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Abstract. We introduce a computing mechanism of a biochemical inspiration
(similar to a P system in the area of computing by membranes) which consists
of a multiset of symbol-objects and a set of �nite state sequential transducers.
The transducers process symbols in the current multiset in the usual manner. A
computation starts in an initial con�guration and ends in halting con�guration.
The power of these mechanisms is investigated (the main result says that systems
with two components generate all gsm images of all permutations of recursively
enumerable languages), as well as the closure properties of the obtained family
(which is shown to be a full AFL).

1 Introduction

The present paper can be seen as a contribution both to Natural Computing, in the area of
computing with membranes (P systems, see [8], [6], [11], [12], or the survey in [9]), and to
Distributed (Parallel) Computing, in the multiset rewriting area (see, [1], [2], [3], etc.).

We introduce here a computing mechanism of the following \biochemical" type. In a
given space (a membrane) we have a multiset of objects, identi�ed with symbols from a given
alphabet. In the same space, we place several �nite automata with outputs (generalized se-
quential machines). In a parallel manner, these automata take symbols available around and,
depending on their states, change their states and produce new symbols. In this way, a new
con�guration of the system is obtained. A sequence of such transitions among con�gurations
is a computation; a computation is complete if it halts, that is, no further move is possible in
its last con�guration. In this way, a mapping between the initial multiset of objects and the
multiset present in the halting con�guration is de�ned. We can also associate a set of strings
with a computation, as in P systems: we distinguish a terminal set of symbols and construct
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the string of terminal symbols appearing during the computation, in the order they are pro-
duced; when several terminal symbols are introduced at the same time, then any ordering of
them is accepted (thus, several strings are associated with the same computation).

Consequently, we have here a variant of a P system, with only one membrane (so, a
particular case from this point of view), but with the evolution rules of a powerful form:
�nite state machines, which remember by their states some information about their previous
work. Still, such machines are among the simplest we can consider. (This could make
appropriate the term colony for our device, in the sense introduced in [7], of a collectivity of
as simple as possible devices working together.)

Somewhat expected (this happens in general in distributed systems, P systems included),
the power of our computing machinery is rather large: systems with only two components
are able to generate all recursively enumerable languages modulo a permutation; even the
gsm images of permutations of recursively enumerable languages can be obtained in this
way. We do not know whether or not all recursively enumerable languages can be obtained.
Anyway, the family of languages generated by our devices is a full AFL (Abstract Family of
Languages), so we can appreciate it as being very large.

2 Prerequisites

For elements of formal language theory we shall use below we refer to [13]. We only specify
some notations.

For an alphabet V , V � is the free monoid generated by V , � is the empty string, and
V + = V � � f�g. The length of x 2 V � is denoted by jxj, while jxja is the number of
occurrences of the symbol a in the string x. If V = fa1; : : : ; ang (the ordering is important),
then 	V (x) = (jxja1 ; : : : ; jxjan) is the Parikh vector of the string x 2 V �. For a language
L � V �, 	V (L) = f	V (x) j x 2 Lg is the Parikh set of L.

A Chomsky grammar is written in the form G = (N;T; S; P ), where N is the nonterminal
alphabet, T is the terminal alphabet, S is the axiom, and P is the set of productions. We
denote by RE the family of recursively enumerable languages.

In general, for a family FL of languages, we denote by pFL; FLone, and FLbound the
families of permutations of languages in FL, of languages in FL over the one-letter alphabet,
and of the bounded languages in FL, respectively (a language L � V � is bounded if there
are w1; : : : ; wn 2 V + such that L � w�

1 : : : w
�

n).
A notion which will be very useful below is that of a matrix grammar. Such a grammar

is a construct G = (N;T; S;M;C), where N;T are disjoint alphabets, S 2 N , M is a �nite
set of sequences of the form (A1 ! x1; : : : ; An ! xn), n � 1, of context-free rules over N [T
(with Ai 2 N;xi 2 (N [ T )�, in all cases), and C is a set of occurrences of rules in M (N is
the nonterminal alphabet, T is the terminal alphabet, S is the axiom, while the elements of
M are called matrices).

For w; z 2 (N [ T )� we write w =) z if there is a matrix (A1 ! x1; : : : ; An ! xn) in
M and the strings wi 2 (N [ T )�; 1 � i � n + 1, such that w = w1; z = wn+1; and, for all
1 � i � n, either wi = w0

iAiw
00

i ; wi+1 = w0

ixiw
00

i , for some w0

i; w
00

i 2 (N [ T )�, or wi = wi+1;

Ai does not appear in wi, and the rule Ai ! xi appears in C. (The rules of a matrix are
applied in order, possibly skipping the rules in C if they cannot be applied; we say that these
rules are applied in the appearance checking mode.) If C = ;, then the grammar is said to
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be without appearance checking (and C is no longer mentioned).
We denote by =)� the re
exive and transitive closure of the relation =). The language

generated by G is de�ned by L(G) = fw 2 T � j S =)� wg: The family of languages of this
form is denoted by MATac. When we use only grammars without appearance checking, then
the obtained family is denoted by MAT .

A matrix grammar G = (N;T; S;M;C) is said to be in the binary normal form if N =
N1 [N2 [ fS; yg, with these three sets mutually disjoint, and that the matrices in M are of
one of the following forms:

1. (S ! XA); with X 2 N1; A 2 N2;

2. (X ! Y;A! x); with X;Y 2 N1; A 2 N2; x 2 (N2 [ T )
�;

3. (X ! Y;A! y); with X;Y 2 N1; A 2 N2,

4. (X ! �;A! x), with X 2 N1; A 2 N2; and x 2 T �:

Moreover, there is only one matrix of type 1 and C consists exactly of all rules A ! y
appearing in matrices of type 3. One sees that y is a trap-symbol; once introduced, it is
never removed. A matrix of type 4 is used only once, at the last step of a derivation (clearly,
matrices of forms 2 and 3 cannot be used at the last step of a derivation).

According to Lemma 1.3.7 in [5], for each matrix grammar there is an equivalent matrix
grammar in the binary normal form.

A multiset over an alphabet V = fa1; : : : ; ang is a mapping � : V �! N [ f1g. A
multiset can be given in the form f(a1; �(a1)); : : : ; (an; �(an))g or can be represented by any
string w 2 V � such that 	V (w) = (�(a1); : : : ; �(an)). We shall make below an extensive use
of the string representation of a multiset, almost using as synonymous the terms \string" and
\multiset". For the sake of mathematical accuracy, the multiset f(a1; jwja1 ); : : : ; (an; jwjan)g
represented by a string w 2 V � is denoted by �(w).

For ai 2 V and a multiset � over V , we say that ai belongs to � and we write ai 2 � if
�(ai) � 1.

We say that the multiset �1 is included in the multiset �2, and write �1 � �2, if �1(a) �
�2(a) for all a 2 V . The union of �1; �2 is the multiset de�ned by (�1[�2)(a) = �1(a)+�2(a),
for all a 2 V . The di�erence of two multisets, �1 � �2 is de�ned here only when �2 � �1, by
(�1 � �2)(a) = �1(a)� �2(a), for all a 2 V .

3 P systems of transducers

We now introduce the computing mechanisms we investigate in this paper.
Let us �rst recall that a gsm (generalized sequential machine) is a construct 
 =

(K;V1; V2; s0; F; P ), where K;V1; V2 are alphabets (set of states, input and output alpha-
bets, respectively), s0 2 K (initial state), F � K (�nal states), and P is a �nite set of
rewriting rules of the form sa! xs0, for s; s0 2 K and a 2 V1; x 2 V �

2 .
For s; s0 2 K; y1; x 2 V �

2 ; y2 2 V �

1 ; a 2 V1 we write y1say2 =) y1xs
0y2 if sa ! xs0 2 P .

Then, for w 2 V �

1 we de�ne 
(w) = fz 2 V �

2 j s0w =)� zsf , for some sf 2 Fg. For L � V �

1 ,
we de�ne 
(L) =

S
x2L 
(w). We say that 
(L) is the image of L through the gsm 
.

For a family FL of languages, we denote by gsm(FL) the family of gsm images of lan-
guages in FL.
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Here we consider the gsm's not as strings (and languages) transducers, but as operators
on multisets of symbols; in this case, the �nal states are no longer necessary.

A system of transducers (in order to remind the membrane computing, we say, shortly, a
PT system) of degree n; n � 1, is a construct

� = (V; T;w0; 
1; : : : ; 
n);

where:

{ V is an alphabet (its elements are called objects),

{ T � V (the terminal alphabet),

{ w0 2 V � represents a multiset over V (the initial multiset),

{ 
i = (Ki; V; s0;i; Pi), 1 � i � n, are gsm's without �nal states (and with identical input
and output alphabets, namely equal to V ); the rules in Pi are of the form sa! xs0, for
a 2 V � T; x 2 V �; s; s0 2 Ki (each such gsm is called a component of �).

Note that w0 is a string over V representing a multiset and that the terminal symbols
cannot be processed by the rules in the components of �.

Any (n+1)-tuple (w; s1; : : : ; sn), with w 2 V �; si 2 Ki; 1 � i � n, is called a con�guration
of �; (w0; s0;1; : : : ; s0;n) is the initial con�guration of �.

For two con�gurations (w; s1; : : : ; sn), (w0; s01; : : : ; s
0

n) we write (w; s1; : : : ; sn) =)
(w0; s01; : : : ; s

0

n) (and we say that we have a transition between the two con�gurations) if
the following conditions hold:

1. there is k � 1 and there are the indices i1; : : : ; ik 2 f1; 2; : : : ; ng
such that

{ aij 2 �(w); 1 � j � k,

{ �(ai1 : : : aik) � �(w) (multiset inclusion),

{ sjaij ! xjs
0

j 2 Pj , for 1 � j � k,

{ �(w0) = (�(w)��(ai1 : : : ain))[ (�(x1)[�(x2)[ : : : �([xn)) (multiset operations),

2. the set fi1; : : : ; ikg is maximal, in the sense that there is no transition
srar ! xrs

0

r 2 Pr for some r 2 f1; 2; : : : ; ng � fi1; : : : ; ikg,
such that ar 2 �(w)� �(ai1 : : : aik)
(no further object in the multiset �(w) can be processed by a gsm di�erent from those
mentioned at the previous point, 
i1 ; : : : ; 
ik).

A con�guration (w; s1; : : : ; sn) is said to be a halting one of there is no con�guration
(w0; s01; : : : ; s

0

n) such that a transition (w; s1; : : : ; sn) =) (w0; s01; : : : ; s
0

n) is possible.
As usual, we denote by =)� the re
exive and transitive closure of the relation =). A

sequence of transitions is called a (complete) computation if it starts in the initial con�guration
and ends in a halting con�guration.

There are several possibilities of associating a result to a computation � :
(w0; s0;1; : : : ; s0;n) =)� (w; s1; : : : ; sn). First, we can consider that we get a mapping
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�(w0) = w (from multisets over V to multisets over V ). In this way, a PT system is a
mapping computing machine. Second, we can consider the Parikh vector associated with w,
in two variants: 	V (w) and 	T (w) (in the latter case, one understands that the symbols
which appear in w but are not terminals are ignored). In this way, we can associate with �
a set of tuples of natural numbers (a relation over N).

Because we want to work here with languages, we choose a third possibility (also followed
in the P systems area, see [8], [9]): we collect the terminal symbols, in the order in which
they are introduced, and form a string; if several terminal symbols are introduced at the
same time (by the same component of �, using a rule sa ! xs0 with x being a string, or
by several components), then all the orderings of those symbols are allowed, hence a set
of strings is associated with the same computation. The set of strings of this form is the
language generated by � it is denoted by L(�).

Formally, this language is de�ned as follows. For two strings w;w0 2 V � such that
	T (w) � 	T (w

0) (componentwise), we denote by L(w0 � w) the set of words x 2 T � such
that 	T (w

0) = 	T (w) + 	T (x) (the set of strings over T composed of symbols which ap-
pear in w0 and not in w). Then, for a halting computation � : (w0; s0;1; : : : ; s0;n) =)
(w1; s1;1; : : : ; s1;n) =) : : : =) (wm; sm;1; : : : ; sm;n), we de�ne

L(�) = L(w1 � w0)L(w2 � w1) : : : L(wm � wm�1):

The language L(�) is the union of all languages L(�), for � being a halting computation
with respect to �.

We denote by PTLn the family of languages generated by PT systems of degree less than
or equal to n; n � 1; the union of all these families is denoted by PTL.

4 An example

In order to illustrate the de�nition and the work of a PT system, let us consider the system
(of degree 3)

� = (V; T;w0; 
1; 
2; 
3);

with

V = fa; a0; a00; �a; b; c; d; e; f; g; hg;

T = fag;

w0 = a0a0bnd; for some n � 1;

and the following components:


1 = (fs0;1; s1;1g; V; s0;1; P1);

P1 = fs0b! cs1;1; s1;1h! s0;1g;


2 = (fs0;2; s1;2; s2;2; s3;2; s4;2g; V; s0;2; P2);

P2 = fs0;2a
0 ! as4;2; s4;2a

0 ! as4;2; s4;2b! bs4;2;

s4;2c! cs4;2; s0;2d! ds0;2; s0;2c! s1;2;

s1;2a
0 ! a00a00s1;2; s1;2e! fs2;2; s2;2g ! s3;2;

s3;2a
00 ! a0s3;2; s3;2e! fs0;2g;

5




3 = (fs0;3; s1;3; s2;3; s3;3; s4;3g; V; s0;3; P3);

P3 = fs0;3d! ds0;3; s0;3d! eds1;3; s1;3a
0 ! �as2;3;

s2;3�a! �as2;3; s1;3f ! gs3;3; s3;3d! ds3;3;

s3;3d! eds4;3; s4;3a
00 ! �as2;3; s4;3f ! hs0;3g:

For the reader convenience, the components of this PT system are represented graphically
in Figure 1.

Figure 1: Example of a PT system.
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The system works as follows (and halts in a con�guration which contains 2n copies of the
symbol a).

If in state s0;2 the component 
2 chooses to go to state s4;2, then we never come back
to s0;2. Assume that at the �rst step 
2 uses the rule s0;2d ! ds0;2. Simultaneously, 
1
transforms one occurrence of b in c and 
3 either remains in the initial state, or it passes to
s1;3. Assume that 
3 remains in s0;3. At the next step, 
2 can pass to s1;2, by using the rule
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s0;1c ! s1;2, making use of the symbol c introduced by the �rst component. 
1 will wait in
state s1;1 until a symbol h is produced.

In state s1;2, we can replace each a0 by two copies of a00. During this time, 
3 remains in
state s0;3. Component 
2 cannot leave s1;2 before having produced a copy of e in 
3. At any
moment, 
3 can use the rule s0;3d! eds1;3. If in the current multiset we still have occurrences
of a0, then 
3 will now introduce �a, passing to state s2;3 (this is obligatory, because the symbol
f is not available). The computation will never stop, because of the rule s2;3�a! �as2;3 which
can be used for ever. No output is obtained in such a case. Therefore, the rule s0;3d! eds1;3
in 
3 should be used after transforming all symbols a0 into a00 (doubling them).

After using s1;2e ! fs2;2 in 
2, we can use s1;3f ! gs3;3 in 
3. At the next step, 
2
can use g in order to pass to state s3;2 while 
3 stays in s3;3 any number of steps. During
this time, 
2 replaces each a00 by a0 (in state s3;2). Again we can control whether or not
this process is complete, by means of symbols d; e; �a: if 
3 uses the rule s3;3d! eds4;3 while
symbols a00 are still present, at the next step 
3 will introduce the trap-symbol �a (we cannot
use the rule s4;3f ! hs0;3, because no symbol f is available).

If all symbols a00 were replaced by a0, then 
3 introduces the symbol h and returns to
its initial state; note that 
2 is already in the initial state. Using the symbol h, also 
1 can
return to its initial state. In the current multiset, the number of occurrences of a0 is doubled
in comparison with the number of such symbols in the previous con�guration. During this
time, a copy of g has been transformed in c.

When 
2 enters the state s4;2, we have two possibilities. If any copy of b or of c is present,
then the computation will continue for ever. If no copy of b or of c is present, then the
computation can continue only until all symbols a0 are replaced by a and then it stops: the
component 
3 can proceed further only using occurrences of the symbol f and such symbols
are produced only by 
2, which is no longer able to introduce f .

In conclusion, we can double n times the number of occurrences of a, that is, we stop in a
con�guration which contains 2n copies of a. We may say that the system � above computes
the function f(n) = 2n; n � 1.

One can modify this system in order to generate the language fa2
n
j n � 1g, but we leave

this task to the reader.

5 The power of PT systems; The main result

We pass now to investigating the generative power of PT systems. The main result in this
sense is the next one, showing that our mechanisms are very powerful.

Theorem 1. gsm(pRE) � PTL2.

Proof. It is known that RE = MATac; this implies that pRE = pMATac. Con-
sider a matrix grammar with appearance checking G = (N;T; S;M;C) and a gsm 
 =
(K;T; V2; q0; F; P ). Assume that G is in the binary normal form (hence N = N1[N2[fS; yg)
and that it contains k matrices of the form mi : (Xi ! �i; Ai ! xi), 1 � i � k, for
some Xi 2 N1; �i 2 N1 [ f�g, Ai 2 N2; x 2 (N2 [ T )�, and n matrices of the form
mj : (Xj ! Yj; Aj ! y), k + 1 � j � k + n, for some Xj ; Yj 2 N1; Aj 2 N2. Let XA

be the symbols introduced by the unique initial matrix, (S ! XA);X 2 N1; A 2 N2.
For a string x 2 (N2 [T )

� we denote by �x the string obtained by replacing each terminal
symbol a which appears in x by �a (the nonterminal symbols remain unchanged).
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We construct the PT system (of degree 2)

� = (V; V2; w0; 
1; 
2);

with

V = N1 [N2 [ V2 [ fy; c; d; eg [ f�a j a 2 Tg;

w0 = XAcc;

and the following components:


1 = (K1; V; s0;1; P1);

K1 = fsi;1 j 0 � i � k + n+ 1g

[ fs0i;1 j 1 � i � kg

[ f[q; r; i] j r : qa! zq0 2 P; q; q0 2 K; a 2 T; z 2 V �

2 ; 1 � i � jzj; jzj � 2g

[ K [ fqfg;

P1 = fs0;1Xi ! �isi;1; si;1A! �xs0i;1;

s0i;1c! cs0;1; si;1c! csk+n+1;1 j 1 � i � kg

[ fs0;1Xj ! Yjsj;1; sj;1d! es0;1;

sj;1Aj ! csk+n+1;1 j k + 1 � j � k + ng

[ fs0;1c! cq0g

[ fqc! cq j q 2 Kg

[ fq�a! �q0 j qa! �q0 2 P; � 2 V2 [ f�gg

[ fq�a! a1[q; r; 1]; [q; r; 1]c ! ca2[q; r; 2]; : : : ;

[q; r; t � 2]c! cat�1[q; r; t � 1]; [q; r; t� 1]c! catq
0 j

for r : qa! zq0 2 P; z = a1a2 : : : at; t � 2; ai 2 V2; 1 � i � tg

[ fqc! cqf j q 2 Fg

[ fqf�! �qf j � 2 N1 [N2 [ f�a j a 2 Tgg;


2 = (K2; V; s0;2; P2);

K2 = fs0;2; s1;2; s2;2; s3;2g;

P2 = fs0;2c! cs1;2; s1;2c! ds2;2; s2;2e! cs0;2;

s2;2d! cs0;2; s0;2c! cs3;2g

[ fs3;2�! �s3;2 j � 2 N1 [N2g:

The system is schematically represented in Figure 2 (
1 is only partially given).
Let us examine the work of this system.
We start from the multiset represented by XAcc; as long as a nonterminal symbol of G

is present, the component 
2 cannot stop: we either cycle in states s0;2; s1;2; s2;2; s0;2, or we
cycle in state s3;2. Therefore, we can halt only when no nonterminal symbol is present.

If 
1 moves from s0;1 to q0 (the initial state of the gsm 
), then it never returns to s0;1.
From q0, we simulate the work of 
, in the following way.

First, note that in each state q 2 K we can work for ever using the rule qc ! cq. Thus,
we have to reach the state qf . Also in this state we can work for ever if a nonterminal symbol
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of G is present or any symbol of the form �a, for a 2 T , is present. Such barred symbols
are introduced by the rules which simulate matrices in M (see below). Consequently, after
entering the state q0, we can �nish the work of 
1 only if no nonterminal is present and all
terminals which are present (in the barred form) are correctly parsed by the gsm 
.

Figure 2: The PT system in the proof of the main theorem.
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The parsing through 
 can be simulated at any time; in particular, we can do that after
eliminating all the nonterminals (this means that a derivation in G is completely simulated,
see below). This is ensured by the fact that in each state q 2 K we can wait as much as we
need, by using the rule qc! cq. In this way, we have at our disposal all the terminal symbols,
hence we can process them in any order we want. Otherwise stated, any permutation of a
string generated by G is available and we can translate it. Note also the important fact
that the rules of the form q�a ! a1[q; r; 1]; [q; r; 1]c ! ca2[q; r; 2]; : : : ; [q; r; t � 1]c ! catq

0,
corresponding to a rule r : qa ! a1 : : : atq

0 from P , introduce the symbols a1; : : : ; at one by
one, hence in the order imposed by the rule r (if all these symbols were produced at the same
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time, then any permutation of them has to be considered, which is not correct).
What remains is to show that each derivation with respect to G can be simulated in �.
Assume that we are in a con�guration (w; s0;1; s0;2) (initially, w = XAcc).
If we use a rule s0;1Xi ! �isi;1 in 
1, for mi : (Xi ! �i; Ai ! xi) in M (at this time, 
2

passes to state s1;2), then at the next step we have to use the rule si;1Ai ! �xs0i;1. Indeed,
if we pass to state sk+n+1;1, then the computation never stops. This means that the use of
the matrix mi is correctly simulated, both its rules were used. We return to s0;1 at the same
time when 
2 returns to s0;2 (after using the rules s1;2c! ds2;2; s2;2d ! cs0;2). The process
can be iterated.

If in the con�guration (w; s0;1; s0;2) we use a rule s0;1Xj ! Yjsj;1 for some matrix mj :
(Xj ! Yj ; Aj ! y); k + 1 � j � k + n, from M (at the same step, 
2 passes to state s1;2), in
state sj;1 we have two possibilities.

If the symbol Aj is present in the current con�guration, then we have to use the rule
sj;1Aj ! csk+n+1;1 and the computation will never �nish. If the symbol Aj is not present,
then 
1 cannot work, we remain in state sj;1. The component 
2 uses the rule s1;2c! ds2;2.
After that, again we have two possibilities for the next step. If the symbol d is used by 
2, then

2 returns to s0;2 (and the symbol c is reproduced), while 
1 should wait until an occurrence
of d will be produced. Thus, nothing happens in this case. If the symbol d introduced by 
2
is used by 
1, then 
1 returns to its initial state and the symbol e is introduced. At the next
step, this symbol will be used by 
2 in order to return to its initial state, too.

One can see that again we simulate correctly a matrix in M , namely one with a rule used
in the appearance checking manner.

When 
2 uses the rule s2;2e ! cs0;2 (in this way, the symbol c is reintroduced), 
1 can
either start simulating a matrix of type mi; 1 � i � k, or a matrix mj; k + 1 � j � k + n.
In the �rst case, no interference appears between the two components. In the latter case, 
1
will arrive in a state sj;1 with k+1 � j � k+n and either it will go to sk+n+1;1 (which leads
to a non-halting computation), or it waits in state sj;1 until the symbol d is introduced by
component 
2.

In all cases, we get computations which can halt only when we correctly simulate the
matrices of G. As we have seen above, when the derivation in G which is simulated by � is
terminal, and only in this case, we can also terminate the computation, reaching a halting
con�guration. In conclusion, L(�) consists exactly of all strings w 2 
(z), for z being a
permutation of a string in L(G). This concludes the proof. 2

The previous theorem has a series of interesting consequences.
On the one-letter alphabet the permutation of a language is equal to the language, so

REone � PTLone
2 . The inclusion PTL � RE follows from Church-Turing thesis (or can be

proved in a direct, constructive, manner). Consequently, we get:

Corollary 1. REone = PTLone
2 :

If we start the construction in the proof of Theorem 1 from a matrix grammar without
appearance checking, then component 
2 is useless, which implies the next result:

Corollary 2. gsm(pMAT ) � PTL1.

Consider the language

D4 = fw 2 fa1; a2; b1; b2g
� j jwjai = jwjbi ; i = 1; 2g

10



(the number of occurrences of a1; a2 is equal to the number of occurrences of b1; b2, respec-
tively). This language is a generator of the family of context-free languages, CF (see [4], pag.
??), hence each context-free language L can be written in the form L = 
(D4), for a gsm

. The language D4 is context-free and permutation closed, therefore it belongs to pMAT .
Because gsm(pMAT ) � PTL1, we obtain

Corollary 3. CF � PTL1.

We do not know whether or not the inclusion RE � PTL2 (or RE � PTL) holds. For
bounded languages, such a relation is true.

Corollary 4. REbound = PTLbound
2 .

Proof. Consider a language L � V �; L � w�

1 : : : w
�

n, for some w1; : : : ; wn 2 V +. Take
the new symbols a1; : : : ; an and de�ne the morphism h : fa1; : : : ; ang

� �! V � by h(ai) =
wi; 1 � i � n. Denote by p(M) the permutation of a language M . If L 2 RE, then
h�1(L) 2 RE; h�1(L) � a�1 : : : a

�

n. From Theorem 1 it follows that p(h�1(L)) 2 PTL2. We
can write

L = h(p(h�1(L)) \ a�1 : : : a
�

n):

A morphism and an intersection with a regular language can be realized by a gsm; again
from Theorem 1, we get L 2 PTL2. Therefore, RE

bound � PTLbound
2 . The converse inclusion

follows from Church-Turing thesis (or can be directly proved). 2

6 Another collapsing hierarchy

Theorem 1 shows that the hierarchy PTLn; n � 1, collapses at the second level. The compo-
nent 
1 of the PT system in the proof of Theorem 1 has a number of states which depends on
the gsm 
 and the starting matrix grammar G. We do not see a way to avoid the dependence
on 
. However, if we do not look for gsm images of permutations of languages in RE, then we
can avoid the dependence on the starting grammar G: the hierarchy on the maximal number
of states in the components of PT systems which generate languages in pRE collapses at the
fourth level:

Theorem 2. For each language L 2 pRE there is a PT system � such that L = L(�)
and each component of � has at most four states.

Proof. Starting from a matrix grammar G = (N;T; S;M;C) in the binary normal form,
with k matrices of the form mi : (Xi ! �i; Ai ! xi); 1 � i � k, and n matrices of the form
mj : (Xj ! Yj ; Aj ! y); k + 1 � j � k + n, we construct a PT system as follows:

� = (V; T;w0; 
1; : : : ; 
k+n; 
k+n+1; 
k+n+2);

with

V = N1 [N2 [ T [ fy; c; d; eg [ f�a j a 2 Tg;

w0 = XAcc;

and the following components:


i = (Ki; V; s0;i; Pi); for 1 � i � k; with

11



Ki = fs0;i; s1;i; s
0

1;i; s2;ig;

Pi = fs0;iXi ! s1;i; s1;iA! �xs01;i;

s01;ic! c�is0;i; s1;ic! cs2;i; s2;ic! cs2; ig;


j = (Kj ; V; s0;j ; Pj); for k + 1 � j � k + n; with

Kj = fs0;j; s1;j ; s2;jg;

Pj = fs0;jXj ! s1;j; s1;jd! eYjs0;j;

s1;jAj ! cs2;j ; s2;jc! cs2;j; s2;jc! cs2;jg;


k+n+1 = (Kk+n+1; V; s0;k+n+1; Pk+n+1);

Kk+n+1 = fs0;k+n+1; s1;k+n+1; s2;k+n+1; s3;k+n+1g;

Pk+n+1 = fs0;k+n+1c! cs1;k+n+1; s1;k+n+1c! ds2;k+n+1;

s2;k+n+1e! cs0;k+n+1; s2;k+n+1d! cs0;k+n+1;

s0;k+n+1c! cs3;k+n+1g

[ fs3;k+n+1�! �s3;k+n+1 j � 2 N1 [N2g;


k+n+2 = (Kk+n+2; V; s0;k+n+2; Pk+n+2);

Kk+n+2 = fs0;k+n+2; s1;k+n+2g;

Pk+n+2 = fs0;k+n+2�a! �as0;k+n+2; s0;k+n+2�a! as0;k+n+2 j a 2 Tg

[ fs0;k+n+2c! s1;k+n+2g

[ fs1;k+n+2�! �s1;k+n+2 j � 2 N1 [N2 [ f�a j a 2 Tg:

This system works in a way similar to that in the proof of Theorem 1. The components

i; 1 � i � k, simulate the matrices in M which do not involve rules used in the appearance
checking mode. The components 
j; k + 1 � j � k + n, simulate the matrices which contain
rules used in the appearance checking mode. Note that in each moment only one of these
components can work, because only one occurrence of a symbol from N1 is present in the
current multiset; moreover, the use of a rule Xj ! Yj, for anu i, is completed only when the
simulation of the matrix in which this rule appears is completed (the symbol Yi is introduced
by a rule which returns to the initial state of the component 
i). The component 
k+n+1 is
used, as in the proof of Theorem 1, for ensuring the correct simulation of the matrices which
contain rules used in the appearance checking manner.

The component 
k+n+2 is used for permuting the terminal symbols, at the end of a
computation, in such a way to obtain all permutations of strings in L(G) (we can wait in
state s0;k+n+2 as long as we need). Moreover, this component checks whether or not the
derivation is terminal: if any nonterminal of G is present in the con�guration, then we can
cycle in state s1;k+n+2.

In conclusion, L(�) = p(L(G)). 2

Corollary 5. Each language in pMAT can be generated by a PT system whose components

have at most three states each.

Proof. If we start the construction in the previous proof from a matrix grammar without
appearance checking, then the component 
k+n+1 is no longer necessary (of course, also the
components 
j; k+1 � j � k+ n, are missing); moreover, we can also avoid using the states
s01;i in components 
i; 1 � i � k. Consequently, each component contains three states, with
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the exception of the component 
k+1 { the former component 
k+n+2 { which has two states.
This completes the proof. 2

The number of components of systems constructed in the proofs of Theorem 2 and Corol-
lary 5 depends on the starting grammar.

In all the results from this and the previous section, the length of the string x in rules
sa! xs0 of the components of the PT systems we use can be bounded by two: start from a
matrix grammar in the binary normal form having the string z in matrices (X ! �;A! z)
of length at most two (this can be arranged { see [5]). One can see from the constructions
that the obtained PT system has the desired property.

7 Closure properties

A way to estimate the size of a family of languages is to consider its closure properties. From
this point of view, the family PTL seems rather large:

Theorem 3. The family PTL is a full AFL.

Proof. It is easy to see that the family PTL is closed under arbitrary gsm mappings;
this implies the closure under arbitrary morphisms, intersection with regular languages, and
inverse morphisms.

Union. Consider two PT systems �i = (Vi; Ti; w0;i; 
1;i; : : : ; 
ni;i); i = 1; 2. Without loss
of generality we may assume that the states used by components of �1 are di�erent from
those used by the components of �2 and that also V1�T1 is disjoint of V2�T2. We construct
the system

� = (V1 [ V2 [ fd; d1; d2g; T1 [ T2; dw0;1w0;2; 
0; 

0

1;1; : : : ; 

0

n1;1
; 
01;2; : : : ; 


0

n2;2
);

with


0 = (fs0g; V1 [ V2 [ fd; d1; d2g; s0; fs0d! dn11 s0; s0d! dn22 s0g);


0i;j = (Ki;j [ fs
0

0;i;jg; Vj ; s
0

0;i;j; Pi;j [ fs
0

0;i;jdj ! s0;i;j);

for all 1 � i � nj; j = 1; 2:

One can easily see that we �rst work in the new component, 
0, introducing either n1
occurrences of d1 or n2 occurrences of d2. In this way, all components of �1 or all components
of �2 pass simultaneously to their initial states. From now on, these components work exactly
as they are doing in the initial system. Because we have only one occurrence of d, 
1 can
work only once, hence only the components of one of �1;�2 are activated. Consequently, we
get L(�) = L(�1) [ L(�2).

Concatenation. Start from two systems �i; i = 1; 2, as above, with disjoint sets of states
and sets of non-terminal symbols, and construct a new system as follows. Instead of a formal
(highly cumbersome) construction, we indicate it in Figure 3 and describe it informally.

As one can see in Figure 3, we have two new components, 
0 and 

0

0, and modi�ed variants
of all the components of �1 and �2. In particular, for each 
i; 1 � i � n1, we consider 


0

i;1,
which \contains" 
i;1 as well as a modi�ed copy of 
i;1 with all states in the form �s. From
each state s in the copy of 
i;1 to the corresponding state �s in the modi�ed copy of 
i;1 we
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have a transition, via a rule sd2 ! �s. Moreover, for each move sa ! xs0 from 
i;1, in the
modi�ed copy we introduce the rule �sa! Xx�s0.

The initial multiset is again dw0;1w0;2. At the �rst step, only the new component 
0 can
work; it introduces n1 copies of d1, which make possible the activation of all components of
�1. These components (their copy from 
0i;1) reaches their initial state and work as they work
in �1. During this time, 
0 can stay in state s1, using the rule s1d ! ds1, while all other
components of the system (
00 and 
0i;2; for 1 � i � n2) are doing nothing, because they do
not have symbols to process.

Figure 3: The construction for concatenation.
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At any moment, 
0 can introduce n1 copies of d2 and pass to state s2. This is the moment
when we want to �nish the work of �1, to check whether or not this is done correctly (we
have a halting con�guration from the point of view of �1), and to pass to also simulate �2.
This is ensured by the \controller" component 
00. After having introduced n1 copies of d2, all
these copies must be used at the next step by the components 
0i;1; 1 � i � n1, otherwise the
component 
00 can use such a symbol and enter the cycle s01d

0

2 ! d02s
0

1, hence the computation
will never �nish. A symbol d2 can be used by a component 
0i;1 by the rule sd2 ! �s, where
s is the current state of 
i;1 reached in 
0i;1 and �s is a copy of it. Note that rules of the form
sd2 ! �s are introduced for all states s, but only one per component can be used, because
we are in a given state. If we are in a halting con�guration of 
i;1 (it is possible that such
a con�guration has been reached at a previous step and we have just waited for the symbol
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d2 to be introduced), then we also move to a halting con�guration of the copy of 
i;1, that
which uses barred states. If this is not the case, that is at least a further transition can be
performed in 
i;1, then this is also possible in the copy of 
i;1 now activated in 
0i;1. Because
each rule of this copy introduces an occurrence of the symbol X, the computation is again
lost: the \controller" component will use this symbol X, working for ever.

In conclusion, when the state s2 is reached in 
0, we can continue the computation without
entering a cycle if and only if a halting con�guration was reached in �1.

The component 
0 introduces now n2 copies of d3, which activate the components 
0i;2; 1 �
i � n2; in this way, we continue working as in �2, hence we obtain the concatenation of the
languages L(�1) and L(�2).

Kleene closure. Consider a PT system � = (V; T;w0; 
1; : : : ; 
n). We proceed as above,
indicating the construction by a picture { Figure 4 { and then discussing it informally.

The new component 
0 controls the iteration of using the system � (in the new form,
where the components 
i were modi�ed to 
0i; 1 � i � n, in a way similar to that in the
proof of the closure under concatenation), and 
00 is again the \controller" of the correct
termination of a computation in � before starting another computation.

Figure 4: The construction for Kleene +.
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The initial multiset is dw0. At the �rst step we can work only in 
0, where n occurrences
of d1 are introduced. Now, each 
0i can start working. We enter the initial states of each 
i
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and then we work as in 
i (at this time 
0 stays in state s1 and 
00 stays in its initial state).
At any time, 
0 can introduce the symbol d2 (again, n copies). The copies of d2 should be
used for passing from the current states of each 
i to the barred version of that state in the
modi�ed copy of 
i included in 
0i (otherwise the computation will never stop, because 
00
cycles in s01). As in the case of concatenation, if the computation in � is not completed, then
the symbol X is introduced and the computation will continue for ever in 
00. At this time,

0 passes to state s3. At the next step, each component of the system returns to its initial
state, by rules of the form �sd3 ! s00;i, made active by the introduction of n copies of d3 by

0. At the same step, also 
0 returns to its initial state.

In this way, we can get the concatenation of any number of strings in L(�). After
producing any number of strings in L(�) (maybe only one), we can pass to state s5 of 
0,
which ends the computation.

In conclusion, we produce L(�)+, which concludes the proof of the closure under Kleene
+ and the proof of the theorem, too. 2

8 Final remarks

We have here introduced a computing model which belongs both to natural computing area
(computing with membranes, [8], [9]) and to multiset processing ([1], [2], [3], etc.): several
�nite automata with outputs (gsm's) swim in a space where a multiset of symbols is present
and process these symbols in a parallel manner. We prove that such machines are rather
powerful: they can generate at least all gsm images of permutations of recursively enumerable
languages.

We do not know whether or not we cover in this way all recursively enumerable languages,
or whether the above result is the best we can obtain (whether or not languages which are
not gsm images of permutations of recursively enumerable languages can be generated by our
systems).

Several other problems remain to be investigated. For instance, we have considered here
non-deterministic gsm's. What about using only deterministic components in our systems?
Actually, we have here two types of non-determinism, one at the level of components (using
non-deterministic gsm's) and one at the level of the whole system: in a given con�guration,
the component which takes a copy of a symbol and processes it is non-deterministically
choosen among those which can do it. For instance, if we have n copies of the symbol a and
n+ 1 components can take this symbol at that moment, only n of them will work on a; the
remaining component will either wait, or will use a symbol di�erent from a, if this is possible.

A way to diminish the non-determinism at the level of the system is to consider a priority
relation among components: in each moment, the components are enabled in the decreasing
order of their priority.

However, even a total ordering of components does not remove completely the non-
determinism: if in a given state of a gsm we can read both a and b, and these symbols
are present in the current multiset, then we may choose one of the two possible steps (note
that this does not appear when gsm's translate strings, because in that case at each moment
only one symbol is scanned by the read head).

On the other hand, systems which are completely deterministic (at each moment, only one
next con�guration is possible) do not seem to be of much interest: they can proceed along a

16



unique computation, which either stops (hence the generated language is at most �nite), or
continues for ever (hence the language is empty).

The study of determinism in PT systems, at various levels, deserves a further investigation.
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