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You can only predict things after they happened.

Eug�ene Ionesco, Les Rinoch�eros, 1959, act 3.
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Abstract. We develop an automatic-theoretic analysis of Einstein-Podolsky-Rosen conun-
drum on the basis of two simple devices introduced by Mermin [10, 11].

1 Introduction

Quantum entanglement [16] and nonlocal correlations [1, 6] are \mindboggling" features of quan-
tized systems. They cannot be expected nor explained in the context of classical 19th century
physics. Currently, a \classical understanding" is often interpreted mechanistically (algorithmi-
cally) in terms of computation theory. If the domain is restricted even further, one is lead to a
notion of classicality based on �nite deterministic automata. One of the most radical views would
be based on the assumption that indeed, theoretical physics can be \reduced" to �nite automata.

As highly speculative as these attempts towards a �nite physical understanding may appear,
they have been very stimulating for automata theory. Moore [13] developed his �nite automaton
model with an analogy to quantum theory in mind; recent developments include the study of com-
putational complementarity [9, 17, 3, 4] and empirical propositional calculus of �nite and reversible
automata [17, 18].

In what follows we shall concentrate on one of the biggest enigma of quantum mechanics,
the Einstein-Podolsky-Rosen (EPR). Our automatic-theoretic analysis will be based on Mermin's
simple devices [10, 11] designed to explain quantum correlations.

2 EPR Conundrum and Bell's Theorem

According to the philosophical view called realism, reality exists and has de�nite properties irre-
spective whether they are observed by some agent. Motivated by this view point, Einstein, Podolsky
and Rosen [8] suggested a classical argument showing that quantum mechanics is incomplete. EPR



assumed a) the non-existence of action-at-a-distance, b) that some of the statistical predictions of
quantum mechanics are correct, and c) a reasonable criterion de�ning the existence of \an element
of physical reality".1 They considered a system of two spatially separated but quantum mechani-
cally correlated particles. A \mysterious" feature appears: By counterfactual reasoning, quantum
mechanical experiments yield outcomes which cannot be predicted by quantum theory; hence the
quantum mechanical description of the system is incomplete!

One possibility to complete the quantum mechanical description is to postulate additional
\hidden-variables" in the hope that completeness, determinism and causality will be thus restored.

But then, another conundrum occurs: Using basically the same postulates as those of EPR, Bell
[1, 2] showed that no deterministic local hidden-variables theory can reproduce all statistical pre-
dictions of quantum mechanics. Bell's argument applied to an EPR-type Gedanken experiment of
Bohm; later, Bell's analysis was extended to actual systems and experimental tests were suggested
and performed (see, for example, [5]). Essentially, the particles on either side appear to be \more
correlated" than can be expected by a classical analysis assuming locality (i.e., the impossibility
of any kind of information or correlation transfer faster than light). In more concrete terms, if
each single one of the particles can be in either one of the two states \+" or \-", then, for almost
all setups, more \++" and \{" (and less \+-" and \{") coincidences are recorded than can be
explained by any local classical analysis.

3 Mermin's Devices

Mermin [10, 11] imagined two simple devices to explain EPR conundrum without using the classical
quantum mechanical notions of wave functions, superposition, wave-particle duality, uncertainty
principle, etc.

3.1 Mermin's EPR Device

Mermin's EPR device [10] has three \completely unconnected"2 parts, two detectors (D1) and
(D2) and a source (S) emitting particles. The source is placed between the detectors: whenever
a button is pushed on (S), shortly thereafter two particles emerge, moving o� toward detectors
(D1) and (D2). Each detector has a switch that can be set in one of three possible positions{
labeled 1,2,3{and a bulb that can 
ash a red (R) or a green (G) light. The purpose of lights is to
\communicate" information to the observer. Each detector 
ashes either red or green whenever a
particle reaches it. Because of the lack of any relevant connections between any parts of the device,
the link between the emission of particles by (S), i.e., as a result of pressing a button, and the
subsequent 
ashing of detectors can only be provided by the passage of particles from (S) to (D1)
and (D2). Additional tools can be used to check and con�rm the lack of any communication, cf.
[10], p. 941.

The device is repeatedly operated as follows:

1. the switch of either detector (D1) and (D2) is set randomly to 1 or 2 or 3, i.e., the settings or
states 11, 12, 13, 21, 22, 23, 31, 32, 33 are equally likely,

2. pushing a button on (S) determines the emission toward both (D1) and (D2),
3. sometime later, (D1) and (D2) 
ash one of their lights, G or R,
4. every run is recorded in the form ijXY , meaning that D1 was set to state i and 
ashed X and

(D2) was set to j and 
ashed Y:

1 If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to
unity) the value of a physical quantity, then there exists an element of physical reality corresponding to
this physica quantity. See [8], p. 777.

2 There are no relevant connections, neither mechanical nor electromagnetic.



For example, the record 31GR means \(D1) was set to 3 and 
ashed G and (D2) was set to 1
and 
ashed R".

Long recorded runs show the following pattern:

a) For records starting with ii; i.e., 11, 22, 33, both (D1) and (D2) 
ash the same colours,RR;GG,
with equal frequency; RG and GR are never 
ashed.

b) For records starting with ij; i 6= j, i.e., 12, 13, 21, 23, 31, 32, both (D1) and (D2) 
ash the
same colour only 1/4 of the time (RR and GG come with equal frequencies); the other 3/4 of
the time, they 
ash di�erent colours (RG;GR), occurring again with equal frequencies.

Of course, the above patterns are statistical, that is they are subject to usual 
uctuations
expected in every statistical prediction: patterns are more and more \visible" as the number of
runs becomes larger and larger.

The conundrum posed by the existence of Mermin's device reveals as soon as we notice that the
seemingly simplest physical explanation of the pattern a) is incompatible with pattern b). Indeed,
as (D1) and (D2) are unconnected there is no way for one detector to \know", at any time, the
state of the other detector or which colour the other is 
ashing. Consequently, it seems plausible
to assume that the colour 
ashed by detectors is determined only by some property, or group of
properties, of particles, say speed, size, shape, etc. What properties determine the colour does not
really matter; only the fact that each particle carries a \program" which determines which colour
a detector will 
ash in some state is important. So, we are led to the following two hypotheses:

H1 Particles are classi�ed into eight categories:

GGG;GGR;GRG;GRR;RGG;RGR;RRG;RRR:3

H2 Two particles produced in a given run carry identical programs.

According to H1{H2, if particles produced in a run are of type RGR, then both detectors will

ash R in states 1 and 3; they will 
ash G if both are in state 2. Detectors 
ash the same colours
when being in the same states because particles carry the same programs.

It is clear that from H1{H2 it follows that programs carried by particles do not depend in
any way on the speci�c states of detectors: they are properties of particles not of detectors.
Consequently, both particles carry the same program whether or not detectors (D1) and (D2) are
in the same states.4

We are ready to argue that

[L] For each type of particle, in runs of type b) both detectors 
ash the same colour at least one
third of the time.

If both particles are of types GGG or RRR, then detectors will 
ash all the time the same
colour. For particles carrying programs containing one colour appearing once and the other colour
appearing twice, only in two cases out of six possible combinations both detectors will 
ash the
same light. For example, for particles of type RGR, both detectors will 
ash R if (D1) is in state

3 A particle of type XY Z will cause a detector in state 1 to 
ash X; a detector in state 2 will 
ash Y and
a detector in state 3 will 
ash Z.

4 The emitting source (S) has no knowledge about the states of (D1) and (D2) and there is no communi-
cation among any parts of the device.



1 and (D2) is in state 3 and vice versa. In all remaining cases detectors will 
ash di�erent lights.
The argument remains the same for all combinations as the conclusion was solely based on the
fact that one colour appears once and the other twice. So, the lights are the same one third of the
time.

The conundrum reveals as a signi�cant di�erence appears between the data dictated by particle
programs (colours agree at least one third of the time) and the quantum mechanical prediction
(colours agree only one fourth of the time):

under H1{H2, the observed pattern b) is incompatible with [L].

3.2 Mermin's GHZ Device

Based on Greenberg, Horne, and Zeilinger [6] version of EPR experiment, Mermin [11] imagined
a new device, let's call it GHZ, to show quantum nonlocality. The device has a source and three
widely separated detectors (A), (B), (C), each of which has only two switch settings, 1 and 2. Any
detector, when triggered, 
ashes red (R) or green (G). Again, detectors are supposed to be far
away from the source and there are no connections between the source and detectors (except those
induced by a group of particles 
ying from the source to each detector).

The experiment runs as following. Each detector is in a randomly chosen state (1 or 2) and
then by pressing a button at the source a trio of particles are released towards detectors; each
particle will reach a detector and, consequently, each detector will 
ash a light, green or red. There
are eight possible states, but for the argument we need to take into consideration only those for
which the number of 1's is odd, i.e., 111, 122, 212, 221.

According to [6], a) if one detector is set to 1 (and the others to 2), then an odd number of red
lights always 
ash, i.e., RRR;RGG;GRG;GGR, and they are equally likely, b) if all detectors are
set to 1, then an odd number of red lights is never 
ashed: GRR;RGR;RRG;GGG:

It is immediate that in case a) knowing the colour 
ashed by two detectors, say (A) and (B),
determines uniquely the colour 
ashed by the third detector, (C). The explanation can come only
because particles are emitted by the same source (there are no connections between detectors).
A similar conclusion as in the case of EPR device reveals: particles carry programs instructing
their detectors what colour to 
ash. Any particle carries a program of the form XY telling its
detector to 
ash colour X if in state 1 and colour Y if in state 2. There are four types of pro-
grams: GG;GR;RG;RR. A run in which programs carried by the trio of particles are of types
(RG;GR;GG) will result in RRG if the states were 122, in GGG if the states were 212, and in
GRG if the states were 221. This is an illegal set of programs as the number of R's is not odd
(in RRG, for example). A legal set of programs is (RG;GR;GR) as it produces RRR;GGR;GRG
on 122, 212, 221. There are eight legal programs, (RR;RR;RR), (RR;GG;GG), (GG;RR;GG),
(GG;RR;GG), (GG;GG;RR), (RG;GR;GR), (RG;RG;RG), (GR;GR;RG), and (GR;RG;GR)
out of 64 possible programs.

The conundrum reveals again as none of the above programs respects b), i.e., it is compatible
with the case 111. A single 111 run su�ces to prove inconsistency! Particle programs require an
odd number of R's to be 
ashed on 111, but quantum mechanics prohibits this in every 111 run.

4 Correlations via Moore Automata

Consider now a probabilistic automaton5 simulating Mermin's EPR device. The states
of the automaton are all combinations of states of detectors (D1) and (D2), Q =
f11; 12; 13; 21; 22; 23; 31; 32; 33g; the input alphabet models the lights, red and green, � =
fG;Rg, the output alphabet captures all combinations of lights 
ashed by (D1) and (D2),

5 See Paz [14] for a general theory of probabilistic automata.



O = fGG;GR;RG;RRg; and the output function f : Q ! O; modeling all combinations of
green/red lights 
ashed by (D1) and (D2) in all their possible states, is probabilistically de�ned
by:

f(ii) = XX; with probability 1=2; for i = 1; 2; 3; X 2 fG;Rg;

f(ii) = XY; with probability 0; for i = 1; 2; 3; X; Y 2 fG;Rg; X 6= Y;

f(ij) = XX; with probability 1=8; for i; j = 1; 2; 3; i 6= j;X 2 fG;Rg;

f(ij) = XY; with probability 3=8; for i; j = 1; 2; 3; i 6= j;X; Y 2 fG;Rg;

X 6= Y:

For example, f(11) = RR with probability 1/2, f(11) = GR with probability 0, f(11) = RG
with probability 0, f(11) = RR with probability 1/2, f(12) = GG with probability 1/8, f(12) =
GR with probability 3/8, f(12) = RG with probability 3/8, f(12) = RR with probability 1/8, etc.

The automaton transition � : Q�� ! Q is not speci�ed. In fact, varying all transition functions
� we get a class of Mermin EPR automata:

M (EPR) = (Q;�;O; �; (pXY
ij ; i; j = 1; 2; 3; X; Y 2 fG;Rg)),

where pXX
ii = 1=2; pXY

ii = 0; X 6= Y; pXX
ij = 1=8; pXY

ij = 3=8; X 6= Y .

Are there two identical, spatially separated, probabilistic automata with identical initial states,
whose direct product \simulates" a Mermin's EPR automaton? More formally, are there two
probabilistic automata

Mi = (f1; 2; 3g; fG;Rg; fG;Rg; �i; (�
X
i;j ; j = 1; 2; 3; X 2 fG;Rg))

such that their direct product M1 
 M2 is isomorphic to a Mermin's automatonM (EPR), i.e.,

�(ij;X) = �1(i;X)�2(j;X), and pXY
ij = �X

1;i�
Y
2;j , for all j = 1; 2; 3; X; Y 2 fG;Rg?

The answer is negative. In fact, a stronger result is true:

no single state of any Mermin's EPR probabilistic automaton M (EPR) can be simulated
by the product of the corresponding states of any probabilistic automata Mi.

Indeed, �Gi;j = 1� �Ri;j . For a state ii we get the following contradictory relations:

�G1;i �
G
2;i = (1� �G1;i)(1� �G2;i) = 1=2;

�G
1;i (1� �G

2;i) = (1� �G
1;i) �

G
2;i = 0:

For a state kl with k 6= l we, again, get two contradictory relations:

�G
1;k �

G
2;l = (1� �G

1;k)(1� �G
2;l) = 1=8;

�G1;k (1� �G2;l) = (1� �G1;k) �
G
2;l = 3=8:

Every Mermin's EPR probabilistic automatonM (EPR) has strong correlations preventing it
from being decomposed as a direct product of two independent probabilistic automata, no matter
what transitions and output functions.



Let's turn our attention to Mermin's GHZ device and to this aim consider a proba-
bilistic automaton simulating Mermin's GHZ device. The states of the Mermin's GHZ au-
tomaton are all combinations of states of detectors (A), (B) and (C), Q = f111; 112; 121;
122; 211; 212; 221; 222g; the input alphabet models the lights, red and green, � = fG;Rg,
the output alphabet captures all combinations of lights 
ashed by (A), (B) and (C), O =
fGGG;GGR;GRG;GRR;RGG;RGR;RRG;RRRg; and the output function f : Q ! O; model-
ing all combinations of green/red lights 
ashed by (A), (B) and (C), is determined by the following
conditions:6

f(ijk) = XY Z; with probability 1=4; for ijk 2 f122; 212; 221g;

XY Z 2 fRRR;RGG;GRG;GGRg;

f(ijk) = XY Z; with probability 0; for ijk 2 f122; 212; 221g;

XY Z 2 fGRR;RGR;RRG;GGGg;

f(111) = XY Z; with probability 0; for XY Z 2 fRRR;RGG;GRG;GGRg;

f(111) = XY Z; with probability 1=4; for XY Z 2 fGRR;RGR;RRG;GGGg:

Again, the transition function � : Q�� ! Q is not speci�ed. We get a class of Mermin GHZ
automata

M (GHZ) = (Q;�;O; �; (pXY Z
ijk ; i; j; k = 1; 2; X; Y; Z 2 fG;Rg)),

where pXY Z
ijk = 1=4; for ijk 2 f122; 212; 221g; XY Z 2 fRRR; RGG; GRG; GGRg or i = j = k = 1;

XY Z 2 fGRR; RGR; RRG; GGGg, and pXY Z
ijk = 0, for ijk 2 f122; 212; 221g; XY Z 2 fGRR;

RGR; RRG; GGGg or i = j = k = 1; XY Z 2 fRRR; RGG; GRG; GGRg.

Is there any Mermin's GHZ automaton which can be decomposed into three identical, spa-
tially separated, probabilistic automata with identical initial values? Rephrased, are there three
probabilistic automata

Mi = (f1; 2g; fG;Rg; fG;Rg; �i; (�
X
i;j ; j = 1; 2; X 2 fG;Rg))

such that their direct productM1 
M2 
M3 is isomorphic to a Mermin's automatonM (GHZ):

�(ijk;XY Z) = �1(i;X)�2(j; Y )�3(k; Z) and pXY Z
ijk = �X

1;i�
Y
2;j�

Z
3;k, for all j = 1; 2; X; Y 2 fG;Rg?

The answer is again negative:

no single state of any Mermin's GHZ probabilistic automaton M (GHZ) can be simulated
by the product of the corresponding states of any probabilistic automata Mi.

We have �Gi;j = 1� �Ri;j . Take the output XY Z = GGR. As pGGR111 = 0 we deduce that

�G
1;1�

G
i2;1(1� �G

3;1) = 0;

which contradicts the system of equalities

pGGR
122

= pGGR
212

= pGGR
221

= 1=4;

and the same conclusion can be derived for any output.

Again, due to strong correlations, every Mermin's GHZ probabilistic automaton M (EPR)
cannot be decomposed as a direct product of three independent probabilistic automata, no matter
what transitions and output functions.

6 Note that the following conditions do not determine uniquely the output function.



5 Correlation for Local Parallel Composition of Deterministic Mealy

Automata

First we deal with Mermin EPR device. To this aim we discuss a con�guration in which two
identical deterministic Mealy automata7 M1 and M2 with unknown but identical initial states
are detected in (D1) and (D2), respectively.

More precisely, let us assume that each automatonMj , j = 1; 2, has three states Q = f1; 2; 3g,
the input alphabet � = f1; 2; 3g, the output alphabet O = fG;Rg, as well as a(n) (irreversible,
i.e., many-to-one) transition function �j(q; i) = i and output function �j(q; i) = G, if q = i and
�j(q; i) = R, otherwise; q 2 Q and i 2 �. Let us further assume that there is an equidistribution
of initial states, i.e., each one occurs with equal probability 1=3.

We can construct a joint output function by the cartesian product � : Q � � ! O � O,
�(q; i) = (�1(q; i); �2(q; i)).

Since both M1 and M2 are in an identical initial value, there are just three allowed categories
GRR;RGR;RRG out of the conceivable ones GGG;GGR;GRG;GRR;RGG;RGR;RRG;RRR:

A straightforward combinatorial argument shows that with these assumptions one obtains the
following probabilities:

�(i; i) = GG; with probability 1=3; for i = 1; 2; 3;

�(i; i) = RR; with probability 2=3; for i = 1; 2; 3;

�(i; i) = XY; with probability 0; for i = 1; 2; 3; X; Y 2 fG;Rg; X 6= Y;

�(i; j) = GG; with probability 0; for i; j = 1; 2; 3; i 6= j;

�(i; j) = GR; with probability 1=3; for i; j = 1; 2; 3; i 6= j;

�(i; j) = RG; with probability 1=3; for i; j = 1; 2; 3; i 6= j;

�(i; j) = RR; with probability 1=3; for i; j = 1; 2; 3; i 6= j:

The automata 
ash the same colour (red) 1=3 of the time and di�erent colours 2=3 of the time.
This is not exactly the classical case as discussed by Mermin, but it comes close to it in terms of
classicality and locality of the automata arrangement. To understand why, let us de�ne the notion
of correlation function in the automaton context. Assume again two output symbols, say R and
G, and three input symbols, say 1; 2 and 3.

Associate the numbers nt(i;Mj) = +1 and nt(i;Mj) = �1 with the outcomes R and G of
the experiment with input i at discrete time t, respectively. In analogy to physical correlation
functions [15] we can de�ne a correlation function C as the weighted average over the product of
the numbers associated with the outcomes of the �rst and second automataM1;M2, i.e.,

C(i; j) = 1

N

PN

t=1 nt(i;M1) � nt(j;M2):

We always get �1 � C(i; j) � +1. In the above case, for identical inputs, C(i; i) = 1, i = 1; 2; 3.
For nonidentical input i 6= j, C(ij) = �1=3. The \Bell inequality" [5] is considered a measure for
classicality and locality; in particular

jC(1; 2)� C(1; 3)j � 1 + C(2; 3): (1)

is always satis�ed for classical systems. The automaton correlation functions always satisfy this
inequality and the others obtained by permuting the inputs. This is an indication (although no
su�cient condition) that the corresponding classical system behaves locally in the sense used in
physics. That is, no causal in
uence such as a light signal originating from a measurement on one
particle can in
uence the measurement on the other particle and vice versa. This comes as no

7 In a Mealy automaton the output function depends both on the current state and input letter.



surprise, because the way the two-automaton setup was conceived, both automata are causally
separated in a classical sense.

These results are independent of the particular transition function � involved, provided it is
not a permutation (one-to-one).

A local automaton realization which comes closer to the con�guration discussed by Mermin is
the following one. Assume again two Mealy automataMj , j = 1; 2, with four states Q = f1; 2; 3; 4g,
the input alphabet � = f1; 2; 3; 4g, the output alphabet O = fG;Rg, as well as a(n) (irreversible,
i.e., many-to-one) transition function �j(q; i) = i and output function given by the following table
(q 2 Q, i 2 �):

q=i 1 2 3 4
1 G G G R
2 G R R G
3 R G R G
3 R R G R

Let us further assume that there is an equidistribution of initial values; i.e., each one occurs
with equal probability 1=4.

We can construct a joint output function by the cartesian product � : Q � � ! O � O.
Both automata M1 and M2 are in an identical initial value, but now all conceivable categories
GGG;GGR;GRG;GRR;RGG;RGR;RRG;RRR are allowed.

A straightforward combinatorial argument shows that with these assumptions one obtains the
following probabilities:

�(i; i) = GG; with probability 1=2; for i = 1; 2; 3;

�(i; i) = RR; with probability 1=2; for i = 1; 2; 3;

�(i; i) = XY; with probability 0; for i = 1; 2; 3; X; Y 2 fG;Rg; X 6= Y;

�(i; j) = GG; with probability 1=4; for i; j = 1; 2; 3; i 6= j;

�(i; j) = GR; with probability 1=4; for i; j = 1; 2; 3; i 6= j;

�(i; j) = RG; with probability 1=4; for i; j = 1; 2; 3; i 6= j;

�(i; j) = RR; with probability 1=4; for i; j = 1; 2; 3; i 6= j:

The automata 
ash the same colour (red) 1=2 of the time. This corresponds exactly to the
classical case as discussed by Mermin. In this case we get the correlation C(i; j) = 0 for i 6= j, then
the \Bell inequality"

jC(1; 2)� C(1; 3)j � 1 + C(2; 3);

(and the ones obtained by permutating the inputs) is always satis�ed.
An automaton realization which comes close to Mermin's treatment of the GHZ experiment

can be given by three identical automata M1;M2;M3 with identical initial value, given by the
following table (q 2 Q, i 2 �, o 2 O):

q=i; o 1 2 1 2
1 1 1 R R
2 1 1 R G

Here, in con�gurations like 122, there always occurs an odd number of R's, whereas for 111, only
a single result RRR emerges, which has an odd number of R's and is distinct from the quantum
mechanical result containing an even number of R's.

Again, the argument is independent of the transition function as long as it is not a permutation.



6 Final Remarks

Thus, in summary, insofar models are used which implement a parallel composition of \spatially"
separated, noncommunicating single automata, the associated correlations obey Bell's inequality.

Yet insofar as nonseparated, global automaton models are introduced which are holistic in the
sense that they cannot be parallel decomposed into proper parts, then the associated Bell-type
automaton inequalities are violated; very much in the same way as in the case of its quantum
mechanical double.
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