputs. In the
last case, EPR correlations established in [4] for Mermin probabilistic automata correspond to
computational complementarity of the deterministic automata simulating Mermin probabilistic
automata, [10, 13, 18, 3, 6].

1 Introduction

Mermin probabilistic automata display strong correlations which model Einstein-Podolsky-Rosen
(EPR) [12] correlations (see also [2, 17, 11, 1]) in the language of automata (see [4]). Is there
any relation between these type of correlations and correlations modeled by computational com-
plementarity in [10, 13, 18, 3, 6]? In what follows we study deterministic automata simulating,
with various degrees of con�dence, probabilistic automata modeling Mermin's device. In [5] one
shows that every deterministic automaton simulating with con�dence 1=2, a probabilistic Mermin
automaton features a classical behaviour. Is the above result true when the simulation is done at
higher levels of con�dence? To answer this question we study the distribution of two computa-
tional complementarity principles for two classes of deterministic automata which simulate Mermin
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probabilistic automata with con�dence levels in the intervals (1=2; 11=16] and (11=16; 7=8]. Since
the class of automata to be studied is large|it contains 918 � 150 � 1015 elements|we use sim-
ulation techniques. The statistics obtained in this paper shows that at any level of con�dence
� 2 (1=2; 11=16], the class of deterministic automata simulating Mermin probabilistic automata
display less correlations than typical deterministic automata with 9 states and 7 outputs, but at
higher levels of con�dence � 2 (11=16; 7=8], when the simulation is more accurate, deterministic
automata simulating Mermin probabilistic automata display more correlations than typical deter-
ministic automata with 9 states and 2 outputs. In the last case, EPR correlations established in [4]
for Mermin probabilistic automata correspond to computational complementarity of the determin-
istic automata simulating Mermin probabilistic automata, [10, 13, 18, 3, 6].

2 Mermin's Device

Mermin [15] imagined a simple device to explain EPR conundrum without using the classical
quantum mechanical notions of wave functions, superposition, wave-particle duality, uncertainty
principle, etc. The device has three \completely unconnected", neither mechanical nor electro-
magnetic, parts, two detectors (D1) and (D2) and a source (S) emitting particles. The source is
placed between the detectors: whenever a button is pushed on (S), shortly thereafter two particles
emerge, moving o� toward detectors (D1) and (D2). Each detector has a switch that can be set
in one of three possible positions{labeled 1,2,3{and a bulb that can 
ash a red (R) or a green (G)
light. The purpose of lights is to \communicate" information to the observer. Each detector 
ashes
either red or green whenever a particle reaches it. Because of the lack of any relevant connections
between any parts of the device, the link between the emission of particles by (S), i.e., as a result
of pressing a button, and the subsequent 
ashing of detectors can only be provided by the passage
of particles from (S) to (D1) and (D2). Additional tools can be used to check and con�rm the lack
of any communication, cf. [15], p. 941.

The device is repeatedly operated as follows:

1. the switch of either detector (D1) and (D2) is set randomly to 1 or 2 or 3, i.e., the settings
or states 11, 12, 13, 21, 22, 23, 31, 32, 33 are equally likely,

2. pushing a button on (S) determines the emission toward both (D1) and (D2),

3. sometime later, (D1) and (D2) 
ash one of their lights, G or R,

4. every run is recorded in the form ijXY , meaning that (D1) was set to state i and 
ashed X
and (D2) was set to j and 
ashed Y:

For example, the record 31GR means \(D1) was set to 3 and 
ashed G and (D2) was set to 1
and 
ashed R".

Long recorded runs show the following pattern:

a) For records starting with ii; i.e., 11, 22, 33, both (D1) and (D2) 
ash the same colours,
RR;GG, with equal frequency; RG and GR are never 
ashed.

b) For records starting with ij; i 6= j, i.e., 12, 13, 21, 23, 31, 32, both (D1) and (D2) 
ash the
same colour only 1/4 of the time (RR and GG come with equal frequencies); the other 3/4
of the time, they 
ash di�erent colours (RG;GR), occurring again with equal frequencies.

The above patterns are statistical, that is they are subject to usual 
uctuations expected in
every statistical prediction: patterns are more and more \visible" as the number of runs becomes
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larger and larger.

The conundrum posed by the existence of Mermin's device reveals as soon as we notice that the
seemingly simplest physical explanation of the pattern a) is incompatible with pattern b). Indeed,
as (D1) and (D2) are unconnected there is no way for one detector to \know", at any time, the
state of the other detector or which colour the other is 
ashing. Consequently, it seems plausible
to assume that the colour 
ashed by detectors is determined only by some property, or group of
properties, of particles, say speed, size, shape, etc. What properties determine the colour does not
really matter; only the fact that each particle carries a \program" which determines which colour
a detector will 
ash in some state is important. So, we are led to the following two hypotheses:

H1 Particles are classi�ed into eight categories:

GGG;GGR;GRG;GRR;RGG;RGR;RRG;RRR:1

H2 Two particles produced in a given run carry identical programs.

According to H1{H2, if particles produced in a run are of type RGR, then both detectors will

ash R in states 1 and 3; they will 
ash G if both are in state 2. Detectors 
ash the same colours
when being in the same states because particles carry the same programs.

It is clear that from H1{H2 it follows that programs carried by particles do not depend in any
way on the speci�c states of detectors: they are properties of particles not detectors. Consequently,
both particles carry the same program whether or not detectors (D1) and (D2) are in the same
states.2

A simple combinatorial argument shows that

[L] For each type of particle, in runs of type b) both detectors 
ash the same colour at least one
third of the time.

The conundrum reveals as a signi�cant di�erence appears between the data dictated by particle
programs (colours agree at least one third of the time) and the quantum mechanical prediction
(colours agree only one fourth of the time):

under H1{H2, the observed pattern b) is incompatible with [L].

3 Mermin's Probabilistic Automata

Mermin's device has been modeled by means of a probabilistic automaton M in [4, 5]. The
states of the automaton are all combinations of states of detectors (D1) and (D2), Q =
f11; 12; 13; 21; 22; 23; 31; 32; 33g; the input alphabet models the lights, red and green, � =
fG;Rg, the output alphabet captures all combinations of lights 
ashed by (D1) and (D2),
O = fGG;GR;RG;RRg; and the output function f : Q ! O; modeling all combinations of
green/red lights 
ashed by (D1) and (D2) in all their possible states, is probabilistically de�ned
by:

1A particle of type XY Z will cause a detector in state 1 to 
ash X; a detector in state 2 will 
ash Y and a
detector in state 3 will 
ash Z.

2The emitting source (S) has no knowledge about the states of (D1) and (D2) and there is no communication
among the parts of the device.
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f(ii) = XX; with probability 1=2; for i = 1; 2; 3; X 2 fG;Rg;

f(ii) = XY; with probability 0; for i = 1; 2; 3; X; Y 2 fG;Rg; X 6= Y;

f(ij) = XX; with probability 1=8; for i; j = 1; 2; 3; i 6= j;X 2 fG;Rg;

f(ij) = XY; with probability 3=8; for i; j = 1; 2; 3; i 6= j;X; Y 2 fG;Rg; X 6= Y:

For example, f(11) = RR with probability 1/2, f(11) = GR with probability 0, f(11) = RG
with probability 0, f(11) = RR with probability 1/2, f(12) = GG with probability 1/8, f(12) =
GR with probability 3/8, f(12) = RG with probability 3/8, f(12) = RR with probability 1/8, etc.

The automaton transition � : Q��! Q is not speci�ed. In fact, varying all transition functions
� we get a class of Mermin automata:

M = (Q;�; O; �; (pXY
ij ; i; j = 1; 2; 3; X; Y 2 fG;Rg)),

where pXY
ij is the probability that the automaton on state ij outputs XY : pXX

ii = 1=2; pXY
ii =

0; X 6= Y; pXX
ij = 1=8; pXY

ij = 3=8; X 6= Y . This class is fairly large: it contains 918 =
150; 094; 635; 296; 999; 121 automata.

4 Computational Complementarity for Probabilistic Au-

tomata

In [3] two non-equivalent concepts of computational complementarity were introduced and studied
for �nite automata. Informally, they can be expressed as follows. Consider the class of all elements
of reality (observables) and the following properties:

A Any two distinct elements of reality can be mutually distinguished by a suitably chosen
measurement procedure.

B For any element of reality, there exists a measurement which distinguishes between this
element and all the others. That is, a distinction between any one of them and all the others
is operational.

C There exists a measurement which distinguishes between any two elements of reality. That
is, a single pre-de�ned experiment operationally exists to distinguish between an arbitrary
pair of elements of reality.

Clearly, C implies B and B implies A, but both converse implications fail to be true; conse-
quently, two principles of complementarity emerge:

CI Property A but not property B (and therefore not C): The elements of reality can be mutually
distinguished by experiments, but one of these elements cannot be distinguished from all the
other ones by any single experiment.

CII Property B but not property C: Any element of reality can be distinguished from all the other
ones by a single experiment, but there does not exist a single experiment which distinguishes
between any pair of distinct elements.

We may be regard CI as an \uncertainty principle" (cf. [10, p. 21]), later termed \computa-
tional complementarity" in [13]. In CII each experiment \generates" a pair of distinct states which
exercise a mutual in
uence, namely, they cannot be separated by the experiment; this in
uence
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mimics, in a sense, the state of quantum entanglement.3 We may conceive CII as a toy model for
the EPR e�ect . Under CII , for each experiment w we have at least two states q; q0 (as distant as
we like in terms of the emitting outputs) which interact via the experiment w: any measurement
of q is a�ecting q0 and, conversely, any measurement of q0 is a�ecting q.

Motivated by Mermin's automaton probabilistic automaton analysis4 in [4] computational com-
plementarity has been extended in [5] to a class of probabilistic automata. In opposition with a
more popular model, in which the transition is stochastic, but the output is deterministic (see
[16]), here we will work with automata having deterministic transitions but stochastic outputs.

Formally, a �nite probabilistic automaton A = (Q;�; O; �; (ap;o)p2Q;o2O) consists of an input
alphabet �, a �nite set Q of states, an output �nite set O, a transition function � : Q � � ! Q
and an output probabilistic function f : Q ! O given by the matrix (ap;o)p2Q;o2O satisfying the
condition

P
o2O ap;o = 1, for every p 2 Q. The output emitted by A on p is f(p) = o with

probability ap;o. In case of a deterministic �nite automaton, for every p 2 Q, there exists one
(unique) output o 2 O such that ap;o = 1 and all other probabilities are 0; that is, f(p) = o. As in
case of deterministic automata the transition function extends naturally to Q��� ! Q satisfying
the equation �(p; uv) = �(�(p; u); v), for all p 2 Q; u; v 2 ��.5

The response of the automaton A on state p to the \experiment" x = x1x2 � � �xn 2 �� is
de�ned by a concatenation of random variables:

ResA(p; x1x2 � � �xn) = f(p)f(�(p; x1)) � � � f(�(p; x1x2 � � �xn)):

We say that a state p is distinguishable from the state q with con�dence �(� 2 [1=2; 1]) if there
exists an experiment x = x1x2 � � �xn 2 �� such that at least one probability that f(p) 6= f(q),
f(�(p; x1x2 � � �xi)) 6= f(�(q; x1x2 � � �xi)); 1 � i � n is greater or equal to �.

This means that at least on one point, during the \measurement" process of the responses of
the automaton to the experiment x, the probability that the response of A on p and x is di�erent
(within the �xed level of con�dence) to the response of A on q and x.6

We are now in a position to de�ne properties A, B, C for a probabilistic automaton and a
level of con�dence � � 1=2.

� A probabilistic automaton has property A with level of con�dence � if every pair of di�erent
states is distinguishable with con�dence �.

� A probabilistic automaton has B with level of con�dence � if every state is distinguishable
with con�dence � from any other distinct state.

� A probabilistic automaton has C with level of con�dence � if there exists an experiment
distinguishing with con�dence � between each pair of di�erent states.

3In particular, this in
uence cannot be used to send an actual message from a state to the other.
4Are there two identical, spatially separated, probabilistic automata with identical initial states, whose direct

product \simulates" a Mermin's automaton M? The answer is negative. In fact, a stronger result is true: no single

state of any Mermin's probabilistic automaton M can be simulated by the product of the corresponding states of

any probabilistic automata Mi.
5In what follows the extension will also be denoted by �.
6The motivation is the following. For a deterministic automaton B, two states p; q are distinguishable if

ResB(p; x1 : : : xn) 6= ResB(q; x1 : : : xn), for some experiment x1 : : : xn (see [3]), that is, for the corresponding tran-
sition and output functions, f(p) 6= f(q) or f(�(p; x1x2 � � �xi)) 6= f(�(q; x1x2 � � �xi)); 1 � i � n. In the probabilistic
case we just replace the above conditions with the corresponding probabilistic ones.
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In [5] one shows the existence of probabilistic automata satisfying A but not B (i.e., CI ) and
B but not C (i.e., CII ), respectively.

Properties A, B and C are decidable (cf. [5]). One way to check these properties, with some
approximation, is by \simulating" a probabilistic automaton with a deterministic automaton
(with some level of con�dence). Let A = (Q;�; O; �; (ap;o)p2Q;o2O) be a probabilistic automaton,
and � 2 [1=2; 1] a con�dence level. We construct a deterministic automaton A0 = (Q;�; O0; �; f 0),
where f : Q ! O0 is the output function satisfying the following constraints: for every pair of
distinct states p; q, if the probability that f(p) 6= f(q) is greater or equal to �, then f 0(p) 6= f 0(q);
otherwise, f 0(p) = f 0(q).

Note that the above construction cannot be carried on in all cases. For example, consider the
probabilistic automaton A = (Q;�; O; �; (ap;o)p2Q;o2O) where Q = fp; q; rg, O = fG;Rg, and
the output probabilities are ap;G = 1; ap;R = 0; aq;G = 0; aq;R = 1; ar;G = ar;R = 1=2 (�; � are
arbitrary). It is easy to see that no deterministic automaton A0 simulates A, for every � > 1=2.
Reason: there is no function f 0 such that f 0(p) 6= f 0(q) and f 0(p) = f 0(q) = f 0(r).

If the simulation is possible at the level of con�dence �, then every pair of distinct states
p; q 2 Q are distinguishable by an experiment applied to A if and only if they are distinguishable
by the same experiment applied to A0. Consequently, the probabilistic automaton A has A (B,C)
if and only if A0 has A (B, C, respectively).

For example, every Mermin automaton is simulated with con�dence � 2 (1=2; 11=16] by the
deterministic automaton having all components of the Mermin automaton M and the output
function f 0(11) = f 0(22) = f 0(33) = 0; f 0(12) = 1; f 0(13) = 2; f 0(21) = 3; f 0(23) = 4; f 0(31) =
5; f 0(32) = 6; if the level of con�dence is � 2 (11=16; 7=8] we have to change only the output
function to f 00(11) = f 00(22) = f 00(33) = 0; f 00(12) = f 00(13) = f 00(21) = f 00(23) = f 00(31) =
f 00(32) = 1.

5 Mermin's Automata

With con�dence 1/2, for every transition function �, the corresponding Mermin probabilistic au-
tomaton has C, i.e., it features a classical behaviour. Indeed,

� for every i 6= j, the probability that f(ii) 6= f(jj) = 1=2,

� for every j 6= k, the probability that f(ii) 6= f(jk) = 7=8,

� for every i 6= j; k 6= l, ij 6= kl, the probability that f(ij) 6= f(kl) = 11=16.

Is the above result true when the simulation is done at higher levels of con�dence? Two
such intervals recommend themselves from the construction of Mermin deterministic automata:
(1=2; 11=16] and (11=16; 7=8]. In what follows we will be interested in checking the distribution
of properties C, CI, and CII for two classes of deterministic automata simulating Mermin deter-
ministic automata with con�dence levels in the above intervals. For the �rst interval of con�dence
we consider all automata keeping all components of a Mermin probabilistic automaton and the
output function f 0; in the second case we use the output function f 00 (see Section 4). More pre-
cisely, our automata will be characterized by Q = f11; 12; 13; 21; 22; 23; 31; 32; 33g, � = fG;Rg,
and the output functions f 0 : Q ! O0, respectively, f 00 : Q ! O0, where O0 = f0; 1; 2; 3; 4; 5; 6g,
and O00 = f0; 1g.
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6 Sample Space, Con�dence and Errors

As it is easy to see, varying all transition functions we get a population consisting of 918 automata.
With such a large a population it is di�cult to test properties C, CI, and CII for all automata.
Consequently, we will be looking at simulations. We will brie
y present the method (see, for
instance, [8], Chapter 4).

Given a �nite population of size N; we will estimate 3 proportions associated with 3 binary
random variables,

Pi = P (Xi = 1) ; i = 1; 2; 3;

using a pseudo-random sample of size n: Each estimate should be correct within �c% in the sense
that, if the sample shows pi to be Pi; the percentage for the whole population is \sure" to lie
between pi� c% and pi + c% (with \accuracy within c%"). As we cannot absolutely guarantee an
accuracy within c%; we accept a probability � (0:0027 in our case) of getting \an unlucky sample"
(which is in error by more than the desired c%).

Random generation of the sample is equivalent with sampling with replacement (generated
units are independent, repetitions are possible), according to a Binomial scheme. If (u1; :::; un) are
generated items, we denote by mi the number of items for which Xi(u) = 1; i = 1; 2; 3: Then, the
estimates of Pi are

pi =
mi

n
; i = 1; 2; 3:

For a large value of n (n > 100), one can use the normal approximation for pi; that is, pi is

approximately normal distributed N
�
Pi;

Pi(1�Pi)
n

�
:

In order to estimate the value of n; we start from the simultaneous conditions

Pr
�
j pi � Pi j� z1��

2

p
V ar (pi)

�
= �; i = 1; 2; 3;

where z1��

2
is the (1� �

2 ){quantile of the N (0; 1) distribution, and z0:99865 � 3 (see, for instance,
[14], Table II).

Accordingly, we will have

z1��

2

r
Pi (1� Pi)

n
= c; i = 1; 2; 3;

hence, the sample size should be equal to

n = max

(
z21��

2

Pi (1� Pi)

c2
; i = 1; 2; 3

)
:

Notice that this value of n depends on the unknown proportions Pi: Therefore, we need a prior
statement on the range of each Pi and, to be on the safe size, we will choose Pi equal to the value
that maximizes the product Pi(1 � Pi): In the absence of such prior knowledge regarding Pi; we
will choose the \critical" value P = 50% (which maximizes the product P (1 � P )). Hence, the
\safest" estimation of the sample size n is

n̂ =
z21��

2

� 2; 500

c2
:

For our level of signi�cance � = 0:0027; one gets z1��

2
= 3: For an accuracy within c = 2%;

n = 3; 725, which is the size of the sample investigated by our programs.
Because of the large population of automata, the same value n̂ can be used even in case of

dependent generated units. Indeed, a pseudo-random generation process with dependent units is
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equivalent with sampling without replacement (the hypergeometric scheme). In this case, by a
similar computation we get

n = max

��
z1��

2
2Pi (1� Pi)

c2

�
=

�
1 +

1

N

�
z1��

2
2Pi (1� Pi)

c2
� 1

��
; i = 1; 2; 3

�
:

For a very large population (as in our case, N = 918 ), the denominator is approximately equal
to 1, as

1

N

 
z21��

2

Pi (1� Pi)

c2
� 1

!
� 0;

and, again, we �nd the same value for n̂.

An alternative approach based on con�dence intervals [9] was considered and actually used for
cross-checking the estimated probabilities. Given a con�dence level �, the bounds Li, Ui of one of
our con�dence intervals for Pi are given by the roots of the following two equations (where � is
the normal repartition function N(0; 1)):

1��

 
mi � ni � Lip
ni � Li � (1� Li)

!
= �=2; �

 
mi � ni � Uip
ni � Ui � (1� Ui)

!
= �=2:

The results are statistically sound and further described in [7].

7 Codi�cation and Programs

This section brie
y describes our programs.7 At the core we have a data structure to represent
an automaton, and three routines to test properties A, B, C. We chose a simple array based
structure which enables both fast processing in di�erent languages and is readable by humans.
Speci�cally, the string \122210" represents an automaton A with 2 states Q = f1; 2g, 2 input
symbols � = f0; 1g, 2 output symbols O = f0; 1g, a transition function � : Q � � ! Q, de�ned
by �(1; 0) = 1, �(1; 1) = 2, �(2; 0) = 2, �(2; 1) = 2, and an output function f : � ! O, de�ned by
f(1) = 1, f(2) = 0.

More generally, consider an automaton A with n states Q = f1; 2; : : : ; ng, i input symbols
� = f0; 1; : : : ; i � 1g, and j output symbols O = f0; 1; : : : ; j � 1g. This automaton A can be
represented as an array (string) of n � i + n symbols, of which the �rst n � i are state numbers
(corresponding to the n � i values of the transition function �) and the last n are output symbols
(corresponding to the n values of the output function f). This representation is unique with
respect to the three essential automaton parameters (n; i; j). These automata representations can
be sorted lexicographically, and then assigned unique sequence indices. Thus we have a bijective
mapping between this set of automata and non-negative integers in the interval [0; nn�i � jn � 1].
For example, all automata with 2 states, 2 input symbols, and 2 output symbols can be ordered
in the following sequence:

0$ 111100; 1$ 111101; 2$ 111110; 3$ 111111; 4$ 111200; 5$ 111201; : : : ; 63$ 222211;

and therefore each such automaton uniquely corresponds to a non-negative integer in the interval
[0; 24 � 22 � 1] = [0; 63].

Ignoring or �xing the output function f , we get a more restricted range, i.e., we have a bijective
mapping between automata with n states and i input symbols and non-negative integers in [0; nn�i�

7More details about our data structures and algorithms can be found in [6, 7].
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1]. For example, the automata with 2 states and 2 input symbols correspond to the �rst 16 non-
negative integers, and the automata with 9 states and 2 input symbols correspond to the �rst 918

non-negative integers.

We use this second mapping to generate pseudo-random automata with a given �xed out-
put. For example, to generate a pseudo-random deterministic Mermin automaton we compute a
pseudo-random long non-negative integer in [0; 918�1], convert this number into its corresponding
automaton representation, and �nally append the required output function, i.e., we append the
string \000123456" for f 0 and \000111111" for f 00. However, appended strings need not match one
of these two forms exactly as the order in which our states or output symbols are numbered is irrel-
evant here. Thus, the above string \000111111" for f 00 could well be replaced by any combination
of 9 occurrences of 0 and 1, as long as we have 3 occurrences of one digit and 6 of the other. For
example, instead of \000111111" we can use either of \111111000", \110110110", \000111000",
or \000000111", or any of the X = 168 distinct 0 � 1 patterns which can be \converted" to
\000111111" by re-numbering the states and/or the output symbols.8 In fact, for internal reasons
(of combinatorial nature) we prefer to use \000000111" for representing the output function f 00.

Our arguments can be extended to show that we can restrict our study of 9 state automata
to 30 \essential" output strings, and all other cases can be converted to one of these by means of
permutations (of states) and re-labeling (of output symbols). Here are our 30 \essential" output
strings for 9 state automata: \000000000", \000000001", \000000011", \000000111", \000001111",
\000000012", \000000112", \000001112", \000011112", \000001122", \000011122", \000111222",
\000000123", \000001123", \000011123", \000011223", \000111223", \000112233", \000001234",
\000011234", \000111234", \000112234", \001122334", \000012345", \000112345", \001122345",
\000123456", \001123456", \001234567", \012345678". These �gures may help understanding the
context in which Mermin automata appear: they correspond to \000000111" and \000123456".

Our PropertyA routine takes an automaton A as a parameter and returns the Boolean value
true if A has the property A, and the value false otherwise. Essentially, this routine consists of
three embedded loops: an outer loop iterating over the states, a middle loop iterating again over
the states, and an inner loop iterating over a subset of wordsW � ��. Its purpose is to determine
the value of the predicate 8p 2 Q;8q 2 Q n fpg; 9w 2W;ResA(p; w) 6= ResA(q; w). Here follows a
high-level pseudo-code, without optimizations.

boolean PropertyA(Automaton A) begin
for each p 2 Q do

for each q 2 Q n fpg do
for each w 2W do

if ResA(p; w) 6= ResA(q; w) then next q
end for w
return false

end for q
end for p
return true

end PropertyA

The codes for PropertyB and PropertyC routines are similar, using the same three loops but in
di�erent order. The PropertyB routine contains an outer loop on the states, a middle loop on the
words, and an inner loop on the states again. Its purpose is to determine the value of the predicate
8p 2 Q; 9w 2W;8q 2 Qnfpg; ResA(p; w) 6= ResA(q; w). The PropertyC routine contains an outer

8In fact, these \conversions" are part of a more general concept of isomorphism between Moore automata, but
we don't follow this path in this paper; here we just count automata de�nitions, not equivalence classes.
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loop on the words, a middle loop on the states, and an inner loop on the states again. Its purpose
is to determine the value of the predicate 9w 2 W;8p 2 Q;8q 2 Q n fpg; ResA(p; w) 6= ResA(q; w).

Several important details must be worked out before actually running this code:

� How many strings should we have in the set W ? The theory [3, 6] doesn't give complete
answers for the upper bounds on the lengths of the strings which must be tested: we know
that n symbols are enough to test the property A, but there is no tight bound on the
number of symbols which must be tested for properties B and C. It has been estimated that
2n are enough, but no example is known that requires more then 2n � 5 symbols for these
properties. Moreover, extensive exploration showed us that such \pathological\ cases which
would require more than 2n � 5 symbols are extremely rare, if any. Indeed, even some 7
letters seem enough to di�erentiate between the properties A, B, and C for most of the 9
state automata. Therefore, for all practical purposes we decided to use the empirical limits
n+3 for the property B and 2n� 5 for the property C. Further work should (dis)prove that
this assumption is right for estimating statistical data.

� In which order should we process the words of W ? A random order seems to give faster
results. However, we proceed in a systematic way, exhausting in order the words of length
0; 1; 2; : : : ; n. This process is a bit slower but it enables us to collect histograms on the
minimal lengths of words needed to di�erentiate between our properties, thus validating our
assumptions on the practical upper bounds. We maintain a separate histogram for each
of the properties A, B, C, where each automaton occurs exactly once in each histogram.
Speci�cally, for each automaton A, the histogram for property A has one entry for minfl 2
N j 8p 2 Q;8q 2 Q n fpg; 9w 2 W; jwj � l; ResA(p; w) 6= ResA(q; w)g, the histogram for
propertyB has one entry for minfl 2 N j 8p 2 Q; 9w 2W;8q 2 Qnfpg; jwj � l; ResA(p; w) 6=
ResA(q; w)g, and the histogram for property C has one entry for minfl 2 N j 9w 2 W;8p 2
Q;8q 2 Q n fpg; jwj � l; ResA(p; w) 6= ResA(q; w)g.

� How can we further optimize this code? The above sketched implementation for PropertyA
has a complexity of O(n2 � 2n+1 �n), because in the innermost line we have to consider up to
n2 pairs of states and 2n+1 words of length of up to n symbols each. There are some obvious
optimizations, such as avoiding to test the pair (q; p) if the pair (p; q) was already tested.
Theoretically, the algorithms can be substantially improved by using tree-like representations
of the words inW , or dynamic programming techniques. However, such more \sophisticated"
algorithms have an inherent overhead which pays o� asymptotically for large inputs, but
which doesn't pay o� well when most of the di�erentiating words have short lengths (of up
to around 7 symbols). Further work is expected in this direction.

8 Results

We have collected statistics for samples of size 3725, using both sampling methods discussed in
Section 6, i.e., with and without replacement. As expected, both methods gave the same results
and indeed, the chance of generating two identical automata from a large population of some
150 � 1015 automata is practically zero.

Here follow the main results of a typical run, a table giving the distribution of Mermin automata
in classes C, CI, CII, and the rest (here called None). The �rst row corresponds to deterministic
Moore automata with 9 states and output pattern \000123456" which simulate Mermin probabilis-
tic automata with con�dence � 2 (1=2; 11=16]. The second row corresponds to deterministic Moore
automata with 9 states and the output pattern \000000111" which simulate Mermin probabilis-
tic automata with con�dence � 2 (11=16; 7=8]. The observed frequencies di�er slightly between
di�erent runs, but probabilities are determined with an accuracy of c = 2%.
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Output pattern C CI CII None C% CI% CII% None%
000123456 3280 211 6 228 88:05% 5:66% 0:16% 6:12%
000000111 436 1601 504 1184 11:70% 42:98% 13:53% 31:79%

For comparison we present a table giving the distribution of all Moore automata with 9 states
and 2, 7 and 9 output symbols in the classes C, CI, CII, and None.9

Output size C CI CII None C% CI% CII% None %
2 526 1583 484 1132 14:12% 42:50% 12:99% 30:39%
7 2839 316 260 310 76:21% 8:48% 6:98% 8:32%
9 3028 185 206 306 81:29% 4:97% 5:53% 8:21%

The above results show that at any level of con�dence � 2 (1=2; 11=16], the class of deterministic
automata simulating Mermin probabilistic automata display less correlations than typical deter-
ministic automata with 9 states and 7 outputs, but at higher levels of con�dence � 2 (11=16; 7=8],
when the simulation is more accurate, deterministic automata simulating Mermin probabilistic au-
tomata display more correlations than typical deterministic automata with 9 states and 2 outputs.
In the last case, EPR correlations established in [4] for Mermin probabilistic automata correspond
to computational complementarity of the deterministic automata simulating Mermin probabilistic
automata, [10, 13, 18, 3, 6].
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