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1 Introduction

In [2], Chaitin introduced the real 
 and proved the following:

Theorem 1 Assume that ZFC is arithmetically sound. [That is, any the-
orem of arithmetic proved by ZFC is true.] Then ZFC can determine the
value of only �nitely many bits of 
. In fact we can explicitly compute a
bound on the number of bits of 
 which ZFC can determine.

Chaitin's theorem is much more general than what we have stated. ZFC
can be replaced by any recursively axiomitizable theory in which Peano arith-
metic can be interpreted.

The real 
 depends on the choice of \universal Chaitin machine". It
is natural to suspect that by tuning this choice one can improve Chaitin's
result.

Here is the main theorem of this paper:

Theorem 2 We can choose the universal Chaitin computer U so that ZFC
[if arithmetically sound] can not determine any bit of the 
 associated to U .

The rest of this paper is organized as follows. Section 2 contains a review
of the basic de�nitions of Chaitin's theory that we use. In section 3, we re-
call the notion of \1-consistent". [The hypothesis that ZFC is arithmetically
sound can be sharpened, in both my theorem and Chaitin's, to merely as-
serting that ZFC is 1-consistent.] Section 4 gives a more detailed discussion
of Chaitin's theorem. The remaining sections of the paper are devoted to a
proof of our theorem.

I am grateful to Greg Chaitin for giving me a copy of his book [1] which
started me thinking about this circle of ideas.

�I wish to thank the Isaac Newton Institute for providing the environment where this

paper was written.
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2 Preliminary de�nitions and notation

2.1 Bit strings

! is the set of non-negative integers. I follow von Neumann so that each
integer n is equal to the set fm 2 ! j m < ng of integers less than n.

�� is the set of �nite sequences of 0's and 1's. Thus an element of �� is
just a function whose domain is in ! and whose range is included in f0; 1g.

The concatenation of the two bit strings s and t will be denoted by s _ t.
If j is one of 0 or 1, the bit string of length 1 whose sole component is j will
be denoted by hji. Of course ; is the unique string of length 0.

If s is a bit string, we write jsj for the length of s.
The usual theory of partial recursive functions is done considering func-

tions whose domain and range are subsets of !. We want to import this
theory over to functions whose domain and range are subsets of �� and for
that, it is convenient to �x a canonical bijection between �� and !. This is
done as follows:

We linearly order �� by putting s < t if either:

1. jsj < jtj or

2. jsj = jtj and s lexicographically precedes t.

With this ordering, there is a unique order isomorphism of �� with !
[which will serve as the \canonical bijection" between the two sets.]

2.2 Pre�x-free codes

A subset A of � is a pre�x-free-code if whenever s and t are members of A
such that s � t then s = t.

Associated to any pre�x-free code, A, is a real number 
A de�ned thus:


A =
X

s2A

2�jsj

This has the following probabilistic interpretation: Pick a real x in [0; 1]
at random using the Lebesgue measure on [0; 1]. Then 
A is the probability
that some initial pre�x of the binary expansion of x lies in A.

2.3 Chaitin machines

A Chaitin machine is a partial recursive function whose domain and range
are subsets of �� and whose domain is a pre�x-free code.

Let U be a Chaitin machine with domain A. Then we set 
U = 
A.
A Chaitin machine U is universal if it can simulate any other Chaitin

machine.

2



More precisely, U is universal if for every Chaitin machine V there is a
bit string �V such that the equality

U(�V _ s) ' V (s)

holds for any bit string s.
Here, as usual x ' y holds between two partially de�ned objects x and y

if (a) x is de�ned i� y is de�ned and (b) if they are both de�ned, then they
are equal.

It is proved in [2] that universal Chaitin machines exist. Moreover, if U is
universal, then 
U has a strong randomness property. [It is now know that

U is Martin-Lof random.] As a corollary, 
U is irrational and does not have
a recursive binary expansion.

2.4 G�odel numbering Chaitin machines

We �x one of the usual G�odel numberings f'i j i 2 !g of all partial recursive
functions from �� to ��. Then the function � : ! � �� 7! �� given by

�(i; s) ' 'i(s)

is partial recursive.
It follows that the domain of � is recursively enumerable. Since it is

clearly in�nite, we �x a recursive enumeration without repetitions of the do-
main of �: h hni; sii j i 2 !i. We can certainly arrange that this enumeration
is primitive recursive.

We are going to construct a new function 	 : ! � �� 7! ��. De�ning
 i : �

� 7! �� (for i 2 !) by

 i(s) ' 	(i; s)

will yield the desired G�odel numbering of Chaitin machines.
	 will be the restriction of � to a certain subset of its domain. We

proceed by induction on i to determine if the pair hni; sii will be placed in
the domain of 	:

Place hni; sii in the domain of 	 i� for no j < i for which hnj; sji has
been placed in the domain of 	 do we have nj = ni and sj compatible with
si. [That is, sj � si or si � sj.]

This construction has the following properties (whose proof is left to the
reader):

1. The domain of  i is pre�x-free.

2. If the domain of 'i is pre�x-free, then  i = 'i.
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2.5 Timing

We let Dn be the domain of  n. Let 
n = 
Dn
.

Intuitively, Dn[t] is those elements of Dn which have appeared by time t.
More precisely,

Dn[t] = fs : (9j � t)(nj = n and sj = s and hnj; sji was placed into Dom(	) at stage jg

We put 
n[t] = 
Dn[t]. Intuitively, this is the approximation to 
n com-
putable at time s.

The following facts are evident:

1. 
n[t] is a rational number with denominator a power of 2.

2. Given n and t we can compute [by a primitive recursive function] the
�nite set Dn[t] and the rational number 
n[t].

3. As t increases to in�nity, the 
n[t] increase monotonically to the limit

n.

3 1-consistency

Throughout this section T is a theory with a recursive set of axioms in which
Peano Arithmetic is relatively interpretable. We �x a relative interpretation
of PA in T . Of course, the basic example we have in mind is ZFC equipped
with the usual relative interpretation of PA in ZFC.

For brevity in what follows, we say \interpretation" rather than \relative
interpretation".

Our main theorem will use the hypothesis that \ZFC is 1-consistent".
In this �rst part of this section, we review known results without proof that
describe the relationship of the notion of 1-consistency to other notions of
soundness.

In the second part of this section, we derive from the assumption that
ZFC is 1-consistent that any determination that ZFC makes about one of
the binary digits of 
U [for some universal Chaitin computer U ] is true. This
will be the only use we make of the 1-consistency hypothesis.

3.1 A spectrum of soundness hypotheses

3.1.1 !-models

Since there is a �xed interpretation of PA in T , any model of T determines
a model of PA. We say that a modelM of T is an !-model if the associated
model of PA is isomorphic to the standard model of PA.

Our �rst soundness assumption is that T has an !-model.
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3.1.2 Arithmetic soundness

Each sentence of the language of PA has a translation into a sentence of the
language of T , determined by the interpretation of PA in T . We shall blur
the distinction between a sentence of PA and its translation. We use the
phrase \sentence of arithmetic" to indicate a sentence of the language of T
that is the translation of some sentence of PA.

Our second soundness assumption is that T is arithmetically sound. That
is, if # is a sentence of arithmetic which is a theorem of T , then # is true [in
the standard model of PA].

Remark: Our metatheory is ZFC. So we know that PA itself is arith-
metically sound.

3.1.3 !-consistency

The notion of !-consistency was introduced by G�odel in connection with his
incompleteness theorems.

It is easiest to de�ne when a theory T is not !-consistent. [I.e., is !-
inconsistent.] This happens if there is a formula of the language of T , �(x),
[having only the indicated free variable x] such that the following happens:

1. T proves \There is an x 2 ! such that �(x)."

2. For each natural number n, T proves \:�(n)".

In theories like PA which have a canonical term to denote each natural
number, n is the canonical term that denotes the integer n. In theories like
ZFC that lack such terms the explication of what the formula �(n) is, is a
little more subtle, but we presume the reader will be familiar with the details.

3.1.4 1-consistency

A theory T is 1-consistent, if whenever it proves a �0
1 sentence, �, then � is

true,
There is a notion of when a formula of PA is \primitive recursive". Ba-

sically these are the formulas that arise in implementing G�odel's proof that
every primitive recursive predicate is expressible in PA.

A sentence of PA is �0
1 if it has the form (9x)P (x) where P is primitive

recursive.
A special case of �0

1 sentences are the formalizations of assertions that a
particular Turing machine halts if started [in its canonical \start state"] on
an empty tape. Indeed, every �0

1 sentence is provably equivalent in PA to
such a \halting statement".

3.1.5 Consistency

T is consistent if it does not prove the assertion \0 = 1". Equivalently, T is
consistent if it does not prove every sentence in the language of T .
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3.1.6 Positive relations between the di�erent notions of soundness

These claims are all trivial: Every theory T that has an ! model is arith-
metically sound and !-consistent. If T is arithmetically sound or !-consistent,
then T is 1-consistent. If T is 1-consistent, then T is consistent.

3.1.7 Negative relations between the di�erent notions of sound-

ness

The claims that follow are not entirely trivial, but are all well-known. Details
will not be given. The proof of our main theorem does not depend on these
results.

There are theories T1, T2, T3, and T4, all in the language of ZFC and all
extending ZC [Zermelo set theory with choice] such that:

1. T1 is arithmetically sound but not !-consistent.

2. T2 is !-consistent but not arithmetically sound.

3. T3 is consistent, but not 1-consistent.

4. T4 is not consistent.

3.1.8

From now on, when we say that a theory T is 1-consistent, it is implied
that the theory has a recursive set of axioms and comes equipped with some
de�nite interpretation of PA in T .

3.2 Proving facts about 


3.2.1 Binary expansions

A dyadic rational is a rational number of the form r=2s where r and s are
integers and s � 0.

If x is a real number which is not a dyadic rational, then x has a unique
binary expansion. If x is a dyadic rational, it has two distinct binary expan-
sions. In this paper, we shall always pick the one that ends in an in�nite
sequence of 0's.

With this convention in place, the following can easily be formalized in
PA: \The ith binary digit of 
j is k." [Here k < 2, of course, if the assertion
is true.]

We start numbering the digits of the binary expansion of a real with the
0th digit. Thus the 0th digit of the binary expansion of 1=3 is 0; the 1st digit
is 1; the 2nd digit is 0, etc.

Lemma 3 Let  j be a Chaitin machine which PA can prove universal. Let
T be 1-consistent, and let T prove the assertion \The ith binary digit of 
j

is k". Then this assertion is true.
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Our proof of this lemma will proceed in two steps. We �rst show that
any �0

2 sentence proved by T is true. We then show the sentence in question
in the lemma is provably equivalent in PA to a �0

2 sentence.

3.2.2 �0
2 sentences

A �0
2 sentence is a sentence of PA of the form 8x9yP (x; y), where P is

primitive recursive.
Suppose then, towards a contradiction, that T proves the translation of

such a �0
2 sentence, and that the sentence is false. Then for some particular

integer n, the sentence 9yP (n; y) is false and provable in T . But this latter
sentence is �0

1, and this contradicts the assumption that T is 1-consistent.

3.2.3 Proof of the lemma

We work in PA. We know that 
j is irrational. hence, we can express the
fact that the ith digit of 
j is k as follows:

(8m)(9n > m) [the ith digit of 
j[n] is k]

[The proof of this claim is easy and left to the reader.] But the assertion just
displayed is visibly �0

2. The lemma is proved.

4 Chaitin's results about predicting bits of 


The results of this section, which are stated without proof, are not needed
for the proof of the main theorem.

Throughout this section we �x a universal Chaitin machine U . [In the
later parts of this section, we even implicitly specialize to a particular such
U .]

We �x a j such that U =  j. Formal assertions about U refer to this j.
We write 
 for 
U . As discussed in section 3.2.1, we can easily formalize

in PA the assertion \The ith binary digit of 
 is k". [This formalization uses
the G�odel number, j, of 
.]

Now let T be a 1-consistent theory of the sort discussed in section 3.
Following Chaitin, we want to give an upper bound on the set of i 2 ! such
that T proves a theorem of the form \The ith bit of the binary expansion of

 is k" for some k � 1. We refer to this cardinality as \the number of bits
of 
 that T can determine". Of course, a priori, this cardinality might be
in�nite; however, it will turn out to be �nite.

4.1 H(T )

We wish to give a de�nition of the number of bits it takes to describe the
arithmetical theorems of T .

We �x a G�odel numbering of the sentences of PA.
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Now consider a theory T of the sort described above. We proceed to
associate an r. e. set of strings WT to T . Let s 2 ��. Then s corresponds
to an integer ns as discussed in section 2.1. Then s 2 WT i� ns is the Godel
number of a sentence of PA whose translation is a theorem of T .

Now let s 2 ��. We say that s is a program for WT if

1. U(s) is de�ned and has the value t. Let n be the integer corresponding
to t. [Cf. section 2.1.]

2. The domain of 'n is WT .

Finally, let H(T ) be the length of the shortest program for WT .
We can now state Chaitin's theorem [proved in [2]].

Theorem 4 Let U be a universal Chaitin computer. Then there is a positive
constant C [depending only on U ] such that [for T a 1-consistent theory] T
can determine at most C +H(T ) bits of 
.

In [1], Chaitin describes a particular universal computer [whose imple-
mentation is done in a dialect of Lisp that Chaitin devised.] For a de�nition
of H(T ) which is similar in spirit to the one I have given above, Chaitin
proves the following:

Theorem 5 Let U be the particular universal Chaitin computer de�ned in
[1]. Let T be a 1-consistent theory. Then T determines at most H(T )+15328
bits of 
U .

5 Precise statement of the main theorem. Out-

line of the proof.

Theorem 6 Let T be a 1-consistent theory. Then there is a universal Chaitin
computer, U [=  j] such that:

1. PA proves the fact that U is universal.

2. T can not determine even a single bit of 
U .

In particular, our theorem applies to ZFC provided that ZFC is 1-
consistent.

Of course, the U provided by the theorem depends on T .
Here is a sketch of the proof. [Some technical details have been omitted

from this sketch. They will be provided in the following sections where the
proof will be presented in detail.]

We �x a standard Chaitin universal computer V such that the universality
of V is provable in PA.
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Our computer U will be unde�ned on the string ;. For strings of the form
h0i_ s, we will have:

U(h0i_ s) ' V (s)

This will ensure the universality claims made about U .
We are still free to de�ne U on strings of the form h1i _ s as we wish.

We will use this freedom to prevent T from guessing a single bit of 
U .
Thanks to the magic of the recursion theorem, we can assume that when

de�ning U we know the G�odel number of U . Our algorithm when given a
string of the form h1i _ s �rst begins an enumeration of the arithmetical
theorems of T , looking for the �rst one of the form \The nth bit of 
U is k".
This search may go on forever without �nding such a sentence. If it does
succeed, we note the particular values of n and k. If s does not have length
n, then U(h1i_ s) is unde�ned.

Let r be the dyadic rational whose dyadic expansion begins with s _ hki
followed by an in�nite string of 0's. Let r0 = r + 2�(n+1). We search for a t
such that 
[t] lies in the interval (r; r0). If we �nd such, we make U(h1i_ s)
be de�ned with the value ;.

It seems reasonable that the �nal value of 
 should be at least 
[t] +
2�(n+1) since we have just added a new string of length n+ 1 to the domain
of 
. Thus the action we have just taken prevents 
 from being in the
interval (r:r0).

But clearly, if T has correctly predicted the value of the nth bit of 
 then

 will lie in an interval of the form (r; r0) for some length n bit string s. Thus
our assumption that T can predict a single bit of 
 has led to a contradiction.

There are two points where we have to amplify the sketch to turn it into
a correct proof.

1. We must check that the self-reference in the sketch can indeed be han-
dled by the recursion theorem. [This is routine, but we shall treat this
carefully in the �nal proof.]

2. The phrase \It seems reasonable" probably could be turned into a
rigorous argument. But the detailed proof will proceed di�erently at
this point.

6 Description of the construction

We will be de�ning a function U : �� 7! �� that depends on an integer
parameter j. [Intuitively, j is a guess at the G�odel number of U .] We will
specify the value of j presently

U can be viewed as coming from a function U1 : ! � �� 7! ��. [So
U(s0 ' U1(j; s).] Our construction will be such that U1 is partial recursive.
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6.1

As discussed in the sketch, we �x a universal Chaitin computer V such that
the universality of V is provable in PA.

We proceed to de�ne U(s) by cases:
Case 1: s = ;.
Then U(s) is unde�ned.
Case 2: s = h0i_ t for some bit string t.
Then we set U(s) ' V (t).

6.2 Case 3

This is the case where s = h1i_ t for some bit string t.
Our construction begins with an preliminary calculation to determine

certain constants n and k. This preliminary calculation may not converge.
In that case U will be unde�ned at s for any s falling under Case 3.

The preliminary calculation lists the theorems of T in some de�nite order
[not depending on t] searching for a theorem of the form \The nth binary
digit of 
j is k". If it �nds such a theorem, then the value of n and k for the
rest of the construction are those given by the �rst such theorem.

We will only de�ne U(h1i_ t) if jtj = n.
Suppose then that jtj = n. We de�ne dyadic rationals r and r0 as follows.

r is the unique dyadic rational [in [0; 1)] whose binary expansion starts with
t _ hki and whose digits [after the nth one] are all 0. r0 = r + 2�(n+1).

We now proceed to search for the least integer m such that 
j[m] lies
in the open interval (r; r0). [Of course, this search might fail. If so, U(s) is
unde�ned.]

Recall that Dj[m] is the �nite set of strings in the domain of 
j that have
contributed to the computation of 
j[m]. [Cf. section 2.5.] If s appears in
Dj[m], then U(s) is unde�ned. Otherwise, we set U(s) = ;.

6.3 The recursion theorem applied

The recursion theorem assures us that there is a value of j such that 'j(s) '
U1(j; s). We �x such a j and set U = 'j. Thus in the de�nition of U just
given, the value of the parameter j was the G�odel number of U .

7 Analysis of the construction

7.1 U is a Chaitin machine

Suppose that s1 and s2 are two elements of the domain of U such that s1 � s2.
We have to see that s1 = s2.
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Since U is unde�ned on the empty string, js1j � 1. Let r = s1(0). Let
si = hri_ ti. Clearly t1 � t2. If r = 0, then t1 and t2 are in the domain of
the Chaitin computer V . Hence t1 = t2. So s1 = s2.

If r = 1, then for U(s1) and U(s2) to be de�ned, we must have the integer
n de�ned in the course of the construction. But then js1j = js2j = n+ 1. So
s1 = s2 as desired.

It follows that U =  j and that the real 
j used in the course of the
construction is 
U . [Cf. section 2.4.]

7.2 U is universal

This follows from the de�nition of U on strings beginning with a 0. It is also
clear that U inherits from V the fact that its universality is provable in PA.

Note that it follows that 
U is irrational. [Cf. section 2.3.]

7.3

Now, towards a contradiction, assume that T can determine some bit of 
U .
Then in the course of the construction the integers n and k are de�ned.

Let r be a dyadic rational with denominator 2n+1 such that r < 
U <
r+2�(n+1). [We use here the fact that 
U is irrational.] Let r0 = r+2�(n+1).

Since T is 1-consistent, the assertion \The nth binary bit of 
U is k" is
true. Hence the �rst n + 1 bits of the binary expansion of r have the form
t _ hki where t is a bit string of length n. For all su�ciently large m, 
j[m]
will lie in the interval (r; r0).

Let s = h1i _ t. Consider now the computation of U(s). The r and
the r0 involved in that computation are the ones we have just de�ned. The
search for an m such that 
j[m] 2 (r:r0) will succeed.

Could it be that s 2 Dj[m]? No, for then U(s) would not be de�ned. But
Dj[m] � Dj, so we would have s 2 Dj. I.e. s would be in the domain of U
after all, a contradiction.

So U(s) is de�ned, and Dj contains in addition to the members of Dj[m]
the string s of length n + 1. It follows that 
U � r + 2�(n+1) = r0. But this
contradicts the de�nition of r. The proof of the main theorem is complete.
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